Baldor MN770 User Manual

Elevator Application Guide
Installation & Operating Manual
3/97 MN770

Table of Contents

Section 1 General Information 1-1.
Drive Definition 1-1.
Modernizations 1-1 Limited Warranty 1-2. Safety Notice 1-3.
Section 2 Technologies 2-1.
Section 3 Application Considerations 3-1.
General Considerations 3-1.
Common Control Features 3-3. Elevator Motor Horsepower Selection 3-4. Dynamic Brake Hardware Selection 3-6.
Section 4 Hardware Information 4-1.
General Considerations 4-1. Encoder Retrofit 4-1. Buffered Encoder Output 4-4.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20H Control 2-2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15H Control 2-3. 21H Control 2-3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17H & 18H Controls 2-4. 22H Control 2-4.
Hydraulic & Mechanical Drives 3-1. Electric Drives 3-2.
15H and 18H Drives 3-6. 19H Drives 3-6. 20H, 21H and 22H Drives 3-6.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of Contents iMN770
Section 1 General Information
Section 5 Set-Up Information 5-1.
DC SCR Controls 5-1.
Field Control 5-1. Feedback 5-1 Initial Installation and Startup 5-1. Final Installation 5-2.
Final Adjustments 5-3. Recommended Power Up/Down Sequence for Elevators Using DC SCR Controls 5-4. Inverter Controls 5-5.
Initial Installation and Startup 5-5.
Preliminary Programming 5-5. Recommended Power Up/Down Sequence for Elevators Using Inverter Controls 5-6. Recommended Power Up/Down Sequence for Elevators Using Inverter Controls 5-7. Vector Controls 5-8.
Equipment Required 5-8.
New Installations 5-8.
Modernization 5-8
Final Wiring Connections 5-10.
Initial Set-up 5-11.
Final Set-up 5-12. Recommended Power Up/Down Sequence for Elevators Using Vector Controls 5-13.
Section 6 Troubleshooting 6-1.
DC SCR Control 6-1. Electrical Noise Considerations 6-2.
Causes and Cures 6-2.
Special Drive Situations 6-5.
Drive Power Lines 6-5.
Radio Transmitters 6-5.
Control Enclosures 6-6.
Special Motor Considerations 6-6. Wiring Practices 6-7. Optical Isolation 6-8. Plant Ground 6-8.
Appendix A A-1.
Load Weighing / Torque Feed Forward A-1.
Appendix B B-1.
Serial Communications B-1.
Appendix C C-1.
Elevator Industry Glossary C-1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
ii Table of Contents MN770
Section 1 General Information
Introduction Baldor Electric manufactures several different Drive types for the elevator industry.
These drives are DC SCR (Thyristor), AC Inverter (VVVF) and AC Vector. Each drive type is best suited for a specific application in the elevator market. This manual provides information for selection and application of Baldor Drives for use in the elevator industry.
Drive Definition Baldor’s definition of a “Drive” includes both the Motor and the Control.
M)C
Because each application is different, Baldor makes it easy to customize drive characteristics to match the performance requirements of your application. Programmable flexibility allows Baldor controls to be customized using a standard keypad interface. This easy to use keypad and 32 character display give you total control of the drive. This standard interface provides a family of H series products that have a simple, easy to use, common sense language. These controls have the following characteristics:
1. Common Keypad
2. Common Language
3. Common Commands
4. Common family of expansion boards (I/O Interface)
+
Where: M = Motor
D
C = Control D = Drive
This Elevator Guide is intended to assist with the following:
1. Selection of the proper drive for an elevator application.
2. Provide help with the set-up of the drive during installation.
Modernizations In the United States, most controls sold for use in elevator applications are for
modernizations. A modernization involves upgrading an existing elevator to meet present codes and performance levels. In these cases, usually only a control is sold. Existing motors are used. An encoder feedback device must be added when using Vector technology. An encoder feedback device must be added if using AC Vector technology.
For existing AC elevators, older two speed motors are connected to an Inverter or Vector control. For existing DC elevators, a DC motor generator set is replaced by a DC SCR control. The existing DC motor must be modified to accept an encoder or tachometer feedback device.
