Copyright 2003 Aphex Systems Ltd. All rights reserved. Printed in U.S.A. Written and produced by Donn Werrbach.
S Y S T E M S
11068 Randall St., Sun Valley, CA 91352 U.S.A.
Manual P/N 999-0760 • Revision 2 • 09/30/03
Fast Finder
Fast Finder
Contents
Quick Start
Introduction
Installation
Specications
Operating Instructions
System Description
Warranty & Service
Appendices
9
1
2
3
4
5
6
6
7
8
Safety Declarations
CAUTION: For protection against electric shock, do not remove the cover. No user serviceable parts inside.
WARNING: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when
the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency
energy and, if not installed and used in accordance with the operating guide, may cause interference to radio communications. Operation of this equipment in a residential area is likely to cause interference in which case the user will be required
to correct the interference at his own expense.
The user is cautioned that changes and modications made to the equipment without approval of the manufacturer could
void the user’s authority to operate this equipment.
It is suggested that the user use only shielded and grounded cables to ensure compliance with FCC Rules.
®
59887
|
Conforms to standards
UL60950 and EN60950.
CUS
Page 2
320A
Compellor
2. Quick Start - Page 6
3. Introduction - Page 7
4. Installation - Page 10
4.1 Unpacking
4.2 Damage & Claims
4.3 Main Voltage Selection
4.4 Power Cord
4.5 Mounting In A Rack
4.6 Proper Ventilation
4.7 Panel Security
4.8 Tools & Equipment Needed
4.9 Safety Considerations
4.10 Remote Connector
4.11 Reference Level Setting
4.12 Input Connections
5. Specifications - Page 14
5.1 Inputs
3.1 What Is A Compellor?
3.2 What Does It Do?
3.3 How Does It Work?
3.4 A BIt Of Compellor History
4.13 Output Connections
4.14 Summary
5.2 Outputs
5.3 Audio
5.4 System Functions
5.5 Threshold
5.6 Ratio
5.7 Attack Times
5.8 Release Times
1. Contents
Page 3
320A
Compellor
6. Operation - Page16
6.1 Introduction
6.2 Recording
6.3 Mixing
6.4 Mastering
6.5 VIdeo Post Production
6.6 Sound Reinforcement
6.7 Live Concerts
6.8 Broadcast Radio Pre-processing
6.9 Broadcast STL/Phone Line Driver
6.10 Television Broadcasting and Cable Systems
6.11 Video and Audio Tape Duplication
6.12 Voice Processing
7. System Description - Page 20
7.1 Model Differences
7.2 Signal Flow
7.3 Processing Functions
7.4 Leveling Function
7.5 Compressor Function
7.6 DRC
7.7 DVG
7.8 Silence Gate
7.9 Stereo Enhance
7.10 Stereo Linking
7.11 Meter Selection
7.12 Limiter
7.13 Process Balance
7.14 Drive Control
7.15 Output Control
7.16 Process Switch
7.17 Input/Output
7.18 Operating Levels
7.19 Input/Output Metering
7.20 Gain Reduction Metering
8. Warranty & Service Information - Page 25
1. Contents
6.13 Hard Disk Recording
9. Appendices
Apndx A. Balanced & Unbalanced Lines and Operating Levels - Page28 Apndx B. Dealing With Grounds and Hum - Page 29
Apndx C. Proper Wiring Techniques - Page 31
Apndx D. Standard Cable Wiring - Page 32
Apndx E. About Reference Levels - Page 36
Apndx F. Digital-vs-Analog; Peak-vs-RMS: How To Deal With The Confusion - Page 38
Page 4
320A
Compellor
You can use this quick setup to get a signal through your Compellor right away. Then.
you’ll want to go on and read through the manual to discover the wealth of information
that is available to you.
Quick Start
1. Make sure there is signal going through the Compellor with Process both “In” and “Out”. If
not, check the input and output wiring. They may be reversed. Be sure to check for the correct input selection (analog or digital) on the rear panel. Leave Compellor in bypass (Process
“OUT”) until finished with set up.
2.Send a zero VU tone into the
Compellor (at +4dBu or -10dBV depending on your operating level settings). Check to see
the rear panel REF LEVEL switches are set for your operating level. If you do not have a tone
generator, use program material that averages around zero VU in your system.
