Datasheet OP497FS, OP497CY, OP497AY, OP497GP, OP497FP Datasheet (Analog Devices)

Precision Picoampere Input Current
a
FEATURES Low Offset Voltage: 50 V max Low Offset Voltage Drift: 0.5 V/C max Very Low Bias Current 25C: 100 pA max –55C to +125C: 450 pA max Very High Open-Loop Gain: 2000 V/mV min Low Supply Current (per Amplifier): 625 A max Operates from 2 V to 20 V Supplies High Common-Mode Rejection: 120 dB min
APPLICATIONS Strain Gage and Bridge Amplifiers High Stability Thermocouple Amplifiers Instrumentation Amplifiers Photo-Current Monitors High Gain Linearity Amplifiers Long-Term Integrators/Filters Sample-and-Hold Amplifiers Peak Detectors Logarithmic Amplifiers Battery-Powered Systems
Quad Operational Amplifier
OP497
PIN CONNECTIONS
16-Lead Wide Body SOIC
(S-Suffix)
OUT D
1
OUT A
–IN A
2
+
3
+IN A
V+
4
OP497
5
+IN B
–IN B
OUT B
NC
+
6
7
8
NC = NO CONNECT
14-Lead Plastic Dip
(P-Suffix)
14-Lead Ceramic Dip
(Y-Suffix)
16
–IN D
15
+
+IN D
14
V–
13
+IN C
12
+
11
10
9
–IN C
OUT C
NC
GENERAL DESCRIPTION
The OP497 is a quad op amp with precision performance in the space-saving, industry standard 16-lead SOlC package. Its com­bination of exceptional precision with low power and extremely low input bias current makes the quad OP497 useful in a wide variety of applications.
Precision performance of the OP497 includes very low offset, under 50 µV, and low drift, below 0.5 µV/°C. Open-loop gain exceeds 2000 V/mV ensuring high linearity in every application. Errors due to common-mode signals are eliminated by the OP497’s common-mode rejection of over 120 dB. The OP497’s power supply rejection of over 120 dB minimizes offset voltage changes experienced in battery-powered systems. Supply current of the OP497 is under 625 µA per amplifier, and it can operate with supply voltages as low as ±2 V.
The OP497 utilizes a superbeta input stage with bias current can­cellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25°C, but double for every 10°C rise in temperature, to reach the nanoamp range above 85°C. Input bias current of the OP497 is under 100 pA at 25°C and is under 450 pA over the military temperature range.
Combining precision, low power, and low bias current, the OP497 is ideal for a number of applications, including instru­mentation amplifiers, log amplifiers, photo-diode preamplifiers, and long-term integrators. For a single device, see the OP97; for a dual device, see the OP297.
OUT A
1
–IN A
2
+–+
+IN A
V+
+IN B
–IN B
OUT B
1000
100
INPUT CURRENT – PA
10
75 50 25 0 25 50 75 100 125
3
4
OP497
5
+–+
6
7
TEMPERATURE – C
OUT D
14
–IN D
13
+IN D
12
V–
11
+IN C
10
–IN C
9
OUT C
8
VS = 15V V
CM
–I
B
+I
B
I
OS
Input Bias, Offset Current vs. Temperature
= 0V
REV. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002
OP497–SPECIFICATIONS
(@ VS = 15 V, TA = 25C, unless otherwise noted.)
A F C/G
Parameter Symbol Condition Min Typ Max Min Typ Max Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage Vos 20 50 40 75 80 150 µV
–40°C +85°C 70 150 120 250 –55°C +125°C 40 100 80 150 140 300
Average Input Offset
Voltage Drift TCV
OS
T
MIN
– T
MAX
0.2 0.5 0.4 1.0 0.6 1.5 µV/°C
Long-Term Input Offset
Voltage Stability 0.1 0.1 0.1 µV/Mo
Input Bias Current I
B
VCM = 0 V 30 100 40 150 60 200 pA –40° ≤ T –55° ≤ T
+85°C 60 200 80 300
A
+125°C 80 450 110 600 130 600
A
Average Input Bias
Current Drift TC
IB
Input Offset Current Ios V
–40° ≤ TA ≤ +85°C 0.3 0.3 –55° ≤ T
CM
–40° ≤ T –55° ≤ T
+125°C 0.5 0.7 0.7 pA/°C
A
= OV 15 100 30 150 50 200 pA
+85°C 50 200 80 300
A
+125°C 35 400 60 600 90 600
A
Average Input Offset
Current Drift T
Input Voltage Range
1
CIOS
IVR + 13 +14 +13 tl4 +13 +14 V
Common-Mode Rejection CMR V
Large Signal Voltage Gain A
VO
T
– T
MIN
MAX
= ±13 V 120 140 114 135 114 135 dB
CM
T
– T
MIN
MAX
VO = ±10 V, R
= 2 k 2000 6000 1500 4000 1200 4000 V/mV
L
–40° ≤ T –55° ≤ T
+85°C 800 2000 800 2000
A
+125°C 1200 4000 1000 3000 800 3000
A
0.2 0.3 0.4 pA/°C
+13 +13.5 +13 +13.5 +13 +13.5
114 130 108 120 108 120
Input Resistance
Differential Mode R
IN
30 30 30 M
Input Resistance
Common Mode R
Input Capacitance C
INCM
IN
500 500 500 G 33 3pF
OUTPUT CHARACTERISTICS
Output Voltage Swing V
O
RL = 2 kΩ±13 ±13.7 ±13 ± 13.7 ± 13 ± 13.7 V R
= 10 kΩ± 13 ±14 ±13 ± 14 ±13 ±14
L
T
– T
MIN
MAX
RL = 10 kΩ±13 ±13.5 ±13 ± 13.5 ± 13 ± 13.5
Short Circuit I
SC
±25 ±25 ±25 mA
POWER SUPPLY
Power Supply PSRR Vs = ±2 V to ± 20 V 120 140 114 135 114 135 dB
Rejection Ratio Vs = ±2.5 V to ±20 V
T
Supply Current I
SY
(per Amplifier) T
Supply Voltage Range V
S
– T
MIN
MAX
No Load 525 625 525 625 525 625 µA
– T
MIN
MAX
Operating Range ±2 ±20 ±2 ±20 ±2 ± 20 V T
– T
MIN
MAX
114 130 108 120 108 120
580 750 580 750 580 750
±2.5 ± 20 ±2.5 ±20 ±2.5 ± 20
DYNAMIC PERFORMANCE
Slew Rate SR 0.05 0.15 0.05 0.15 0.05 0.15 V/µS Gain Bandwidth Product GBW 500 500 500 kHz Channel Separation CS V
= 20 V
O
p-p,
fo = 10 Hz 150 150 150 dB
NOISE PERFORMANCE
Voltage Noise e Voltage Noise Density e
n p-p
= 10 Hz 17 17 17 nV/Hz
n
e
= 1 kHz 15 15 15 nV/Hz
n
0.1 Hz to 10 Hz 0.3 0.3 0.3 µV/p-p
Current Noise Density in = 10 Hz 20 20 20 fA/Hz
NOTE 1Guaranteed by CMR Test. Specifications subject to change without notice.
–2–
REV. D
OP497
WARNING!
ESD SENSITIVE DEVICE

