This controller is intended to control equipment under normal operating
conditions. Failure or malfunction of the controller may lead to abnormal
operating conditions, which result in personal injury or damage to the equipment
or other property. Devices (limit or safety controls) or systems (alarm or
supervisory) intended to warn of or protect against failure or malfunction of the
controller must be incorporated into and maintained as part of the control system.
Installing the rubber gasket supplied will protect the controller front panel from
dust and water splash (IP54 rating). Additional protection is needed for higher
IP rating.
This controller carries a 90-day warranty. This warranty is limited to the
controller only.
1. Specifications
Table 1. Specs of DSPR320.
Input type RTD (Resistance Temperature Detector): PT100
Accuracy ± 0.2% of full scale
Sensor input range 0°F ~ 932°F, -17°C ~ 500°C
Response time ≤ 0.5 s
Display resolution 1°C or °F
Control mode temperature, power
Program step Up to 9 steps in each mode
Timer range 00 H 00 M to 99 H 00 M
Main output 12 VDC for solid state relay
Relay output 3 A for resistive load. 1 A for inductive load
Number of relays 2
Power supply 85 V ~ 260 V AC / 50 ~ 60 Hz
Power consumption ≤ 5 Watt
Working ambient
temperature
Dimensions 48 x 48 x 100 mm (W x H x D, from the front panel to the back)
The pin assignment of the back terminals of DSPR320 is shown in Figure 2 and
the descriptions of each terminal are given in the table below.
HOLD
/STOP
RUN
+
KNOB
Descriptions
Temperature reading and step-timer.
Parameter names.
Set value, step number, and program
status.
Parameter values.
Light up when Relay 1 (AL1) pulls in.
Light up when Relay 2 (AL2) pulls in.
Light up when controller is in MASH
mode.
Light up when the controller is sending
control signal to the SSRs. When it
flashes, the percentage of time of it
being lit up indicates the percentage of
power that is being sent to the SSRs.
ction
Short press
Long press
Rotate
Short press
Short press
Long press
Hold
down the
RUN key
and press
the knob
Functions
Press the knob to bring up the
Quick Access Menu.
Press the knob to select a
parameter or to save the
parameter value.
Press and hold the knob 3
seconds to bring up the Main
Menu.
Rotate the knob to browse and
change parameter values.
Start the program.
Resume the timer if timer is
paused.
Mute the on-board buzzer and/or
cancel the relay action if
temperature alarms are triggered.
Pause the timer.
Hold it down for 2 seconds to stop
the program.
End the program and stop all
outputs.
Go back to the previous
parameter in the menu list.
2018.08 P1/11
AUBER INSTRUMENTSWWW.AUBERINS.COM
AL2
-
SS R
7
+
8
9
AC
85~260V
10
RTD
AL 1
1
13146
2
3
R
4
R
5
W
Figure 2. Terminal assignments of DSPR320.
Table 4. Back terminals of DSPR320.
Pin # Descriptions
1 Relay 1 (AL1)
2
3 Probe input (PT100 RTD). Two red leads should be connected to pin 3
and 4.
4
5
6 Control output (12 VDC), pin 7 is the positive and pin 6 is the negative.
7
9 Power input (85 V ~ 260 V AC)
10
13 Relay 2 (AL2)
14
4. Getting Started
Before you start using this controller, please read the manual carefully. This
section only provides a brief description on some of the most basic operations of
this controller. Please read the later sections in this manual to understand how this
controller works and learn more about each parameter.
4.1. Power Up
To test the unit and get familiar with all the features of this controller, please
connect a PT100 RTD probe and then supply the 120 V or 240 V AC power.
4.2. Displayed Information
When the controller is powered up for the first time, the top display will show
current probe reading, and the bottom display will show the program status
“STOP”.
When the program is running but the temperature has not yet reached the setvalue of the current step (i.e., the step-timer has not started yet), the top window
shows the current temperature reading, and the bottom display will flash between
the current set-value and the current step number (Figure 3). When the step-timer
has started, the top window will show the probe reading and the time alternatively,
and the bottom window will still show the current set-value and the current step
number alternatively (Figure 4). If the set-value has the letter “P” display on its left,
that means this is a percentage value of power, not a temperature value.
7 8
1 5 0
7 8
m - 1
Figure 3. Two display screens when the step-timer has not started.
1 4 9
1 5 0
00:45
m - 1
Figure 4. Two display screens when the step-timer has started.
There are four LED indicators on the left side. The top two red LED are
synchronized with the relay AL1 and AL2 status respectively. The third LED is
yellow, and it lights up if the controller is at MASH mode. The last green indicator
is synchronized with the output signal to the external SSR.
