Bohr radius 5.291 7724924 x 10
–11
m
µB B ohr magneton 9.274 015431 x 10
–24
A • m
2
µN Neutron magnetic moment 5.05078 6617 x 10
–27
J / T
To insert a constant at the cursor positi on ( See Example 52. ) :
1. Pres s [ CONST ] to displ ay the physics co nstants m enu.
2. Press [4] until the constant you want is underlined.
3. Press [
].
Mo de 1 - STAT
Ther e ar e thr ee m enu o pera tion in st atis tics menu :
1 -VAR
( fo r
analyzing da ta in a single datase t),
2 - VAR
( for analyzing paired data
from two d ataset s ) an d
D- CL
( for clear ing al l datas ets).
n Si ngle -Var iab le / Two-v ari able s tati sti cs
Step :
1. From the stat istics menu, ch oose
1 -VAR
or
2 - VAR
and press
[
].
2. Pres s [ DATA ] and there a re three me nu :
DATA-INPUT, LIMIT-
SET, DISTR. Please choose
DATA-INPUT
and pr ess [
].
3. Ente r an x - value and press [6 ].
4. Enter the frequ ency (
FREQ
) of the x - value (in
1 -VAR
mode)
or th e corre spondi ng y - valu e ( in
2 - VAR
mode ) and pre ss
[6].
5. To enter m ore data, repeat fr om ste p 3.
6. Pres s [ STATVAR ] and scr oll throu gh the st atistic al result s
menu by [4] or [3] to find out statistical variabl es you want.
(See tab le below )
Variab le Mean ing
n Numbe r of th e x values or x-y pairs enter ed.
_ _
x or y Me an of th e x values or y values
Xmax
or
Ymax
Maxim um of t he x value s or y valu es
Xmin
or
Ymin
Mini mum o f the x value s or y valu es
Sx or Sy Samp le stan dard devia tion of x valu es or y
values.
1n
)xx(
x
S
2
−
−∑
=
,
1n
)yy(
y
S
2
−
−∑
=
σx orσ y
Popu lation stand ard devia tion o f x values o r y
values
n
)xx(
2
x
−∑
=σ
,
n
)yy(
2
y
−∑
=σ
Σ x or Σ y Sum o f all x valu es or y val ues
Σx 2 or Σy
2Sum of a ll x 2 values or y 2 values
Σ x y Su m of (x x y) for a ll x-y p airs
n Pr oce ss cap abi li ty
Step : (See Example 53 ~54)
1. Pres s [ DATA ] and ther e are thr ee menu :
DATA-INPUT, LIMIT-
SET, DISTR
. Ple ase choos e
LIMIT-SET
and p ress [
].
2. Ente r a uppe r spec. l imit val ue (
X USL
or
Y USL
), then press
[6].
3. Ente r a low er spe c. limi t value (
X LSL
or
Y LSL
), then press
[
].
4. Ente r the datasets you want under
DATA-INPUT
mode.
5. Pres s [ STATVAR ] and scr oll throu gh the st atistic al result s
menu by [4] or [3] to find out process capabilit y variables you
want. (See table below )
Variab le Mean ing
Cax or Cay Capabil ity accuracy of the x values or y values
,
Cpx or Cp y Potential capability precision of the x values or y values,
,
Cpk x or Cpk yMini mum (CPU, CPL) of the x va lues o r y
values , wher e CPU is upp er spec . limit of
capab ility pr ecisi on and CPL is low er spec.
limi t of capa bility pr ecision
C
pkx
= Min (C
PUX
, C
PLX
) = Cpx(1– Cax)
C
pky
= M in (C
PUY
, C
PLY
) = Cpy(1– Cay)
(Not e): Wh en calc ulating proces s capabil ity in
2 - VAR
mode ,
the x n and y n are ind ependen t with eac h other.
n Pr oba bil it y di st ri but ion
Step : (Se e Example 55)
1. Based on the datasets in 1-VAR mod e, pres s [ DATA ] and
ther e ar e thr ee me nu :
DATA-INPUT, LIMIT-SET, DISTR
. Please
choos e
DISTR
and press [
].
2. Ente r a a x value, then p ress [
].