ABSOLUTE MAXIMUM RATINGS

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 V
Input Voltage Differential Input Voltage
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
20 V
40 V
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range
Y Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range
OP497A, C (Y) . . . . . . . . . . . . . . . . . . . . –55°C to +125°C
OP497F, G (Y) . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
OP497F, G (P, S) . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Junction Temperature
Y Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature Range (Soldering 60 sec) . . . . . . . . 300°C
Package Type
3
JA
JC
Unit
14-Pin Cerdip (Y) 94 10 °C/W 14-Pin Plastic DIP (P) 76 33 °C/W 16-Pin SOIC (S) 92 23 °C/W
NOTES
1
Absolute Maximum Ratings apply to both DICE and packaged parts, unless otherwise noted.
2
For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage.
3
HIA is specified for worst-case mounting conditions, i.e., JA is specified for device in socket for cerdip, P-DIP packages; JA is specified for device soldered to printed circuit board for SOIC package.

ORDERING GUIDE

Temperature Package Package
Model Range Description Option
OP497AY* –55°C to +125°C 14-Lead Cerdip Q-14 OP497CY* –55°C to +125°C 14-Lead Cerdip Q-14 OP497FP –40°C to +85°C 14-Lead Plastic DIP N-14 OP497FS –40°C to +85°C 16-Lead SOIC R-16 OP497GP –40°C to +85°C 14-Lead Plastic DIP N-14 OP497GS –40°C to +85°C 16-Lead SOIC R-16
*Not for new design; obsolete April 2002.
For a military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/ programs.milspec./default.asp.
SMD Part Number ADI Part Number
5962–9452101M2A* OP497BRC 5962–9452101MCA OP497BY
*Not for new designs; obsolete April 2002.

DICE CHARACTERISTICS

1/4
OP497
+
CHANNEL SEPARATION = 20 log
V
20V p–p @ 10Hz
1
2k
50
V
1
()
V /10000
2
50k
1/4
OP497
+
V
2