4.3. Understand the Menu Structure
The table below shows the menu structure of DSPR320 and how to access the
menu.
Table 5. Menu structure of DSPR320.
(Short-press the knob to bring up the Quick Menu; rotate the knob to browse different
RST (n/y)
STEP (1 ~ 9)
MODE (Mash/Boil)
(Hold down the knob for 3 seconds to bring up the Main Menu; rotate the knob to
browse different menu items; press the knob again to select. )
mPRG
bPRG
mSET
bSET
RELY
SYST
Quick Access Menu
options; press the knob again to select.)
Reset the program
Jump to the selected step
Select mode
Main Menu
Mash mode program
Boil program
Mash-step settings
Boil-step settings
Relay configurations
System configurations
4.4. Select Mash or Boil Mode
There are two program modes: MASH and BOIL. By default, the controller is at
MASH mode. If you want to run the program in Boil mode, please press the knob
to bring up the Quick Access Menu. Next, rotate the knob clock-wise till you see
“MODE” in the top display and “BOIL” in the lower display. Then, press the knob
again to confirm the selection. The MASH indicator will light up if the controller is
in MASH mode, and it should turn off if the controller is in BOIL mode.
Press
KNOB
MODE
B O I L
stop
7 8
Press
KNOB
R S T
N
Keepturning
KNOB
STEP
1
Keepturning
KNOB
MODE
MASH
Figure 5. Select Program Mode on DSPR320.
4.5. Adjust Parameters
All parameters are divided into four groups in the Main Menu: mSET (mashing
step settings), bSET (boiling step settings), RELY (relay settings), and SYST
(system settings). Press the knob for 3 seconds to go the Main Menu and turn the
knob to select the desired parameter group to edit. Please refer to Section 7 of this
manual for the detailed explanation of each parameter.
4.6. Enter the Program
Press down the knob for 3 seconds to go the main menu, the first two items are
mPRG (Mash Mode Program) and bPRG (Boil Mode Program). Rotate the knob
to select which program to enter and press the knob again to confirm.
There are maximum 9 steps can be entered in each mode. For each step, the user
will be asked to enter the set-value and the step-timer. The Figure 6 below shows
the operations for how to enter the set-value of the Step 1 of the Mash Program.
And the Figure 7 shows the same operations for Boil Program.
stop
7 8
Press
KNOB
3sec
GOT O
mPRG
Press
KNOB
M1 - s
M 0
Turn
KNOB
M1 - s
M1 5 0
Press
KNOB
M1 - t
0 0:0 0
Figure 6. Entering the Mash Program.
stop
7 8
Press
KNOB
3sec
GOT O
bPRG
Press
KNOB
b1 - s
p 0
Turn
KNOB
b1 - s
P 2 5
Press
KNOB
b1 - t
0 0:0 0
Figure 7. Entering the Boil Program.
2018.08 P2/11
AUBER INSTRUMENTSWWW.AUBERINS.COM
The set-value can either be a temperature value (with letter “M” display on the left)
or a percentage number (with letter “P” displayed on the left) of the power output.
The user can rotate the knob to select from 0% to 100% power and from 0 to
932 °F/°C. Press the knob to confirm the value and go to the timer setting.
The step-timer can be set in the HH:MM format, ranging from 00:00 to 99:00, or a
special code which can be SKIP, HOLD, END, or CONT. Please see later sections
for details. If the step-timer a step is set to END or CONT, the user won’t be
prompted with the next step.
4.7. Start the Program
Simply press down the RUN key to start the program. The top window will show
“RUN” shortly and then show probe reading and start running the first valid step.
RUN
1 5 0
Figure 8. The top window shows “RUN” when the program starts.
4.8. Make Adjustment On-the-Fly
This controller offers a quick way for users to adjust the set-value and the steptimer of the current step without going back into the programming menu. It also
allows the program to be jumped from the current step to any other valid step in
the program.
a)Change the set-value. When the lower display shows the current set-value,
simply turn the knob in either direction to start editing the value. A flashing dot will
appear at the lower right corner to indicate the set value is being editing. Keep
turning the knob till the desired set-value is shown in the lower window. Then press
the knob to confirm the change, otherwise the new value won’t be saved.
7 8.
1 5 0.
Turn
KNOB
7 8.
1 5 0.
Turn
KNOB
7 8.
1 5 5.
Depress
KNOB
7 8.
1 5 5.