General Information 1-1MN770
Section 1 General Information
For
a period of repair or replace without charge controls which our examination proves to be
defective in material or workmanship. This warranty is valid if the unit has not been tampered with by unauthorized persons, misused, abused, or improperly and/or ratings supplied. This warranty is in lieu of any other warranty or guarantee any expense (including installation and removal), inconvenience, or consequential items of our manufacture or sale. (Some states do not allow exclusion or limitation of incidental or consequential damages, so the above exclusion may not apply.) In any event, BALDOR’s total liability, under all circumstances, shall not exceed the full purchase price of the control. Claims for purchase price refunds, repairs, or replacements must be referred to BALDOR with all pertinent data as to the defect, the date purchased, the task performed by the control, and the problem encountered.
Limited Warranty
two (2) years from the date of original purchase, BALDOR will
installed and has been used in accordance with the instructions
expressed or implied.
damage, including injury to any person or property caused by
No liability is assumed for expendable items such as fuses.
BALDOR shall not be held responsible for
Goods may be returned only with written notification including a BALDOR Return Authorization Number and any return shipments must be prepaid.
1-2 General Information MN770
Safety Notice This equipment contains voltages that may be as great as 1000 volts! Electrical shock
can cause serious or fatal injury. Only qualified personnel should attempt the start-up procedure or troubleshoot this equipment.
This equipment may be connected to other machines that have rotating parts or parts that are driven by this equipment. Improper use can cause serious or fatal injury. Only qualified personnel should attempt the start-up procedure or troubleshoot this equipment.
PRECAUTIONS
WARNING: Do not touch any circuit board, power device or electrical
connection before you first ensure that power has been disconnected and there is no high voltage present from this equipment or other equipment to which it is connected. Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt the start-up procedure or troubleshoot this equipment.
WARNING: Be sure that you are completely familiar with the safe operation of
this equipment. This equipment may be connected to other machines that have rotating parts or parts that are controlled by this equipment. Improper use can cause serious or fatal injury. Only qualified personnel should attempt the start-up procedure or troubleshoot this equipment.
WARNING: This unit has an automatic restart feature that will start the motor
whenever input power is applied and a RUN (FWD or REV) command is issued and maintained. If an automatic restart of the motor could cause injury to personnel, the automatic restart feature should be disabled. Disable by changing the “Restart Auto/Man” parameter to MANUAL.
WARNING: Be sure the system is properly grounded before applying power.
Do not apply AC power before you ensure that all grounding instructions have been followed. Electrical shock can cause serious or fatal injury.
WARNING: Do not remove cover for at least five (5) minutes after AC power is
disconnected to allow capacitors to discharge. Dangerous voltages are present inside the equipment. Electrical shock can cause serious or fatal injury.
WARNING: Improper operation of control may cause violent motion of the
motor shaft and driven equipment. Be certain that unexpected motor shaft movement will not cause injury to personnel or damage to equipment. Peak torque of several times the rated motor torque can occur during control failure.
WARNING: Motor circuit may have high voltage present whenever AC power is
applied, even when motor is not rotating. Electrical shock can cause serious or fatal injury.
WARNING: Dynamic Brake Hardware may generate enough heat to ignite
combustible materials. Keep all combustible materials and flammable vapors away from Dynamic Brake Hardware.
Continued on Next Page
General Information 1-3MN770
Section 1 General Information
Caution: To prevent equipment damage, be certain that the electrical service
is not capable of delivering more than the maximum line short circuit current amperes listed in the appropriate control manual, 230 VAC or 460 VAC maximum per control rating.
Caution: Disconnect motor leads (T1, T2 and T3) from control before you
perform a “Megger” test. Failure to disconnect motor from the control will result in extensive damage to the control. The control is tested at the factory for high voltage / leakage resistance as part of Underwriter Laboratory requirements.
1-4 General Information MN770
Section 2 Technologies
Overview Baldor Electric manufactures six drive types for the elevator industry. Each drive type
(Control and Motor) is best suited for a specific application. These Series “H” Controls are:
S 15H Inverter S 17H Vector (Encoderless) S 18H Vector S 19H
DC SCR
S 20H DC SCR (Line Regenerative) S 21H Inverter (Line Regenerative) S 22H Vector (Line Regenerative)
These Baldor Series “H” controls all use the same keypad and display interface. This makes it easy to become familiar with the programming and operation of the controls. Set-up time of the control and motor is greatly reduced due to the automated features “Auto-Tune” that are available within these controls.