Channel Separation Test Circuit

CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP497 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
REV. D
–3–
OP497
–Typical Performance Characteristics
(25C, Vs = 15 V, unless otherwise noted.)
50
40
30
20
PERCENTAGE OF UNITS
10
0
80
100
204060
INPUT OFFSET VOLTAGE – V
TA = 25C
= 15V
V
S
V
CM
0
TPC 1. Typical Distribution of Input Offset Voltage
50
40
30
20
PERCENTAGE OF UNITS
10
0
0
0.1
TCVOS – V/C
VS = 15V V
TPC 4. Typical Distribution of TCV
OS
CM
= 0V
= 0V
50
40
30
20
PERCENTAGE OF UNITS
10
100
80604020
0
80
100
INPUT BIAS CURRENT pA
204060
TA = 25C
= 15V
V
S
= 0V
V
CM
0
100
80604020
TPC 2. Typical Distribution of Input Bias Current
1000
VS = 15V
= 0V
V
CM
100
–I
INPUT CURRENT – pA
10
0.8
0.70.60.50.40.30.2
–75 –50 –25 0 25 50 75 100 125
B
+I
I
OS
TEMPERATURE – C
B
TPC 5. Input Bias, Offset
Current vs. Temperature
60
TA = 25C
50
40
30
20
PERCENTAGE OF UNITS
10
0
0
10
INPUT OFFSET CURRENT – pA
V
S
V
CM
TPC 3. Typical Distribution of Input Offset Current
70
TA = 25 C
= 15V
V
S
60
50
40
30
20
INPUT BIAS CURRENT – pA
10
0
10
15
COMMON-MODE VOLTAGE – Volts
0
–5
TPC 6. Input Bias Current vs. Common-Mode Voltage
= 15V
= 0V
50403020
105
60
–I
B
+I
B
15
3
2
1
DEVIATION FROM FINAL VALUE – V
0
0
TIME AFTER POWER APPLIED – Minutes
TA = 25C V V
TPC 7. Input Offset Voltage Warm-Up Drift
= 15V
S
= 0V
CM
10000
BALANCED OR UNBALANCED
= 15V
V
S
= 0V
V
CM
1000
100
–55 C T 125 C
A
EFFECTIVE OFFSET VOLTAGE – V
10
10
51
432
100
SOURCE RESISTANCE –
10k
1k
T = +25 C
100k
A
1M
10M
TPC 8. Effective Offset Voltage vs. Source Resistance
–4–
100
BALANCED OR UNBALANCED
= 15V
V
S
= 0V
V
CM
10
1
EFFECTIVE OFFSET VOLTAGE – V/ C
0.1 100 1k 10k 100k
SOURCE RESISTANCE –
TPC 9. Effective TCVOS vs. Source Resistance
1M 10M
100M
REV. D
OP497
1000
TA = 25C
= 2V TO 20V
V
S
100
CURRENT NOISE
VOLTAGE NOISE
10
VOLTAGE NOISE DENSITY – nV/ Hz
1
1 10 100
FREQUENCY – Hz
TPC 10. Voltage Noise Density vs. Frequency
100
80
GAIN
60
PHASE
40
20
0
OPEN-LOOP GAIN – dB
20
40
100
1k
FREQUENCY – Hz
TPC 13. Open-Loop Gain, Phase vs. Frequency
VS = ⴞ15V
= 30pF
C
L
R
= 1M
L
= 25ⴗC
T
A
1M100k10k
1000
10M
90
135
180
225
10
TA = 25ⴗC
= 2V TO ⴞ20V
V
S
1
10Hz
0.1
CURRENT NOISE DENSITY – fA / Hz
TOTAL NOISE DENSITY – V/ Hz
0.01
2
10
10310410510610
SOURCE RESISTANCE –
TPC 11. Total Noise Density vs.
1kHz
NOISE VOLTAGE – 100mV/DIV
