ATMEL AT MEGA 325 P V Service Manual

www.DataSheet4U.com

Features

High Performance, Low Power AVR
Advanced RISC Architecture
– 130 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 20 MIPS Throughput at 20 MHz – On-Chip 2-cycle Multiplier
Non-volatile Program and Data Memories
– In-System Self-Programmable Flash, Endurance: 10,000 Write/Erase Cycles
32K bytes
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program True Read-While-Write Operation
– EEPROM, Endurance: 100,000 Write/Erase Cycles
1K bytes
– Internal SRAM
2K bytes
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard – Extensive On-chip Debug Support – Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode – Real Time Counter with Separate Oscillator –Four PWM Channels – 8-channel, 10-bit ADC – Programmable Serial USART – Master/Slave SPI Serial Interface – Universal Serial Interface with Start Condition Detector – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator – Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection – Internal Calibrated Oscillator – External and Internal Interrupt Sources – Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
I/O and Packages
– 54/69 Programmable I/O Lines – 64-lead TQFP, 64-pad QFN/MLF, and 100-lead TQFP
Speed Grade:
– ATmega325PV/ATmega3250PV:
0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
– ATmega325P/3250P:
0 - 10 MHz @ 2.7 - 5.5V, 0 - 10 MHz @ 4.5 - 5.5V
Temperature range:
– -40°C to 85°C Industrial
Ultra-Low Power Consumption
– Active Mode:
420µA at 1 MHz, 1.8V
– Power-down Mode:
40 nA at 1.8V
– Power-save Mode:
750 nA at 1.8V
®
8-Bit Microcontroller
8-bit
Microcontroller with 32K Bytes In-System Programmable Flash
ATmega325P/V ATmega3250P/V
Preliminary Summary
8023AS–AVR–12/06

1. Pin Configurations

Figure 1-1. Pinout ATmega3250P
(RXD/PCINT0) PE0
DNC
(TXD/PCINT1) PE1
(XCK/AIN0/PCINT2) PE2
(AIN1/PCINT3) PE3
(USCK/SCL/PCINT4) PE4
(DI/SDA/PCINT5) PE5
(DO/PCINT6) PE6
(CLKO/PCINT7) PE7
VCC
GND
DNC
(PCINT24) PJ0
(PCINT25) PJ1
DNC
DNC
DNC
DNC
(SS/PCINT8) PB0
(SCK/PCINT9) PB1
(MOSI/PCINT10) PB2
(MISO/PCINT11) PB3
(OC0A/PCINT12) PB4
(OC1A/PCINT13) PB5
(OC1B/PCINT14) PB6
TQFP
AVCC
AGND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
DNC
DNC
PH7 (PCINT23)
PH6 (PCINT22)
PH5 (PCINT21)
PH4 (PCINT20)
DNC
DNC
GND
9998979695949392919089888786858483828180797877
100
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26272829303132333435363738394041424344454647484950
(OC2A/PCINT15) PB7
DNC
INDEX CORNER
(T1) PG3
(T0) PG4
VCC
RESET/PG5
GND
(TOSC2) XTAL2
DNC
(TOSC1) XTAL1
ATm ega3250
DNC
(PCINT26) PJ2
(PCINT27) PJ3
(PCINT28) PJ4
DNC
(PCINT29) PJ5
(PCINT30) PJ6
(INT0) PD1
(ICP1) PD0
PD2
VCC
PD3
DNC
PD4
PA0
PD5
PA1
PD6
PA2
76
PD7
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PA3
PA4
PA5
PA6
PA7
PG2
PC7
PC6
DNC
PH3 (PCINT19)
PH2 (PCINT18)
PH1 (PCINT17)
PH0 (PCINT16)
DNC
DNC
DNC
DNC
PC5
PC4
PC3
PC2
PC1
PC0
PG1
PG0
2
ATmega325P/3250P
8023AS–AVR–12/06
Figure 1-2. Pinout ATmega325P
GND
AVCC
64
63
DNC
1
(RXD/PCINT0) PE0
(TXD/PCINT1) PE1
(XCK/AIN0/PCINT2) PE2
(AIN1/PCINT3) PE3
(USCK/SCL/PCINT4) PE4
(DI/SDA/PCINT5) PE5
(DO/PCINT6) PE6
(CLKO/PCINT7) PE7
(SS/PCINT8) PB0
(SCK/PCINT9) PB1
(MOSI/PCINT10) PB2
(MISO/PCINT11) PB3
(OC0A/PCINT12) PB4
(OC1A/PCINT13) PB5
(OC1B/PCINT14) PB6
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
PF0 (ADC0)
PF1 (ADC1)
AREF
61
6018592058
62
INDEX CORNER
19
21
ATmega325P/3250P
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
57225623552454255326522751
ATmega325
GND
PF7 (ADC7/TDI)
PF6 (ADC6/TDO)
28
VCC
29
PA 0
PA 1
PA 2
50
49
PA 3
48
PA 4
47
PA 5
46
PA 6
45
PA 7
44
43
PG2
42
PC7
41
PC6
40
PC5
PC4
39
PC3
38
PC2
37
PC1
36
PC0
35
34
PG1
33
PG0
32
31
30
(T1) PG3
(T0) PG4
RESET/PG5
(OC2A/PCINT15) PB7
VCC
GND
(TOSC2) XTAL2
(TOSC1) XTAL1
(INT0) PD1
(ICP1) PD0
PD2
PD3
PD4
PD5
PD6
PD7
Note: The large center pad underneath the QFN/MLF packages is made of metal and internally con-
nected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

