ATMEL AT28LV256-20TC, AT28LV256-20SI, AT28LV256-20SC, AT28LV256-20PI, AT28LV256-20PC Datasheet

...
AT28LV256
256K (32K x 8) Low Voltage CMOS E2PROM
Features
0273E
Fast Read Access Time - 200 ns
Automatic Page Write Operation
Internal Address and Data Latches for 64-Bytes Internal Control Timer
Fast Write Cycle Tim es
Page Write Cycle Tim e: 10 ms Ma xi mum 1 to 64-Byte Page Write Opera tio n
Low Power Dissipation
15 mA Active Current 20 µA CMOS Standby Current
Hardware and Software Data Protection
DATA Polling for End of Write Dete cti on
High Reliabili ty C MOS Technology
Endurance: 10,000 Cycles Data Retention: 10 Years
Single 3.3V ± 5% Supply
JEDEC Approved Byte-Wid e Pin ou t
Commercial and Industrial Temperature Ranges
Description
The AT28LV256 is a high-performance Electrically Erasable and Programmable Read Only Memory. Its 256K of memory is organized as 32,768 words by 8 bits. Manufactured with Atmel’s advanced nonvolatile CMOS technology , the device offers access times to 200 ns with power dissipation of just 54 mW. When the device is deselected, the CMOS standby current is less than 200 µA.
The AT28LV256 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-byte page register to allow writing of up to 64-bytes simultaneously. During a write cycle, the addresses and 1 to
Pin Configurations
Pin Name Function
A0 - A14 Addresses CE Chip Enable OE Output E nable WE Write Enable I/O0 - I/O7 Data Inputs/Outputs NC No Connect DC Don’t Connec t
PDIP, SOIC
Top View
(continued)
AT28LV256
Note: PLCC package pins 1 and 17 are DON’T CONNECT.
PLCC
Top View
TSOP
Top View
2-145
Description (Continued)
64-bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by the end of a write cycle has been detected a new access for a read or write can begin.
DATA polling of I/O7. Once
Block Diagram
Atmel’s 28LV256 has additional features to ensure high quality and manufacturability. The device utilizes internal error correc tion for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inad­vertent writes. The device also includes an extra 64-bytes
2
PROM for device identification or tracking.
of E
Absolute Maximum Ratings*
Temperature Under Bias.................-55°C to +125°C
Storage Temperature...................... -65°C to +150°C
All Input Voltages (including NC Pins)
with Respect to Ground ................... -0.6V to +6.25V
All Output Voltages
with Respect to Ground .............-0.6V to V
Voltage on OE and A9
with Respect to Ground ................... -0.6V to +13.5V
2-146 AT28LV256
+ 0.6V
CC
*NOTICE: Stresses beyond those listed un der “Abso lute Maxi-
mum Ratings” may cause permanen t dama ge to th e de vice . This is a stress rating only and functional operation of the device at these or any other conditions beyond those indi­cated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Device Operation
READ: The AT28LV256 is accessed like a Static RAM.
CE and OE are low and WE is high, the data stored
When at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state when either line control gives designers flexibility in preventing bus contention in their system.
BYTE WRITE: A low pulse on the
WE low (respectively) and OE high initiates a write cy-
or cle. The address is latched on the falling edge of WE, whichever occurs last. The data is latched by the firs t rising edge of started it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of t ing operation.
PAGE WRITE: The page write operation of the AT28LV256 allows 1 to 64-bytes of data to be written into the device during a single internal programming period. A page write operation is initiated in the same manner as a byte write; the first byte written can then be followed by 1 to 63 additional bytes. Each successive byte must be writ­ten within 150 µs (t limit is exc eeded the AT28LV256 will cease accepting data and commence the internal programming operation. All bytes during a page write operation must reside on the same page as defined by the state of the A6 - A14 inputs. For each operation, A6 - A14 must be the same.
The A0 to A5 inputs are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.
DATA POLLING: The AT28LV256 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complem ent of the written data to be pre­sented on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next write cycle may begin. write cycle.
TOGGLE BIT: In addition to provides another method for determining the end of a write cycle. During the write operation, successive attempts to read data from the device will result in I/O6 toggling be­tween one and zero. Once the write has completed, I/O6 will stop toggling and valid data will be read. Reading the toggle bit may begin at any time during the write cycle.
CE or WE. Once a byte write has been
, a read operation will effectively be a poll-
WC
BLC
WE high to low transition during the page write
DATA Polling may begin at anytime during the
CE or OE is high. This dual-
WE or CE input with CE
CE or
) of the previous byte. If the t
DATA Polling the AT28LV256
BLC
AT28LV256
DATA PROTECTION: If precautions are not taken, inad-
vertent writes may occur during transitions of the host sys­tem power supply. Atmel has incorporated both hardware and software features that will protect the memory against inadvertent writes.
HARDWARE PROTECTION: Hardware features protect against inadvertent writes to the AT28LV256 in the follow­ing ways: (a) V
1.8V (typical) the device will automatically time out 10 ms (typical) before allowing a write: (b) write inhibit - holding any one of cles; (c) noise filter - pulses of less than 15 ns (typical) on
WE or CE inputs will not initiate a write cycle.
the SOFTWARE DATA PROTECTION: A software-control-
led data protection feature has been implemented on the AT28LV256. Software data protection (SDP) helps pre­vent inadvertent writes from corrupting the data in the de­vice. SDP can prevent inadvertent writes during power-up and power-down as well as any other potential periods of system instability.
The AT28LV256 can only be written using the software data protection feature. A series of three write commands to specific addresses with specific data must be presented to the device before writing in the byte or page mode. T he same three write commands must begin each write opera­tion. All software write commands must obey the page mode write timing specifications. The data in the 3-byte command sequence is not written to the device; the ad­dress in the command sequence can be utilized just like any other location in the device.
Any attempt to write to the device without the 3-byte se­quence will start the internal write timers. No data will be written to the device; however, for the duration of t read operations will effectively be polling operations.
DEVICE IDENTIFICATION: An extra 64-bytes of
2
PROM memory are available to the user for device
E identification. By raising A9 to 12V ± 0.5V and using ad­dress locations 7FC0H to 7FFFH the additional bytes may be written to or read from in the same manner as the regu­lar memory array.
power-on delay - once VCC has reached
CC
OE low, CE high or WE high inhibits write cy-
WC
,
2-147
Loading...
+ 7 hidden pages