7
TPC 12. 0.1 Hz to 10 Hz Noise Voltage
5mV
100
90
10
0%
02 4 6810
TIME – Secs
1s
VS = 15V T
= 25C
A
Source Resistance
PHASE SHIFT – DEG
10000
1000
OPEN - LOOP GAIN – V/ MV
100
11020
TA = –55C
TA = +125C
VS = 15V
= 10V
V
O
LOAD RESISTANCE – k
TA = +25C
TPC 14. Open-Loop Gain vs.
RL = 2k
= 15V
V
S
= 10V
V
CN
TA= +125C
TA= +25C
T
= –55C
A
DIFFERENTIAL INPUT VOLTAGE – 10␮V/ DIV
OUTPUT VOLTAGE – V
15–10–15 1050–5
TPC 15. Open-Loop Gain Linearity
Load Resistance
COMMON - MODE REJECTION – dB
160
140
120
100
80
60
40
20
0
101
FREQUENCY – Hz
VS = 15V T
TPC 16. Common-Mode
Rejection vs. Frequency
REV. D
= 25C
A
100k10k1k100
1M
POWER SUPPLY REJECTION – dB
160
140
120
100
–PSR
80
60
40
20
0
+PSR
101
FREQUENCY – Hz
VS = 15V
= 25C
T
A
TPC 17. Power Supply
Rejection vs. Frequency
–5–
35
30
25
p-p
20
15
10
OUTPUT SWING – V
5
1M
100k10k1k100
0 100
1k
FREQUENCY – Hz
10k
V
= 15V
S
= 25C
T
A
A
VCL
1%THD
= 10k
R
L
= +1
100k
TPC 18. Maximum Output Swing vs. Frequency
OP497
+V
S
0.5
1.0
1.5
1.5
1.0
0.5
(REFERRED TO SUPPLY VOLTAGES)
INPUT COMMON-MODE VOLTAGE – Volts
–V
S
0
5 SUPPLY VOLTAGE – V
TA = 25C
1510
20
TPC 19. Input Common-Mode Voltage Range vs. Supply Voltage
700
+125 C
600
+25
500
400
300
SUPPLY CURRENT (PER AMPLIFIER) – A
200
C
–55
C
5
0
10
SUPPLY VOLTAGE – V
NO LOAD
15
20
TPC 22. Supply Current (per Amplifier) vs. Supply Voltage
35
VS = 15V
= 25C
T
A
30
= +1
A
VCL
1%THD
f
= 1kHz
25
p-p
O
20
15
10
OUTPUT SWING – V
5
0
10
100
LOAD RESISTANCE –
1k
TPC 20. Maximum Output Swing vs. Load Resistance
1000
VS = 15V
= 25 C
T
A
100
10
0.1
0.01
0.001
1
10
1
AV = +1
10k1k100
TPC 23. Closed-Loop Output Impedance vs. Frequency
10k
100k
+V
S
0.5
1.0
1.5
1.5
1.0
OUTPUT VOLTAGE SWING – V
0.5
(REFERRED TO SUPPLY VOLTAGES)
–V
S
0
5
10
SUPPLY VOLTAGE – V
TA = 25C
= 10k
R
L
15
TPC 21. Output Voltage Swing vs. Supply Voltage
35
30
25
20
15
VS = 15V
OUTPUT SHORTED TO GROUND
SHORT CIRCUIT CURRENT – mA
15
20
25
30
35
TA = +125 C
0
1
TIME FROM OUTPUT SHORT – Mins
= –55 C
T
A
TA = +25 C
TA = +125 C
= +25 C
T
A
TA = –55 C
2
3
TPC 24. Short-Circuit Current vs. Time Temperature
20
4
70
VS = 15V
= 25 C
T
A
60
= +1
A
VCL
= 100mV p–p
V
OUT
50
40
30
OVERSHOOT – %
20
10
0
10
100
LOAD CAPACITANCE – pF
1k
TPC 25. Small-Signal Overshoot vs. Capacitance Load
10k
–IN
+IN
2.5k
2.5k
TPC 26. Simplified Schematic Showing One Amplifier
V+
V
OUT
V–
–6–
REV. D