The purpose of this section is to review each technology type to make it easier to choose a drive for an application. Table 2-1 provides a brief overview of drive performance for each technology type.
Table 2-1 Drive Performance Comparison
Feature DC
Operating speed range (for elevators)
Relative constant torque speed range
Speed Control Yes Yes Yes Torque Control Yes No Yes Positioning Yes
Speed regulation:
Open Loop
Closed Loop
Continuous full rated torque at zero speed
Available peak torque 150% + 115 - 150% 150% + Motor Brushes? Yes No No
Motion controller required for positioning. Requires encoder or resolver feedback. Depends on motor size and percent slip.
0 RPM to Base Speed 10% of Base Speed
(Encoder or resolver feedback)
± 1 - 2% of base speed
± 1% of set speed
SCR
Wide
20:1
± 3% of base speed
No No Yes
Inverter Vector
0 RPM to Base Speed
to Base Speed.
Narrow
5:1 - 10:1
No
± 0.5 to 1% of set speed
± 1% of set speed
± 0.05% of set speed
Widest
Base Speed:1
Yes
Technologies 2-1MN770
DC SCR Control NEMA Type C designation of electrical power source equipment for adjustable speed
drives. Series 19H DC SCR (not used in elevator applications) Series 20H DC SCR (Line Regenerative)
DC SCR controls are used in elevator applications where speeds range from 50 to over 1000 FPM. The Baldor DC SCR (Thyristor) control is a three phase, full wave rectified, DC motor armature and field (where applicable) control. The SCR bridge converts three phase AC to DC power. This rectified DC provides power to the DC motor armature, and the reference transformer to operate power supplies and other circuits.
Armature or encoder feedback may be used with either control. DC tachometer or resolver feedback is available with the optional expansion board. A Series 20H control can be configured to check for torque output (torque proving) before a holding brake is released.
20H Control The Series 20H is a standard line regenerative control. Regenerated power is applied
back to the incoming power lines. External filters can improve the Total Harmonic Distortion (THD) of the AC waveform. This control is not designed for regenerative use with stabilized shunt or compound wound DC motors. If stabilized shunt or compound wound motors are to be used, the series field must be isolated and not connected. Contact the motor manufacturer for motor derating under these conditions.
Regulation from the Series 20H, using armature feedback, will be 2% of base speed. With DC tachometer feedback, the regulation will be 1% of set speed. Use of encoder or resolver feedback will provide 0.1% regulation.
2-2 Technologies MN770
Inverter Series 15H Inverter
Series 21H Inverter (Line Regenerative) IEEE-519 Compliant Typically Inverters are used in elevator applications where speeds up to 150 FPM are
required. The Baldor inverter converts the three phase AC line power to fixed DC power. The DC
power is then pulse width modulated into synthesized three phase AC line voltage for the motor.
The rated horsepower of the control is based on a NEMA design B four pole motor and 60Hz operation at nominal rated input voltage. If any other type of motor is used, the control should be sized to the motor using the rated output current of the control.
Speed regulation of an Inverter Drive is dependant upon the slip of the AC induction motor. Typically this regulation will be 3% of base speed. Speed regulation can be increased to 1% of base speed by the addition of a DC tachometer for feedback.
The output of the inverter is a Sinewave of current to the motor. The more pure the Sinewave is, the less additional heat produced in the AC induction motor. If a motor produces less heat, more torque is available to drive the load. The PWM control method produces less heat and gives a better approximation of a Sinewave of current to the motor when compared to a Six-Step type of inverter.
15H Control The Baldor Series 15H control may be programmed to operate in one of four operating
zones; standard constant torque, standard variable torque, quiet constant torque or quiet variable torque. For elevator applications, only the quiet constant torque or quiet variable torque modes are used. It can also be configured to function in a number of operating modes for custom operation. These choices are programmed using the keypad as explained in the programming section of this manual.
Regenerated power from the motor is applied back to the DC bus and must be dissipated by REGEN Hardware (resistive load). The REGEN (or dynamic brake) hardware is selected based on the power to be dissipated. The amount of power, duration and frequency of the braking must be taken into consideration when sizing these resistors.