3. Switch Compellor “Meter Select” to Input. The last red LED should indicate approximately ‘0’ on the meter. If not, adjust the rear panel REF LEVEL switch to the position which
gives you the closest reading to ‘0’.
2. Quick Start
4. Set the Process Balance to 12 o’clock.
5. Switch the Meter Select to G.R. (gain reduction). Adjust the Drive control to achieve 12dB
of gain reduction with ‘0’VU input. The last lighted LED shows the total amount of gain reduction occurring.
6. Set Leveling Speed to Slow if you are controlling full program, Fast if you are controlling
live voice.
7. Set Limiter “On”.
8. Set the Silence Gate to 12 o’clock.
9. Stereo Enhance: If using the Compellor for mono or dual mono operation, switch the
Stereo Enhance to “Off”. If using the Compellor for stereo program, switch the Stereo
Enhance to “In”.
If using the Compellor for a normal stereo program, switch the Link to “Leveling”. If using
the Compellor for any matrixed stereo program (e.g.- surround encoded), switch the Link to
“Leveling & Compression”.
11. Switch the Meter Select to Output. Adjust the Output control so that the red part of the
level meter indicates 0dB. Switch the Compellor into circuit (Process “In”). The Compellor will
now act as a unity gain device whenever the input level is at zero VU, and make gain corrections for higher and lower incoming levels.
A Compellor is the first and only product designed specifically for the transparent control of
audio levels. While other audio processors are designed simply to compress and limit audio
signals, a Compellor is designed to intelligently manage the dynamic range of audio without
causing noticeable changes to the character and feeling of the sound. Contained within the
Compellor are three gain controllers: a frequency discriminate leveler, a compressor, and a
limiter, all working interactively. In addition, a dynamic verification gate, silence gate, and
dynamic release computer intelligently guide the operation of the gain controllers to assure
the least noticeable processing effects will be generated.
The name “Compellor” is a combination of “Compressor-Leveler-Limiter”.
3.2 What Does It Do?
Simply stated, a Compellor automatically evens out the varying levels in an audio system
without making itself noticed. It may seem odd to have a processor you wouldn’t notice working, but imagine being able to keep a wandering vocal track just right in the mix as if the talent
were using perfect voice techniques. Imagine a TV show that always sounded just the right
level even though scene changes were wide ranging. Now imagine these things without any
background swells, pinched voices, or holes punched by a transient hitting the limiter. If you
can, then you realize just a few things the Compellor can accomplish.
Without a Compellor, it is usual to insert a compressor or limiter in the line to control varying
levels. That always results in degraded sound due to the processing by-products. Lost punch,
overly fat backgrounds, inversion (when a loud sound gets lower than average), suck-down
by transients, and noise swell ups are typical problems encountered with usual processing.
The Compellor was designed specifically to avoid all of these problems and more.
3.3 How Does It Work?
Standard compressors and limiters process the sound on arbitrary principles of level detection, something like an audio VU or peak meter. Our hearing is a much more complex process and we can readily hear the “attenuate and recover” effects caused by these simpler
devices.
In contrast, a Compellor automatically detects and corrects the sound level according to how
we hear, and therefore seems natural and relatively undetectable. The unique and patented
circuitry in a Compellor resulted from years of experiments in audio processing and creates
the only level controller on the market designed specifically to be as “transparent” to the ear
as possible. Additional information about the processing circuits in a Compellor will be found
in the various sections of this manual.
3.4 A Bit Of Compellor History
At first, there was a controversy about whether a Compellor actually did anything. Engineers
would call up and complain they couldn’t hear the difference between “in” and “out” of the
Page 7
320A
Compellor
circuit. They thought that all audio processors should be noticeable. We had to explain that
the unit was in fact working, and we asked them to listen to their mixes with and without
the Compellor. After they did that, they were amazed at the results. Meanwhile, broadcasters were discovering the Compellor. They found it greatly enhanced their air chains. The
Compellor soon won the favor of broadcasters internationally.
Some owners may be interested in how the Compellor was first developed. The story begins
in Hawaii in 1982 when Donn Werrbach, a consulting broadcast engineer, undertook to design
an advanced AGC unit for on-air processing to improve the sound of radio stations. Werrbach
had been experimenting with broadcast audio processing for many years but needed to find a
good enough VCA (voltage controlled amplifier chip) to fully implement all the new processing
techniques he had discovered. A chance contact with Boyd Collings, who was then the Aphex
agent in Honolulu, introduced Werrbach to the type 1537A VCA chip which was produced and
sold by Aphex. Given a free sample, a couple of weeks time, and the inspiration brought by
the VCA’s fabulous performance, Werrbach produced the first Compellor prototype.