APPLICATIONS INFORMATION

1/4
OP497
UNITY GAIN FOLLOWER NONINVERTING AMPLIFIER
INVERTING AMPLIFIER
B
8
A
1
MINI-DIP
BOTTOM VIEW
+
+
+
1/4
OP497
1/4
OP497
Extremely low bias current over the full military temperature range makes the OP497 attractive for use in sample-and-hold amplifiers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is not necessary with the OP497. Offset voltage and TCV
are degraded only
OS
minimally by high source resistance, even when unbalanced.
The input pins of the OP497 are protected against large differen­tial voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted, and may vary over the full range of the supply voltages used.
The OP497 requires very little operating headroom about the supply rails, and is specified for operation with supplies as low as ±2 V. Typically, the common-mode range extends to within 1 V of either rail. The output typically swings to within 1 V of the rails when using a 10 k load.

AC PERFORMANCE

The OP497’s ac characteristics are highly stable over its full operating temperature range. Unity-gain small-signal response is shown in Figure 1. Extremely tolerant of capacitive loading on the output, the OP497 displays excellent response even with 1000 pF loads (Figure 2).
100
90
OP497
100
90
10
0%
50
2V
Figure 3. Large-Signal Transient Response (A

GUARDING AND SHIELDING

To maintain the extremely high input impedances of the OP497, care must be taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of mois­ture. Conformal coating is recommended to provide a humidity barrier. Even a clean PC board can have 100 pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces are operated at a voltage close to that on the inputs, as shown in Figure 4, so that leakage currents become minimal. In noninverting applications, the guard ring should be connected to the common-mode voltage at the invert­ing input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be on both sides of the circuit board.
s
= 1)
VCL
10
0%
20mV
Figure 1. Small-Signal Transient Response (C
= 100 pF, A
LOAD
100
90
10
0%
20MV
Figure 2. Small-Signal Transient Response (C
REV. D
= 1000 pF, A
LOAD
VCL
= 1)
VCL
5
= 1)
5␮s
Figure 4. Guard Ring Layout and Connections
s
–7–
OP497

OPEN-LOOP GAIN LINEARITY

The OP497 has both an extremely high gain of 2000 V/mv mini­mum and constant gain linearity. This enhances the precision of the OP497 and provides for very high accuracy in high closed-loop gain applications. Figure 5 illustrates the typical open-loop gain linearity of the OP 497 over the military temperature range.
RL = 10k
= 15V
V
S
= 0V
V
CM
DIFFERENTIAL INPUT VOLTAGE – 10µV/ DIV
T
= +125 C
A
= +25C
T
A
= –55 C
T
A
OUTPUT VOLTAGE – Volts
15–10–15 1050–5
Figure 5. Open-Loop Linearity of the OP497

APPLICATIONS

Precision Absolute Value Amplifier

The circuit of Figure 6 is a precision absolute value amplifier with an input impedance of 30 M. The high gain and low TCV
of the OP497 ensure accurate operation with microvolt
OS
input signals. In this circuit, the input always appears as a com­mon-mode signal to the op amps. The CMR of the OP497 exceeds 120 dB, yielding an error of less than 2 ppm.
+15V

PRECISION CURRENT PUMP

Maximum output current of the precision current pump shown in Figure 7 is ±10 mA. Voltage compliance is ±10 V with ±15 V supplies. Output impedance of the current transmitter exceeds 3 M with linearity better than 16 bits.
R3
2
3
R4
10k
10k
1/4
OP497
7
1
+15V
8
1/4
OP497
–15V
4
R5
10k
I
OUT
10mA
5
6
R1
10k
R2
V
IN
10k
+
V
V
IN
I
OUT
IN
= = = 10mA/ V
R5
100
Figure 7. Precision Current Pump