21H Control The Series 21H Inverter is a line regenerative control. Regenerated power is applied
back to the incoming power lines. Regenerated power from the motor is applied to the incoming AC power lines. The
Series 21H control meets IEEE 519 (1992) for total harmonic distortion. By returning the excess power back to the line, energy use is reduced for the building. The lower THD causes fewer power problems for sophisticated equipment on the same power grid. No external dynamic braking hardware is required.
Technologies 2-3MN770
Vector Series 17H Encoderless Vector
Series 18H Vector Series 22H Vector (Line Regenerative)
Vector drives are used in elevator applications where speeds range from 50 to over 700 FPM. Baldor is a pioneer in Flux Vector Technology and we continue to be the leader in new product development with our Series 18H Vector Drive, Series 22H Line REGEN Vector Drive and our recently introduced 17H Encoderless Vector Drive.
These are three phase, variable voltage and variable frequency controls. Like an inverter, the control converts AC input voltage to a fixed voltage DC bus supply. This bus is then converted into a synthesized AC Sinewave to the motor. The Vector control precisely controls current into the motor allowing the motor to produce less internal heating resulting in more continuous torque.
The name Vector Drive comes from the mathematical analysis of the electrical circuit formulas governing motor performance. This mathematical analysis uses a vector coordinate system. By monitoring the relative position of the motor’s rotor with respect to the stator, the vector drive can determine how much of the applied AC stator current will produce torque and how much will produce heat. The vector drive continuously monitors the rotor position and changes the vector of applied stator voltage to maintain peak motor performance.
Vector drives sense the rotor position by monitoring a position feedback device (encoder) mounted or directly coupled to the motor shaft. The most common feedback device used with vector drives is an incremental encoder. Resolvers are sometimes used when environmental conditions are severe. Baldor vector drive motors are supplied with rugged H25 encoders that provide 1024 pulses per revolution (PPR) with quadrature.
Since the control uses standard encoder feedback (except 17H), regulation is very good at 0.1% of set speed. Full rated torque is available from base speed to zero speed. Since an AC induction motor is used, no brush maintenance is required as with a DC motor.
17H & 18H Controls The control may be programmed to operate in one of four operating zones; standard
constant torque, standard variable torque, quiet constant torque or quiet variable torque. For elevator applications, only the quiet constant torque or quiet variable torque modes are used. The control can also be configured to function in a number of operating modes for custom operation. These choices are programmed using the keypad as explained in the programming section of this manual.
Regenerated power from the motor is applied back to the DC Bus and must be dissipated by REGEN Hardware (resistive load). The REGEN hardware is selected based on the power to be dissipated. The amount of power, duration and frequency of the braking must be taken into consideration when sizing these resistors.
22H Control The Series 22H Vector is a line regenerative control. Regenerated power is applied back
to the incoming power lines. Regenerated power from the motor is applied to the incoming AC power lines. The
Series 22H control meets IEEE 519 (1992) for total harmonic distortion. By returning the excess power back to the line, energy use is reduced for the building. The lower THD causes fewer power problems for sophisticated equipment on the same power grid. No external dynamic braking hardware is required.
2-4 Technologies MN770
Section 3 Application Considerations
General Considerations A good understanding of elevator applications and requirements is essential for proper
selection of drive components. Several classifications or categories can be identified to make selection easier. These are:
1. The speed of the car in the hoistway. Generally speaking, there are low speed, medium speed and high speed elevators.
2. The type of hoisting drive used in the elevator. These include hydraulic, mechanical and electric.
Hydraulic & Mechanical Drives Hydraulic and mechanical drive designs are typically used in low to medium speed
elevators. A rack and pinion elevator is a low speed system. The elevator is on a rack and is driven
vertically by a pinion. Speed range is in the 100 to 200 FPM range. In the past, these have been powered by two AC speed motors or DC with generators. They are being modernized and converted to DC SCR controls, Inverters or Vector drives.
Hydro elevators are powered by a submerged AC motor and hydraulic pump assembly. These are generally slow speed elevators operating at 25 to 200 FPM. A hydro elevator application is limited to low rise buildings. The AC motor used in a hydro elevator is fixed speed and doesn’t require an adjustable speed control.
For two-speed cable traction elevators, Baldor offers a solid-state starter that allows a soft start and stopping action with an AC induction motor. This Multipurpose control has proven itself on many elevator applications. Contact Baldor for more information on this product.
