– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-Chip 2-cycle Multiplier
• Non-volatile Program and Data Memories
– 16K bytes of In-System Self-Programmable Flash
Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
–Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Microcontroller
with 16K Bytes
In-System
Programmable
Flash
ATmega165P
ATmega165PV
Preliminary
Summary
8019HS–AVR–11/06
1.Pin Configurations
Figure 1-1.Pinout ATmega165P
DNC
(RXD/PCINT0) PE0
(TXD/PCINT1) PE1
(XCK/AIN0/PCINT2) PE2
(AIN1/PCINT3) PE3
(USCK/SCL/PCINT4) PE4
(DI/SDA/PCINT5) PE5
(DO/PCINT6) PE6
(CLKO/PCINT7) PE7
(SS/PCINT8) PB0
(SCK/PCINT9) PB1
(MOSI/PCINT10) PB2
(MISO/PCINT11) PB3
(OC0A/PCINT12) PB4
(OC1A/PCINT13) PB5
(OC1B/PCINT14) PB6
AVCC
64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(OC2A/PCINT15) PB7
AREF
GND
63
62
INDEX CORNER
19
(T0) PG4
(T1) PG3
PF0 (ADC0)
PF1 (ADC1)
61
6018592058
21
VCC
RESET/PG5
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
57225623552454255326522751
GND
(ICP1) PD0
(TOSC1) XTAL1
(TOSC2) XTAL2
GND
PF7 (ADC7/TDI)
PF6 (ADC6/TDO)
28
PD3
PD2
(INT0) PD1
VCC
29
PD4
PA0
30
PD5
PA1
50
31
PD6
PA2
49
32
PD7
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PA3
PA4
PA5
PA6
PA7
PG2
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
PG1
PG0
1.1Disclaimer
2
ATmega165P
Note:The large center pad underneath the QFN/MLF packages is made of metal and internally con-
nected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If
the center pad is left unconnected, the package might loosen from the board.
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.
8019HS–AVR–11/06
ATmega165P
2.Overview
The ATmega165P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega165P achieves throughputs approaching 1 MIPS per MHz
allowing the system designer to optimize power consumption versus processing speed.
2.1Block Diagram
Figure 2-1.Block Diagram
AVCC
AREF
VCC
GND
DATA REGISTER
JTAG TAP
ON-CHIP DEBUG
BOUNDARY-
SCAN
PROGRAMMING
LOGIC
PORTF DRIVERS
PORTF
DATA DIR.
REG. PORTF
ADC
PROGRAM
COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
INSTRUCTION
DECODER
CONTROL
LINES
DATA REGISTER
PORTA
STACK
POINTER
SRAM
GENERAL
PURPOSE
REGISTERS
X
Y
Z
ALU
PA0 - PA7PF0 - PF7
PORTA DRIVERS
DATA DIR.
REG. PORTA
8-BIT DATA BUS
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
MCU CONTROL
REGISTER
TIMER/
COUNTERS
INTERRUPT
UNIT
EEPROM
PORTC DRIVERS
DATA REGISTER
PORTC
CALIB. OSC
OSCILLATOR
TIMING AND
CONTROL
PC0 - PC7
DATA DIR.
REG. PORTC
XTAL1
XTAL2
RESET
ANALOG
COMPARATOR
8019HS–AVR–11/06
DATA REGISTER
+
-
AVR CPU
USART
PORTE
UNIVERSAL
SERIAL INTERFACE
DATA DIR.
REG. PORTE
PORTE DRIVERS
STATUS
REGISTER
DATA REGISTER
PORTB
PORTB DRIVERS
PB0 - PB7PE0 - PE7
DATA DIR.
REG. PORTB
SPI
DATA REGISTER
PORTD
REG. PORTD
PORTD DRIVERS
PD0 - PD7
DATA DIR.
DATA REG.
PORTG
PORTG DRIVERS
DATA DIR.
REG. PORTG
PG0 - PG4
3
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATmega165P provides the following features: 16K bytes of In-System Programmable Flash
with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM, 53 general purpose I/O
lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip
Debugging support and programming, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start
Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal
Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode
stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator,
disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode,
the asynchronous timer continues to run, allowing the user to maintain a timer base while the
rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions.