3. Pres s [ STATVAR ] and scr oll throu gh the st atistic al result s
men u by [4] or [3] t o find o ut prob ability distrib ution var iables you want. (See table below)
Variable Mean ing
t Test value
P(t ) Repres ent the cu mulat ive fract ion of th e stan-
dard norm al di stri bution that is le ss th an th e
value t
R( t) R eprese nt the cu mulat ive fract ion of th e stan-
dard norma l distr ibuti on that l ies bet ween the
value t and 0.
R(t )=1– P(t)
Q( t) Re presen t the cum ulative fractio n of the s tan-
dard nor mal dist ributio n that is greate r than the
value t
Q(t )=| 0 .5–R (t) |
n L in ea r r eg re ss io n
Step : (Se e Example 56)
1. Based on the dataset s in
2 - VAR
mode, press [ STATVAR ] and
scro ll thro ugh the statis tical results m enu by [4] or [ 3] to
find out a, b, or r.
2. To predict a value for x (or y) given a value for y (or x), select
the x ’ (or y ’) variable, press [
], enter the given value, and
press [
] again. (See table belo w)
Variable Mean ing
a Linear regress ion y-in tercep t
n
xby
a
∑ ∑
−
=
b Linear re gressio n slope
))x(xn(
)yxxyn(
b
2
2
∑−∑
∑ ∑ ∑
−
=
r Cor relati on coeffi cient
))y(yn)()x(xn(
)yxxyn(
r
2222
∑−∑∑−∑
∑ ∑ ∑
−
=
x ’ Pred icted x values given a, b, and y vales
b
a–y
'x =
y ’ Pred icted y val ue given a, b, and x value .
bxa'y +=
n Co rr ec tin g da ta
Step : (Se e Example 57)
1. Pre ss [ DATA ].
2. To change x - values or the frequency of the x - value in
1 - VAR
mode ( or the corre sponding y - value in
2 - VAR
mode ), please
cho ose
DATA-INPUT
. To ch ange up per sp ec. li mit va lue, o r
lowe r spec. l imit value , please ch oose
LIMIT-SET
. To change
ax, ple ase choose
DISTR
.
3. Pres s [6] to scro ll through the data you have ent ered.
4. To change an entry, display it and enter the new data. The new
dat a you ent er over wri tes th e o ld ent ry. Pre ss [6] o r
[
] to save the change.
(Not e) :Even you exit STAT mode, all data in 1 - VAR and 2 - VAR mode
are sti ll retaine d unless you cl ear all dat a by selectin g D-
CL mode.
M ode 2 - Bas e- n
n Ba ses co nv ers io ns
• The num ber system (10 , 16, 2 , 8 ) is set by pressing [ 2nd ] [ dhbo]
to displa y the menu , making one of the ite ms underlined fol lowed
[
]. A corre spondi ng symbo l - “d ”, “h ”, “b”, “o” appear s on
the display. (The defaul t setting is d : decimal base). See Example
58.
(Not e) :The total range of numbe rs handled in this mode is 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, /A, IB, IC, ID, IE, IF. If values not valid for
the par ticula r number sys tem are use d, attach th e correspondi ng designa tor (d, h, b, o), or an error message will
appear.
Bina ry base ( b ) : 0, 1
Octal base ( o ) : 0, 1, 2, 3, 4, 5, 6, 7
Decim al base ( d ) : 0, 1, 2 , 3, 4, 5, 6, 7, 8, 9
Hexadec imal base ( h ) : 0, 1, 2 , 3, 4, 5, 6, 7, 8, 9, /A , IB, IC,
ID, IE, IF
• Pre ssing [ ] can use block func tion to display a result in octal or
bina ry base w hich exce eds 8 d igits. The syst em is d esigne d to
displa y up to 4 blocks. See Example 59.
n Ne ga tiv e e xp re ss ion s
• In bina ry, octal, and hexadecim al bases, the calcul ator represen ts
negative number s using complemen t notation. The comple ment is
the r esult of subtr acting that num ber fr om 100 000000 00 in th at
number ’s base by pressing [ NEG ] key in non-dec imal bases. See
Example 60.
n Ba sic a ri thm et ic o per at ion s for b ase s
• The unit enables you to calculate in number base other than decimal.