Application Considerations 3-1MN770
Section 1 General Information
Electric Drives Electric drives overlap both of these technologies at their upper limits of speed and
extend to elevator speeds of more than 700 feet per minute. Cable traction elevators are suspended by cable which is wrapped around a drum. The
elevator has a counter weight to eliminate having to dead lift the load as in a hoisting application. These cable drums traditionally have been driven by DC motors powered from a motor - generator set. With the introduction of SCR controls in the 60’s, many of these were built with SCR controls. The DC motor offers high starting torques and good speed control. The SCR control is relatively simple and reliable in design.
Cable traction elevators can be further sub-divided based on how the torque is transmitted from the motor to the cable drum. These sub-groups are:
1. Worm gear driven at a speed of 50 to 450 FPM.
2. Helical gear driven at a speed of 200 to 500 FPM.
3. Gearless which operates at 400 to 700 FPM and above.
The most common types of elevators that use Baldor drives are cable traction elevators. The DC SCR control is used with many worm gear and gear-less elevators operating in the 350 FPM range. The Series 20H Digital DC SCR control is a good selection for use on gear-less and gear driven elevators. Typical motor requirements are 15 to 75 horsepower.
Inverters may be used on worm gear cable traction elevators operating at 100 to 150 FPM. These slower elevators typically require 7.5 to 10 horsepower motors.
AC powered elevators that operate above 150 FPM should use a Baldor Vector Drive. Vector drives perform well in the 150 to above 700 FPM range. Typical horsepower requirements are 15 to 50 HP.
There are several factors that contribute to a good elevator drive. The predominant requirement for a good elevator is smooth operation without any jerky movement. Another requirement is accurate floor leveling capability. Baldor’s ability to offer better value is the reason many customers select Baldor products for their elevator applications.
3-2 Application Considerations MN770
Section 1 General Information
Common Control Features
S Wide Input Voltage Range
180 - 264 VAC 60 Hz 180 - 230 VAC 50 Hz 340 - 528 VAC 60 Hz 340 - 460 VAC 50 Hz
S Keypad operation - A common keypad is used for all Baldor Series H Controls.
The keypad is used to program and operate the control.
S Plain English display - The keypad has a 32 character alpha-numeric display.
This display shows the control status and parameter settings in plain English.
S Common programming language and techniques are used for DC SCR,
Inverter and Vector products.
S Adjustable features - S-Curve, acceleration and deceleration adjustments.
Eliminates the need to purchase extra equipment for smooth starts and stops.
S Common expansion boards for convenient input/output connections. S Matched Performancet - The motor and control operate well together as a
drive. We know how
our
motor will operate when used with
our
control.
S Stable supplier - Baldor’s only business is motors and controls. Baldor Electric
was formed in 1920 as a motor company and is a quality leader in this market.
S Service - Baldor has a world-wide network of sales and service offices.
Table 3-1 Available Operating Modes
Operating Mode
Keypad X X X Standard Run, 3 Wire Control X X X 2-Wire Control with 15 Preset Speeds X X X Bipolar Speed / Torque Control X X Serial X X X Bipolar Hoist X Fan Pump, 2-Wire Control X Fan Pump, 2-Wire Control X 7 Speed Hoist, 2-Wire Control X Process Mode X X X
DC SCR
Inverter Vector
Application Considerations 3-3MN770
Section 1 General Information
Elevator Motor Horsepower Selection
Selection of a motor and control for an elevator application is dependent upon several variables. The primary variable is the overall mechanical efficiency of the elevator. The efficiency of gear driven elevators varies from about 45 percent for slow moving cars to 70 percent for faster moving cars. On gear-less elevators, efficiency may be in the 90 percent range.
The horsepower required for a specific application can be calculated as follows: US Measurement System
HP +
Where:
Metric Measurement System
Motor KW +
Where:
LBS x FPM x [1 * (
LBS = FPM = Car speed in feet per minute (FPM) OCW = Over counter weight in %(percent) of car capacity %EFF = Elevator mechanical efficiency (decimal)
Kg = Car capacity in Kilograms m/s = Car speed in meters per second) OCW = Over counter weight in %(percent) of car capacity %EFF = Elevator mechanical efficiency (decimal)
33,000 x (
%EFF
100
)
Car capacity in pounds
Kgxmńsx[1* (
102x(
%EFF
OCW
100
100
)]
)
OCW
100
)]
3-4 Application Considerations MN770
Section 1 General Information
Table 3-2 can be used to determine the size control and motor to use for your application. Find the “Car Speed” column in the first row of the table. Follow that column down to find the “Car Capacity” row. Follow that row to the left and read the recommended HP/KW size of the motor.