3. Introduction
The Compellor has become the world standard audio level controller.
Understandably, we are very proud of that fact!
Werrbach’s prototype found its way not only into on-air trials but into a tape duplicating lab,
an album recording studio, and several live showrooms where it quickly proved its usefulness
as a gain controller without processing artifacts. At Boyd’s urging, Aphex’s product manager
Jon Sanserino visited Honolulu and auditioned Werrbach’s prototype at the Audissey recording studio where he was intrigued by its possibilities. Finally, in 1983, an agreement was
reached between Werrbach and Marvin Caesar, the president of Aphex Systems, to produce
the Compellor as a product line.
The first unit rolled off the line in 1984 as the Aphex Model 300 Stereo Compellor. Patents
were secured for key inventions of the Compellor circuitry and are assigned exclusively to
Aphex Systems.
As a premier product line, Aphex decided to build the Model 300 to the highest commercial
standards including only the best available parts and construction techniques. As a result,
not only is the audio processing performance outstanding, but the reliability and long lifetime
of the product was assured. Thousands of Model 300’s are still in constant use today, some
with as much as 19 years of duty under 24-hour service!
The next models introduced were the Models 301 and 303 based on the Model 300 design.
The Model 301 was a single channel version, while the Model 303 was a Model 301 with an
Aural Exciter (tm) added. These models are also still in widespread use.
-
Page 8
In 1994, Aphex introduced the current Compellor Models 320A and 323A. The model “A”
revision signifies the inclusion of an improved patented Leveler circuit called the “Frequency
Discriminate Leveler” (FDL) while all other aspects of the Model 320 remain the same. With
the FDL, Compellors became even more transparent and useful than ever before.
Now, in 2003 (as this manual is being written), the Compellor is still the most advanced and
effective audio level controller available.
Page 9
320A
Compellor
4.1 Unpacking
Your Compellor was packed carefully at the factory in a container designed to protect the unit
during shipment. Nevertheless, Aphex recommends making a careful inspection of the shipping carton and the contents for any signs of physical damage.
4.2 Damage & Claims
If damage is evident, do not discard the container or packing material. Contact your carrier
immediately to file a claim for damages. Customarily, the carrier requires you, the consignee,
to make all damage claims. It will be helpful to retain the shipping documents and the waybill
number.
4.3 Mains Voltage Selection And Fuse
Before applying power to the Compellor, it is a good idea to verify the correct mains voltage
setting. This is easily determined by looking through the transparent fuse cover on the rear
of the chassis.
AC Line power is supplied to the unit via an integral receptacle/fuse holder on the rear panel.
This receptacle meets the various international safety certification requirements, provides the
international mains power selection, and serves as a radio frequency line filter. The programmed voltage can be read near the left end of the fuse clip on the surface of the programming card. If the incorrect voltage is seen, proceed to reprogram the voltage.
4. Installation
Reprogramming the mains voltage is easy if the following steps are followed. Remember to
check the fuse value and install the correct fuse as indicated.
1. Slide window open
3. Extract programming card
Programming Card
Side 1Side 2
120220
100
4. Arrange correct voltage to read in this position.
Fully re-insert the card by pressing firmly.
FUSE
PULL
2. Pry out “Fuse Pull”
240
FUSE DATA
100-120VAC
0.375 Amp
Slow Blow
220-240VAC
0.25 Amp
Slow Blow
Page 10
4.4 Power Cord
The Compellor uses a standard IEC power cord set. The appropriate mains plug for each
country is normally shipped with each unit. However, if you must install or replace the plug,
Power Cord Color Codes
USA Color Code
Black = Hot (live)
White = Neutral
Green = Ground
IEC/Continental Color Code
Brown = Hot (live)
Blue = Neutral
Yellow/Green = Ground
use the correct wiring code as follows:
4.5 Mounting In A Rack
The Compellor occupies one standard 19 in. x 1 3/4 in. rack space (1RU). Chassis depth is
9 1/2 inches not including connectors. Allow at least 3 inches additional space in back for
wiring and connectors. The chassis is designed to be fully supported by front panel mounting
alone. To avoid cosmetic damage to the panel, use the cushioned rack screws provided in
the shipping kit or other cushioned rack screws.