Figure 9. Changing the set-value while the program is running.
b)Change the step-timer. When the lower display shows the current step number,
turn the knob in either direction to start editing the step-timer. A flashing dot will
appear at the lower right corner to indicate the new value hasn’t been saved yet.
Press the knob again to confirm the change, otherwise the new value won’t be
saved. The Figure 10 below shows this operation when the temperature is still
being ramping up to the step’s set-value. So, the top window only shows the
current probe reading. If the step-timer had started, the top window will show the
current time.
7 8.
m - 1.
Turn
KNOB
7 8.
0 0:4 5.
Turn
KNOB
0 0:5 0.
7 8.
Depress
KNOB
7 8.
m - 1
Figure 10. Changing the step-timer while the program is running.
c)Pause the timer. When the temperature reaches the timer-start-point, the steptimer will start counting down time. The user can manually pause the timer by
short-pressing the HOLD key. When the timer is paused, the top window will show
“HOLD.”. To resume the current step- timer, press the RUN key shortly and the
controller will show “RUN” in its top window. The Figure 11 shows how to pause
the timer.
0 0:4 5.
m- 1.
Figure 11. Operations to pause and to resume the step-timer.
When the timer is paused from the key pad, a dot will also appear in the right
corner of “HOLD.” indicates that the timer is temporarily paused and it can be
resumed. This is different from setting/changing the step-timer to HOLD, where
the timer display is “HOLD” (no dot) and pressing the RUN key will make the
program continue to the next step.
d)Jump to another step. While the program is running, it can be jumped from
the current step to another step in the program. This operation is not valid if the
program is ended or stopped. The operation is shown in Figure 12. Press the knob
to bring up the Quick Access Menu. The top window will show “STEP” and the
current step number will be shown in the lower window. Turn the knob to find the
desired step number and press down the knob to confirm. If you select a valid step
number, the controller will jump to the selected step and executing the new step.
If you select the current step number or a non-valid step number, the controller will
take no action and simply return to the main operation interface. Here, a non-valid
step refers to a step whose step-timer is set to SKIP or a step behind the last step
of a program.
7 8.
1 5 0.
Press
KNOB
Figure 12. Jumping from one step to another while the program is running.
Please note that all changes that the user makes from the main interface are
temporary. It doesn’t affect the programs that have been saved in the mPRG or
bPRG. The controller will always retrieve the set-value and the step-timer value of
the next step from the saved program.
4.9. End or Stop the Program
In DSPR320, End and Stop are different status. When a program has come to its
end, whether the controller will enter the End or the Stop status depends on the
parameter EO (Ending Option for Mash Mode) and bEO (Ending Option for Boil
Mode). Please refer to section 5.7 for details.
Ways to End a program:
a) Wait till the controller finish executing all the programmed steps.
b) Change the step-timer to “END”. The program will come to its end when the
temperature reaches the timer-start-temperature.
Ways to Stop a program:
a) Press and hold the “STOP” key for about 3 seconds to end the program and
stop all outputs.
b) Reset the program by going to the Quick Access Menu and select “RST/Y”.
c) Switch the Operation Mode from one to another will also end the current
program.
d) Power off the controller and power it on again.
5. Understand the Controller DSPR320
5.1. Program Mode
In DSPR320, a Program Mode, or a Mode, can save a program with up to 9 steps.
There are two Modes on DSPR320: MASH and BOIL. The Program Mode is
indicated by the MASH LED indicator. The intended use of MASH Mode is to
control water or wort temperature during a mashing process. The default setvalues of all steps in MASH Mode are 0 degree. The temperature unit depends on
Press
HOLD
Step
1.
HOLD.
1 5 0.
Turn
KNOB
Press
RUN
STEP
RUN
m- 1.
Press
RUN
KNOB
3
1 6 0.
2018.08 P3/11
AUBER INSTRUMENTS
the C-F setting in the SYST menu. The intended use of BOIL Mode is to bring
water or wort to its boiling point and remind the user to add hops. The default setvalues of all steps in BOIL Mode are 0% of power. It is displayed as “P 0”, where
the letter P indicates this is a percentage value of power.
Despite the difference in the default set-values, the DSPR320 controller does allow
the user to change set-values freely from temperatures to power percentages, or
vice versa. Any step in MASH mode can be a power-control step (boiling step),
and any step in BOIL mode can be a temperature-control step (mashing step).
This feature gives users a great flexibility to customize the desired heating profiles
per their brewing recipes and control automation needs.
Please note that switching Program Mode while a program is running will result in
the program being terminated immediately. This operation is not recommended.