1.1 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

2. Overview

The ATmega325P/3250P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega325P/3250P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
8023AS–AVR–12/06
3

2.1 Block Diagram

Figure 2-1. Block Diagram
AVCC
AGND
AREF
PH0 - PH7
PORTH DRIVERS
VCCGND
DATA DIR.
REG. PORTH
PORTH
DATA REGISTER
DATA DIR.
REG. PORTJ
DATA REGISTER
JTAG TAP
ON-CHIP DEBUG
BOUNDARY-
SCAN
PROGRAMMING
LOGIC
PORTF
AVR CPU
PORTF DRIVERS
ADC
PROGRAM COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
INSTRUCTION
DECODER
CONTROL
LINES
DATA DIR.
REG. PORTF
DATA REGISTER
PORTA
STACK
POINTER
SRAM
GENERAL
PURPOSE
REGISTERS
X
Y
Z
ALU
STATUS
REGISTER
PA0 - PA7PF0 - PF7
PORTA DRIVERS
DATA DIR.
REG. PORTA
8-BIT DATA BUS
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
MCU CONTROL
REGISTER
TIMER/
COUNTERS
INTERRUPT
UNIT
EEPROM
PORTC DRIVERS
DATA REGISTER
PORTC
CALIB. OSC
OSCILLATOR
TIMING AND
CONTROL
PC0 - PC7
DATA DIR.
REG. PORTC
XTAL1
XTAL2
RESET
4
PJ0 - PJ6
PORTJ DRIVERS
PORTJ
DATA REGISTER
ANALOG
+
COMPARATOR
USART
DATA REGISTER
PORTE
-
UNIVERSAL
SERIAL INTERFACE
REG. PORTE
PORTE DRIVERS
DATA DIR.
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than con­ventional CISC microcontrollers.
ATmega325P/3250P
DATA REGISTER
PORTB
PORTB DRIVERS
SPI
DATA DIR.
REG. PORTB
PB0 - PB7PE0 - PE7
DATAREGISTER
PORTD
PORTD DRIVERS
PD0 - PD7
DATA DIR.
REG. PORTD
DATAREG.
PORTG
PORTG DRIVERS
DATA DIR.
REG. PORTG
PG0 - PG4
8023AS–AVR–12/06
ATmega325P/3250P
The ATmega325P/3250P provides the following features: 32K bytes of In-System Programma­ble Flash with Read-While-Write capabilities, 1K bytes EEPROM, 2K byte SRAM, 54/69 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Inter­face with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt sys­tem to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power­save mode, the asynchronous timer, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip In-System re-Programmable (ISP) Flash allows the program memory to be repro­grammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Soft­ware in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega325P/3250P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded con­trol applications.
The ATmega325P/3250P AVR is supported with a full suite of program and system develop­ment tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison between ATmega325P and ATmega3250P

The ATmega325P and ATmega3250P differs only in memory sizes, pin count and pinout. Table
2-1 on page 5 summarizes the different configurations for the four devices.
Table 2-1. Configuration Summary
Device Flash EEPROM RAM
ATmega325P 32K bytes 1K bytes 2K bytes 54
ATmega3250P 32K bytes 1K bytes 2K bytes 69
General Purpose I/O Pins
8023AS–AVR–12/06
5

2.3 Pin Descriptions

The following section describes the I/O-pin special functions.
2.3.1 V

2.3.2 GND

2.3.3 Port A (PA7..PA0)

2.3.4 Port B (PB7..PB0)

CC
Digital supply voltage.
Ground.
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the ATmega325P/3250P as listed on page 72.

2.3.5 Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

2.3.6 Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega325P/3250P as listed on page 75.

2.3.7 Port E (PE7..PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
6
ATmega325P/3250P
8023AS–AVR–12/06
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port E also serves the functions of various special features of the ATmega325P/3250P as listed on page 76.

2.3.8 Port F (PF7..PF0)

Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym­metrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.
Port F also serves the functions of the JTAG interface.

2.3.9 Port G (PG5..PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.
ATmega325P/3250P
Port G also serves the functions of various special features of the ATmega325P/3250P as listed on page 76.

2.3.10 Port H (PH7..PH0)

Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port H also serves the functions of various special features of the ATmega3250P as listed on
page 76.

2.3.11 Port J (PJ6..PJ0)

Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers have symmetrical drive characteristics with both high sink and source capa­bility. As inputs, Port J pins that are externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port J also serves the functions of various special features of the ATmega3250P as listed on
page 76.
8023AS–AVR–12/06
7

2.3.12 RESET

2.3.13 XTAL1

2.3.14 XTAL2

2.3.15 AVCC

2.3.16 AREF

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in ”System and Reset
Characterizations” on page 309. Shorter pulses are not guaranteed to generate a reset.
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con­nected to V
, even if the ADC is not used. If the ADC is used, it should be connected to V
CC
CC
through a low-pass filter.
This is the analog reference pin for the A/D Converter.
8
ATmega325P/3250P
8023AS–AVR–12/06
Loading...
+ 17 hidden pages