The calculato r can add, subtract, mult iply, and divide binary, octal,
and hexadecimal num bers. See Example 61.
n Lo gi ca l op er ati on
• Lo gical operatio ns are perform ed through logica l products (AND) ,
nega tive lo gical (NAN D), lo gical sums (OR), exclu sive log ical
sums (XOR), negati on (NOT), and nega tion of exclusive l ogical
sums (XNOR). See Exampl e 62.
Mo de 3 - CPLX
• Co mplex mode enables you to add, subtract, multiply, and divide
comp lex numbers. See Example 63. The res ults of a compl ex operatio n are displa yed as follow :
Re Real value Im Imagin ary value
ab Ab solute value ar Argume nt value
Mo de 4 - VLE
Variable linear equatio ns (VLE ) mode can so lve a set of
simultan eous equations with two unknow ns as follows :
a x + b y = c
d x + e y = f, where x and y are unknow n.
• In VLE mode , you just enter each coeffic ient ( a, b, c, d, e, f ) in the
correct order, and the calculator automatic ally solves for x, y. See
Example 64.
Mo de 5 - QE
Quadr atic equ ations ( QE) mode can solve a equ ations as follo ws :
a x 2 + b x + c = 0, wher e x is unknown .
• In QE mo de, you just enter each coef ficient ( a, b, c ) in the correct
order, and the calculator autom atically solves for all x values. See
Example 65.
• Nu mber displa y forma ts are select ed by p ressin g [ 2nd ] [ SCI/
ENG ] to display t he menu . The it ems on t he menu are FL O (for
floa ting p oint) , SC I (for scien tific) , and E NG (f or engi neeri ng).
Press [3] or [4] until the desired form ats is underl ined, and then
press [
]. See Example 13.
(Not e) :The engineeri ng format is similar to the scienti fic format ,
except the mantissa ca n have up to three dig its left of the
decima l, instead of only one, and the exponent is alwa ys a
multi ple of three. It is usefu l for enginee rs to convert units
based on multipl es of 10 3.
• You can ent er a number in mantissa and exponent form by [EXP ]
key. Se e Example 14.
n Pa re nth es es c al cul at ion s
• Op eration insi de parenthese s are always execute d first. AT-36
can u se up t o 13 leve ls of c onsec utive par enthe ses in a singl e
calcul ation. See Example 15.
• Clo sed parentheses occurrin g immed iately before operation of the
[
] key may be omitted, no matte r how many are required. See
Example 16.
• A m ultipl ication s ign “ x ” occu rring im media tely befo re an ope n
paren thesis can omitted. See Example 17.
(Not e) :The calcu lator c an auto -corre ct abbr eviated multi plica-
tion in fro nt of all functio ns, except mem ory variables, left
parent hesis, type B fun ctions.
• He nceforth, abbreviated typ e will not be used in this ma nual. See
Exampl e 18.
• The correct result cannot be derived by en tering [ ( ] 2 [ + ] 3 [ ) ]
[ EXP ] 2. Be sure to enter [ x ] 1 bet ween the [ ) ] and [ EXP ] in
the bel ow exampl e. See Exampl e 19.
n Pe rc ent age c al cul ati on
• [ 2nd ] [ % ] divides the number in th e display by 100. You can use
this key seq uence to cal culate per centages , add-ons, di scounts,
and perc entages ratios . See Example 20~2 1.
n Co nti nu ou s ca lcu lat ion f un ct ion
• The calcul ator enables you to repeat the last operation executed by
press ing [
] key for furt her calc ulation. See Example 22.
• Even if calculati ons are conclu ded with the [
] key, the resul t
obtain ed can be used for fu rther calc ulation. See Example 23 .
n An sw er fu nct io n
• An swer f unctio n stores the most recent ly calcul ated res ult. It is
retain ed even after the power is tu rned off. Onc e a numeric value
or numer ic expression is ent ered and [
] is pressed, the res ult
is store d by this funct ion. See Example 24.