In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the
application program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega165P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega165P AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.
4
ATmega165P
8019HS–AVR–11/06
2.2Pin Descriptions
2.2.1VCC
Digital supply voltage.
2.2.2GND
Ground.
2.2.3Port A (PA7:PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
2.2.4Port B (PB7:PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
ATmega165P
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the ATmega165P as listed on
”Alternate Functions of Port B” on page 72.
2.2.5Port C (PC7:PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
2.2.6Port D (PD7:PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATmega165P as listed on
”Alternate Functions of Port D” on page 75.
2.2.7Port E (PE7:PE0)
8019HS–AVR–11/06
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
5
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port E also serves the functions of various special features of the ATmega165P as listed on
”Alternate Functions of Port E” on page 76.
2.2.8Port F (PF7:PF0)
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.
Port F also serves the functions of the JTAG interface, see ”Alternate Functions of Port F” on
page 79
2.2.9Port G (PG5:PG0)
Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
2.2.10RESET
2.2.11XTAL1
2.2.12XTAL2
2.2.13AVCC
2.2.14AREF
Port G also serves the functions of various special features of the ATmega165P as listed on
page 81.
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 9-1 on page
46. Shorter pulses are not guaranteed to generate a reset.
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V
, even if the ADC is not used. If the ADC is used, it should be connected to V
CC
CC
through a low-pass filter.
This is the analog reference pin for the A/D Converter.
6
ATmega165P
8019HS–AVR–11/06
3.Resources
ATmega165P
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.
Note:1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega165P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
8019HS–AVR–11/06
11
5.Instruction Set Summary
MnemonicsOperandsDescriptionOperationFlags#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADDRd, RrAdd two RegistersRd ← Rd + RrZ,C,N,V,H1
ADCRd, RrAdd with Carry two RegistersRd ← Rd + Rr + CZ,C,N,V,H1
ADIWRdl,KAdd Immediate to WordRdh:Rdl ← Rdh:Rdl + KZ,C,N,V,S2
SUBRd, RrSubtract two RegistersRd ← Rd - RrZ,C,N,V,H1
SUBIRd, KSubtract Constant from Register Rd ← Rd - KZ,C,N,V,H1
SBCRd, RrSubtract with Carry two RegistersRd ← Rd - Rr - CZ,C,N,V,H1
SBCIRd, KSubtract with Carry Constant from Reg.Rd ← Rd - K - CZ,C,N,V,H1
SBIWRdl,KSubtract Immediate from WordRdh:Rdl ← Rdh:Rdl - KZ,C,N,V,S2
ANDRd, RrLogical AND RegistersRd ← Rd • RrZ,N,V1
ANDIRd, KLogical AND Register and ConstantRd ← Rd • KZ,N,V1
ORRd, RrLogical OR RegistersRd ← Rd v RrZ,N,V1
ORIRd, KLogical OR Register and ConstantRd ← Rd v KZ,N,V1
EORRd, RrExclusive OR RegistersRd ← Rd ⊕ RrZ,N,V1
COMRdOne’s ComplementRd ← 0xFF − RdZ,C,N,V1
NEGRdTwo’s ComplementRd ← 0x00 − RdZ,C,N,V,H1
SBRRd,KSet Bit(s) in RegisterRd ← Rd v KZ,N,V1
CBRRd,KClear Bit(s) in RegisterRd ← Rd • (0xFF - K)Z,N,V1
INCRdIncrementRd ← Rd + 1Z,N,V1
DECRdDecrementRd ← Rd − 1 Z,N,V1
TSTRdTest for Zero or MinusRd ← Rd • Rd Z,N,V1