Table 3-2 Motor Sizing
Car Speed Feet / Min. 100 150 200 250 300 350 400 500 700
Car Speed Meters / Sec. 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.5
Assumed Mechanical Efficiency 55% 58% 60% 62% 63% 64% 64% 67% 70%
Motor HP Car Capacity in Pounds
Motor kW Car Capacity in Kilograms
7.5 2300 1600 1250 1030 870 750 660 550 410
5.6 1045 727 568 468 395 341 300 250 186 10 3000 2150 1660 1370 1150 1000 880 740 550
7.5 1364 977 755 623 1150 455 400 336 250 15 4500 3200 2500 2060 1730 1500 1310 1100 410
11.2 2045 1455 1136 936 786 682 595 500 373 20 6050 4300 3300 2750 2300 2000 1750 1470 1090
14.9 2750 1955 1500 1250 1045 909 795 668 495 25 7500 5400 4150 3400 2880 2500 2190 1840 1370
18.6 3409 2455 1886 1545 1309 1136 995 836 623 30 9100 6400 4950 4000 3470 3000 2620 2210 1640
22.4 4136 2909 2250 1818 1577 1364 1191 1005 745 40 12100 8600 6650 5450 4620 4000 3500 2950 2180
29.8 5500 3909 3023 2477 2100 1818 1591 1341 991 50 15125 10700 8300 6840 5760 5000 4370 3670 2730
37.3 6875 4864 3773 2945 2618 2273 1986 1668 1241 60 18150 12870 9900 8200 6940 6000 5250 4430 3280
44.8 8250 5850 4500 3727 3155 2727 2386 2014 1491 75 22685 16090 12375 10300 8650 7500 6560 5520 4100 56 10311 7314 5625 4682 3932 3409 2982 2509 1864
Application Considerations 3-5MN770
Section 1 General Information
Dynamic Brake Hardware Selection
15H and 18H Drives Baldor Series 15H Inverters and Series 17H and 18H Vector Drives require optional
dynamic brake hardware to dissipate regenerative power from the motor. The conditions causing regeneration for an elevator occur about 50 percent of the time the car is moving. This regenerative power is produced when:
1. When a lightly loaded car is being raised.
2. When a fully loaded car is being lowered.
3. Whenever the car is decelerated.
Regenerative power is calculated in the same way as the motor and drive horsepower except that efficiency losses decrease the amount of energy to be absorbed.
The watt rating of the Dynamic Brake (or REGEN) hardware required for a specific application can be calculated as follows:
US Measurement System
88
OCW
100
OCW
)] x %EFF
100
)] x %EFF
Ǔ
Ǔ
x 1.25
x 1.25
LBS x FPM x [1 * (
Watts +
Where:
Metric Measurement System
Watts +
Where:
The calculations show a value of 25% greater than the base calculation. This over sizing allows for normal variations in values and operating conditions. The resulting power value compensates for high ratio worm gear drives having substantially lower back driving efficiency than forward driving efficiency.
19H Drives Not used in elevator applications. 20H, 21H and 22H Drives No dynamic braking hardware is required for these drives.
Baldor’s Series 20H DC SCR, Series 21H Inverter and Series 22H Vector Drives are all line regenerative drives. Excess energy is supplied back to the incoming AC power line.
ǒ
LBS = FPM = Car speed in feet per minute (FPM) OCW = Over counter weight in %(percent) of car capacity %EFF = Elevator mechanical efficiency (decimal)
Kgxmńsx[1* (
ǒ
Kg = Car capacity in Kilograms m/s = Car speed in meters per second) OCW = Over counter weight in %(percent) of car capacity %EFF = Elevator mechanical efficiency (decimal)
Car capacity in pounds
0.202
3-6 Application Considerations MN770
Loading...
+ 37 hidden pages