5.2. Program
A Program refers to a series control steps that has been saved under a Program
Mode (MASH or BOIL). A program can have no more than 9 steps. When the user
edits a program, if a step’s step-timer is set to END, the user won’t be asked to
enter settings for the next step.
When the controller runs a program, it always starts from Step 1 or the first valid
step and ends at either at the step where the step-timer is set to END or at Step 9
if it exists.
The MASH Mode has a special feature that allows the controller to continue to run
the program saved in BOIL Mode automatically when the Mash program is finished.
To use this feature, the last step in the MASH Mode should be set to CONT instead
of END by turning the knob counter-clockwise for a full turn.
The user can go to mPRG (MASH mode program) and bPRG (BOIL mode
program) in the main menu to enter or edit the programs.
Step settings in mPRG and bPRG are named in this format: aX-B, where: a: can either be letter m or b to indicate MASH mode or BOIL mode.
X: a numeric number ranging from 1 to 9.
B: can either be letter S or t where
S: set-value.
t: step-timer.
For example, the parameters of the Step 1 of MASH mode are m1-S and m1-t
while the parameter of the first step of BOIL mode are b1-S and b1-t.
5.3. Step
A step can be considered as one of many sections that consist a program. It
defines the temperature or power percentage that the controller should maintain
for a certain duration of time. A step is exclusively referring to the time period when
the temperature has reached a pre-defined timer-start-point and the step-timer is
counting time. The beginning of a step is when the step-timer starts and the end
of a step is when the step-timer ends. In a program, the sections between steps
are transition sections, or called ramp sections. The controller doesn’t regulate the
ramp-up or ramp-down speed.
The settings of a step consist of the set-value and the step-timer. The step-timer
only starts counting when the temperature has reached a pre-defined timer-startpoint (see section 5.6 for details).
5.4. Ramp Sections
In DSPR320, program sections between steps are called ramp sections. Some of
the relay functions are closely associated with the ramp sections, hence a clear
definition of each section is necessary. A STEP section is exclusively referring to
the time period when the temperature has reached a pre-defined timer-start-point
and the step-timer is counting time. The section prior to the start of a STEP as well
as its step-timer is referred as the RAMP section of a step. A ramp section where
the temperature needs to be ramped up is called HEAT section. A ramp section
where the temperature needs to be cooled down is called COOL section. A RAMP
WWW.AUBERINS.COM
section and a STEP section together are referred as an Extended Step (EXTN)
section. The plot in Figure 13 shows a short two-step program to illustrate what
the different sections are. The description of each section is given in the table.
Please note that the controller determines whether a section is HEAT or COOL
by comparing the current probe reading and the step’s set-value instead of
comparing the set-values of two steps.
Figure 13. A two-step program to illustrate different program sections.
Table 6. Program sections of the two-step example program.
Step # Time Range Description Section
0 ~ 5 min Ramp section of Step 1, which is a HEAT
1
5 ~ 10 min
0 ~ 10 min
10 ~ 20 min Ramp section of Step 1, which is a COOL
2
20 ~ 40 min Step 2
10 ~ 40 min Extended Step 2 EXTN
To determine whether a transition section is HEAT or COOL, the controller
compares the current probe reading against the step’s set-value instead of
comparing the set-values of two steps. This comparison only happens when the
program is in a transition section, i.e., when the step-timer of the next step hasn’t
yet started.
However, the boiling steps (power-control steps) are handled differently since
there is no set-value for boiling steps. For boiling steps, the controller uses the
bTSP (boiling timer-start-point) for comparison purpose. Table 7 listed the
different situations of how the controller determine HEAT or COOL of a ramp
section.
Table 7. Determine HEAT or COOL between two steps.
To Step (n+1)
From Step
(n)
Mashing Step
Boiling Step
5.5. Step-Control Mode
The step-control mode, or control mode, refers to how the power is regulated at
a step, which can either be temperature-control or be power-control. In
temperature-control mode, the goal is to raise and maintain the water or wort
temperature at the specified value. The steps that have set values in temperature
(0 ~ 932 °F/°C) use temperature-control mode and these steps are sometimes
referred as mashing steps for convenience. In the power-control mode, the goal
is to bring water or wort to boil by raising the water or wort temperature above
section
Step 1
Extended Step 1 EXTN
section
Mashing Step Boiling Step
PV vs SV PV vs bTSP
bTSP vs SV bTSP vs bTSP (N/A)
Type
RAMP,
HEAT
STEP
RAMP,
COOL
STEP
2018.08 P4/11
Loading...
+ 7 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.