CLRRdClear RegisterRd ← Rd ⊕ RdZ,N,V1
SERRdSet RegisterRd ← 0xFFNone1
MULRd, RrMultiply UnsignedR1:R0 ← Rd x RrZ,C2
MULSRd, RrMultiply SignedR1:R0 ← Rd x RrZ,C2
MULSURd, RrMultiply Signed with UnsignedR1:R0 ← Rd x RrZ,C2
FMULRd, RrFractional Multiply UnsignedR1:R0 ← (Rd x Rr) << 1Z,C2
FMULSRd, RrFractional Multiply SignedR1:R0 ← (Rd x Rr) << 1Z,C2
FMULSURd, RrFractional Multiply Signed with UnsignedR1:R0 ← (Rd x Rr) << 1Z,C2
BRANCH INSTRUCTIONS
RJMPkRelative JumpPC ← PC + k + 1None2
IJMPIndirect Jump to (Z)PC ← Z None2
JMPkDirect JumpPC ← kNone3
RCALLkRelative Subroutine Call PC ← PC + k + 1None3
ICALLIndirect Call to (Z)PC ← ZNone3
CALLkDirect Subroutine Call PC ← kNone4
RETSubroutine ReturnPC ← STACKNone4
RETIInterrupt ReturnPC ← STACKI4
CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3None1/2/3
CPRd,RrCompareRd − RrZ, N,V,C,H1
CPCRd,RrCompare with CarryRd − Rr − CZ, N,V,C,H1
CPIRd,KCompare Register with ImmediateRd − KZ, N,V,C,H1
SBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC ← PC + 2 or 3 None1/2/3
SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC ← PC + 2 or 3None1/2/3
SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC ← PC + 2 or 3 None1/2/3
SBISP, bSkip if Bit in I/O Register is Setif (P(b)=1) PC ← PC + 2 or 3None1/2/3
BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC←PC+k + 1None1/2
BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC←PC+k + 1None1/2
BREQ kBranch if Equal if (Z = 1) then PC ← PC + k + 1None1/2
BRNE kBranch if Not Equalif (Z = 0) then PC ← PC + k + 1None1/2
BRCS kBranch if Carry Setif (C = 1) then PC ← PC + k + 1None1/2
BRCC kBranch if Carry Clearedif (C = 0) then PC ← PC + k + 1None1/2
BRSH kBranch if Same or Higher if (C = 0) then PC ← PC + k + 1None1/2
BRLO kBranch if Lowerif (C = 1) then PC ← PC + k + 1None1/2
BRMI kBranch if Minusif (N = 1) then PC ← PC + k + 1None1/2
BRPL kBranch if Plus if (N = 0) then PC ← PC + k + 1None1/2
BRGE kBranch if Greater or Equal, Signedif (N ⊕ V= 0) then PC ← PC + k + 1None1/2
BRLT kBranch if Less Than Zero, Signedif (N ⊕ V= 1) then PC ← PC + k + 1None1/2
BRHS kBranch if Half Carry Flag Setif (H = 1) then PC ← PC + k + 1None1/2
BRHC kBranch if Half Carry Flag Clearedif (H = 0) then PC ← PC + k + 1None1/2
BRTS kBranch if T Flag Setif (T = 1) then PC ← PC + k + 1None1/2
BRTC kBranch if T Flag Clearedif (T = 0) then PC ← PC + k + 1None1/2
BRVS kBranch if Overflow Flag is Setif (V = 1) then PC ← PC + k + 1None1/2
12
ATmega165P
8019HS–AVR–11/06
ATmega165P
MnemonicsOperandsDescriptionOperationFlags#Clocks
BRVC kBranch if Overflow Flag is Clearedif (V = 0) then PC ← PC + k + 1None1/2
BRIE kBranch if Interrupt Enabledif ( I = 1) then PC ← PC + k + 1None1/2
BRID kBranch if Interrupt Disabledif ( I = 0) then PC ← PC + k + 1None1/2
64M164-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
8019HS–AVR–11/06
15
7.Packaging Information
7.164A
PIN 1
PIN 1 IDENTIFIER
B
e
E1E
D1
D
C
0˚~7˚
A1
L
Notes:1. This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
A2A
SYMBOL
COMMON DIMENSIONS
(Unit of Measure = mm)
MIN
A––1.20
A10.05–0.15
A2 0.951.001.05
D15.7516.0016.25
D113.9014.0014.10Note 2
E15.7516.0016.25
E113.9014.0014.10Note 2
B 0.30–0.45
C0.09–0.20
L0.45– 0.75
e0.80 TYP
NOM
MAX
NOTE
16
2325 Orchard Parkway
R
San Jose, CA 95131
ATmega165P
TITLE
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
10/5/2001
DRAWING NO.