(Not e) :E ven if execu tion of a ca lcul ation resu lts in a n er ror,
however , Answer me mory retains its current value.
n L og ar it hm s a nd Ant ilo ga rit hm s
• The calcu lator can calcu late comm on and natural logari thms and
anti -logar ithms using [ LOG ] , [ LN ], [ 2 nd ] [ 1 0 x ], an d [ 2n d ]
[ e x ]. See Exam ple 25~ 27.
n Fr act ion ca lcu lat io n
Fracti on value displ ay is as follow :
• To ent er a m ixed nu mber, enter the in teger part, press [ A b/c ],
enter th e numerato r, press [ A b/c ], and enter the den ominator ; To
enter an imp roper fraction , enter the numera tor, press [ A b/c ], and
enter the denom inator. See Examp le 28.
• Du ring a frac tion calcu lation, if the figur e is reduci ble, a figu re is
reduced to the lowest terms after pressing a function comm and key
( [ + ], [ – ], [ x ] or [ ] ) or the [
] key. By pre ssing [ 2nd ]
[ A b/c34
d/e ], the displayed value will be converte d to the improper
fractio n and vice versa. See Example 29.
• To convert betwee n a decima l and fract ional res ult, pres s [ 2nd ]
[ F 34
D ] and [ ]. Se e Example 3 0.
• Ca lculat ions co ntaini ng both f ractio ns and d ecima ls are ca lculated in decim al forma t. See Exampl e 31.
n An gl e u ni ts con ve rs ion
• The angle uni ts (DEG, RAD , GRAD) is set by pressing [ DRG ] to
displa y the angle menu . The relation am ong the three angle units
is :
180 ° =πrad = 200 grad
Angle conversions ( See Example 32. ) :
1. Chang e the default angle setti ngs to the uni ts you want
to conver t to.
2. Enter th e value of the unit to convert.
3. Press [ DMS ] to di splay the m enu. The unit s you can
sele ct are ° (deg rees), ′ (mi nutes) , ′′ (sec onds), r
(rad ians), g (gra dians ) or 4 DM S (Deg ree-M inute sSeconds ).
4. Choos e the units you are converting fr om.
5. Press [
] twice.
• To convert an angle to DMS notat ion, select “ 4DMS ”, which converts an e ntry to DMS no tations , i.e., wh ere 1O 30 I 0
II
repres ents
1 degree s, 30 minute s, 0 seconds. See Example 33.
• To c onvert a D MS notat ion to d ecima l, sele ct ° (d egre es),
′
(min utes), ′′ (second s). See Example 34.
n Tr igo no me tr ic / I nv ers e- Tr i. f un ct io ns
• AT-36 pr ovides st andard t rigonom etric functio ns and in verse
trigon ometric fun ctions - sin, cos, ta n, sin –1, cos –1 and tan –1. See
Example 35~37.
(Not e) :W hen using those keys, make sure the calcu lator is set for
the angl e unit you want.
n Hy pe rbo lic / I nve rs e- Hyp . fun cti ons
• AT-36 uses [ 2nd ] [ HYP ] to cal culate the hype rbolic func tions
and inver se- hyper boli c fun ctio ns - sin h, c osh, t anh, sin h –1,
cosh –1 and tanh –1. See Example 38 ~39.
(Not e) :W hen using those keys, make sure the calcu lator is set for
the angl e unit you want.
n C oo rd ina te s tr an sfo rm at io n
• Pr essing [ 2n d ] [ R34P ] displa ys a menu to co nvert rectan gular
coor dina tes t o pol ar coo rdin ates o r vice versa . See Examp le
40~41.
Recta ngular Coor dinate s Pol ar Coordi nates
x + y i= r (cosθ + i sinθ)
(Not e) :W hen using thos e key, make sure the ca lculator is set for
the angle uni t you want.
n Pr oba bil ity
• Press ing [ PRB ] displays the pr obability menu. See Example 42~46.
Wit h the followi ng function s :
nP r
Calculat es the number of possible permu tations of n item
taken r at a tim e.
nC r
Calculates the number of possible combinations of n items
taken r at a tim e.
! Calcu lates the factoria l of a speci fied posi tive integer n
, wh ere n≦ 69.
RAND M
Generat es a random numb er between 0 and 1.
RAND MI
Generat es a random integer value betwe en two specified
intege rs, A and B, where A ≦ random value≦ B .
5
/12 Display of
12
5
56
∪
5
/ 12 Display of 56
12
5
Y
X
0
• P( x, y )
x
y
• P( r, θ)
0
X
θ
r
Y