4.6 Proper Ventilation
A Compellor runs warm because the product was designed to efficiently conduct most of
the circuitry’s heat directly to the exterior surfaces. This keeps the hot internal components
such as voltage regulators running far cooler than if they relied on direct convection cooling.
Therefore, if the chassis seems unusually warm to the touch, you need not be alarmed since
the inside of the chassis is never much warmer than that. However, we do not recommend
installing a Compellor in a space which severely restricts air ventilation around the unit such
as a totally sealed rack enclosure unless you can provide an empty rack space above and
below the unit to facilitate cooling. Typical rack enclosures with louvers or fan cooling are
recommended in which case you can install the Compellor in any available rack space.
4.7 Panel Security
A transparent security cover is available through any Aphex dealer to fit your Compellor. This
is absolutely the most convenient way to protect your installation from tampering. When
ordering, ask for Aphex part number SC-1.
4.8 Tools And Equipment Needed
Only standard technician’s tools are required to install the Compellor. Additional test equipment is required for servicing as will be indicated in the related sections of this manual.
4.9 Safety Considerations
Aphex has taken care to insure the safety of its products. The Compellor is constructed to
comply with international electrical safety standards.
To minimize the risk of shock or fire, do not expose the unit to moisture. Allow adequate
ventilation around the unit for cooling. Make sure the mains voltage is properly selected. Do
not open the chassis cover: there are no user serviceable parts inside.
320A
Compellor
Installation should be performed only by qualified individuals. It is the installer’s responsibility
to insure his personal safety and the safety of others in the work area. It is never a good idea
to work alone in the vicinity of high power electrical and radio frequency equipment.
4.10 Remote Connector
Remote control, a feature of the Models 320A and 323A.
4.11 Reference Level Setting
The Compellor should be normalized to match the operating level of your system. When the
Compellor is properly matched to the system reference level, then the Compellor’s meters
will match the system meters and the internal dynamic range of the Compellor will be optimized.
Normalizing the Compellor is accomplished by a rear panel REF LEVEL switch provided for
each channel. Two standard reference levels of -10dBV and +4dBu are available. Simply
set the switches as required.
For DAT machines and other digital media that define operating levels according to a maximum level rather than an average level, we have found the -10dBV position most often provides the correct match.
4. Installation
.level gnitarepo ruoy ot gnittes tsesolc eht tceles ,level gnitarepo dradnatsnon a evah uoy fI
4.12 Input Connections
The input impedance is 20 kilohms and the Compellor will not significantly load the source
when the unit is in-line. Inputs are made by means of 3-pin female XLR jacks. Pin connections follow conventional standards. Pin 1 is connected directly to chassis ground. Signal
pins 2 and 3 may be used either as pin-2 positive or pin-3 positive as you wish. Current U. S.
and international industry standards call for using pin-2 as the positive polarity lead.
For unbalanced use, tie pin 3 to pin 1 for the ground and use pin 2 as “hot”.
Whether using balanced or unbalanced wiring, be sure to follow the same connection scheme
for both channels of the input and output wiring to avoid audio phasing problems.
Interfacing with unbalanced sources can sometimes be improved with a pseudo-balanced
connection. For a complete tutorial on balanced and unbalanced interfacing to other equipment, please refer to Appendix 1 of this manual.
4.13 Output Connections
Page 12
The output impedance of 65 ohms is optimized for driving long cables and consequently
Unique servo balanced output circuitry automatically maintains the proper gain and level into
a balanced or unbalanced output line.
Output connections are made by means of 3-pin male XLR jacks. The pinout follows the
same conventions as the input jacks described above, and you should exercise the same
care about wiring as described for input wiring. Refer to Appendix 1 for complete details
about wiring and interfacing to other equipment.
4.13 Summary
If you pay attention to the line voltage setting, reference level, and i/o wiring you should have
no trouble operating the Compellor. If any difficulties are experienced while installing the
Compellor, other information contained in this manual will probably supply adequate assistance. Please study this manual before contacting the factory for assistance.
.htgnel yna fo ,decnalabnu ro decnalab ,enil fo dnik yna tuoba tsuj evird nac rollepmoC a
Page 13
Loading...
+ 28 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.