64A
8019HS–AVR–11/06
REV.
B
7.264M1
D
Marked Pin# 1 ID
ATmega165P
E
SEATING PLANE
C
TOP VIEW
A1
A
K
L
D2
E2
K
b
e
BOTTOM VIEW
1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
Note:
2. Dimension and tolerance conform to ASMEY14.5M-1994.
Pin #1 Corner
1
2
3
Option A
Option B
Option C
Pin #1
Triangle
Pin #1
Chamfer
(C 0.30)
Pin #1
Notch
(0.20 R)
SIDE VIEW
SYMBOL
A 0.80 0.90 1.00
A1 – 0.02 0.05
b 0.180.250.30
D
D2 5.205.405.60
E
E2 5.205.405.60
e 0.50 BSC
L0.35 0.40 0.45
K1.251.401.55
0.08
C
COMMON DIMENSIONS
(Unit of Measure = mm)
MIN
8.909.009.10
8.909.009.10
NOM
MAX
NOTE
R
8019HS–AVR–11/06
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
64M1
5/25/06
REV.
G
17
8.Errata
8.1ATmega165P Rev. G
No known errata.
8.2ATmega165P Rev. A to F
Not sampled.
18
ATmega165P
8019HS–AVR–11/06
9.Datasheet Revision History
Please note that the referring page numbers in this section are referring to this document. The
referring revision in this section are referring to the document revision.
9.1Rev. H 11/06
1.Updated ”Low-frequency Crystal Oscillator” on page 31.
2.Updated Table 26-6 on page 307.
3.Updated note in Table 26-6 on page 307.
9.2Rev. G 09/06
1.Updated ”Calibrated Internal RC Oscillator” on page 29.
2.Updated ”System Control and Reset” on page 44.
3.Updated Table 7-9 on page 32 and Table 7-10 on page 32.
4.Added note for Table 25-15 on page 286
5.Updated ”Parallel Programming Characteristics” on page 282.
6.Updated ”Electrical Characteristics” on page 301.
ATmega165P
9.3Rev. F 08/06
9.4Rev. E 08/06
9.5Rev. D 07/06
1.Updated Table 1s2-12 on page 80.
2.Updated ”DC Characteristics” on page 304.
1.Updated ”Low-frequency Crystal Oscillator” on page 32.
2.Updated ”Device Identification Register” on page 236.
3.Updated ”Signature Bytes” on page 275.
4.Added Table 25-6 on page 275.
1.Updated ”Register Description for I/O-Ports” on page 83.
2.Updated ”Fast PWM Mode” on page 92.
3.Updated ”Fast PWM Mode” on page 115.
4.Updated Features in ”USI – Universal Serial Interface” on page 194.
5.Added ”Clock speed considerations.” on page 201.
8019HS–AVR–11/06
19
9.6Rev. C 06/06
9.7Rev. B 04/06
9.8Rev. A 03/06
6.Updated Table 13-2 on page 97, Table 13-4 on page 98, Table 14-2 on page 123,Table
14-3 on page 124, Table 14-4 on page 125, Table 16-2 on page 148 and Table 16-4 on
page 149.
7.Updated ”UCSRnC – USART Control and Status Register n C” on page 187.
8.Updated ”Register Summary” on page 348.
1.Updated typos.
2.Updated ”Calibrated Internal RC Oscillator” on page 30.
3.Updated ”OSCCAL – Oscillator Calibration Register” on page 36.
4.Added Table 26-5 on page 312.
1.Updated ”Calibrated Internal RC Oscillator” on page 30
2.Updated ”Sleep Modes” on page 38.
1.Initial revision.
20
ATmega165P
8019HS–AVR–11/06
Atmel CorporationAtmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.