PRECISION POSITIVE PEAK DETECTOR

In Figure 8, the CH must be of polystyrene, Teflon*, or polyeth­ylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the OP497.
1k
+15V
2
1/4
OP497
1k
V
IN
3
1
RESET
1N4148
C
H
1k
2N930
1k
6
OP497
5
1/4
4
–15V
0.1F
8
0.1F
7
V
OUT
C2
0.1F
C1 30pF
8
2
1/4
–15V
4
C3
0.1F
1
OP497
3
V
IN
1k
D1 1N4148
D2
1N4148
R1
R2 2k
6
5
R3
1k
1/4
OP497
0V < V < 10V
Figure 6. Precision Absolute Value Amplifier
*Teflon is a registered trademark of the Dupont Company.
Figure 8. Precision Positive Peak Detector

SIMPLE BRIDGE CONDITIONING AMPLIFIER

7
OUT
Figure 9 shows a simple bridge conditioning amplifier using the OP497. The transfer function is:
VV
=
OUT REF
 
RRRR
R
+
F
 
The REF43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, R
F
should be 0.1% or better with a low temperature coefficient.
–8–
REV. D
+5V
1
2
3
6
7
5
C1
100pF
V+
2
3
8
1
4
V–
V
IN
I
IN
C2
100pF
6
5
7
V
OUT
I
O
9
8
10
Q1
Q3
Q2
14
12
Q4
13
–15V
I
REF
MAT-04E
R1
133k
R2
33k
R3
50k
R4 50k
1/4
OP497
1/4
OP497
1
2
3
6
7
5
C1
100pF
V+
2
3
8
1
4
V–
6
5
7
V
OUT
I
O
9
8
10
Q1
Q3
Q2
14
12
Q4
13
–15V
I
REF
MAT-04E
I
IN
V
IN
R1
33k
R2
33k
R5
2k
R3
50k
R4 50k
C2
100pF
1/4
OP497
1/4
OP497
2
REF43
4
V
REF
2.5 V
6
R
R
R + R
R
+5V
6
8
1/4
OP497
5
7
4
–5V
V
2
3
OUT
R
1/4
OP497
= V
F
1
( )
REF
R + ⌬R
R
V
OUT
R
F
R
Figure 9. A Simple Bridge Conditioning Amplifier Using the OP497
OP497

NONLINEAR CIRCUITS

Due to its low input bias currents, the OP497 is an ideal log amplifier in nonlinear circuits such as the square and square root circuits shown in Figures 10 and 11. Using the squaring circuit of Figure 10 as an example, the analysis begins by writing a voltage-loop equation across transistors Q1, Q2, Q3, and Q4.
VIn
T
1
 
I
IN
+
I
S
1
VIn
T
2
 
I
IN
I
S
=
 
2
VInI
T
3
I
O
 
+
I
S
3
VIn
T
4
 
I
REF
I
S
 
4
All the transistors of the MAT04 are precisely matched and at the same temperature, so the I
2InI InI InI In I I
=+ = ×
IN O REF O REF
and VT terms cancel, giving:
S
()
Exponentiating both sides of thick equation leads to:
2
I
()
I
IN
=
O
I
REF
Op amp A2 forms a current-to-voltage converter which gives V
= R2 × IO. Substituting (VIN/R1) for IIN and the above
OUT
equation for I
, yields:
O
V
OUT
R2
=
I
REF
2
V
IN
R1
Figure 10. Squaring Amplifier
A similar analysis made for the square-root circuit of Figure 11 leads to its transfer function:
VI
()( )
IN REF
R1
In these circuits, I
VR2
=
OUT
is a function of the negative power sup-
REF
ply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference may be used to set I
. An important con-
REF
sideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R4 can be changed to scale I
REF
, or Rl and R2 can be varied to keep the output voltage within the usable range.
REV. D
Unadjusted accuracy of the square-root circuit is better than
0.1% over an input voltage range of 100 mV to 10 V. For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%.
–9–
Figure 11. Square-Root Amplifier
OP497

OP497 SPICE MACRO-MODEL

Figure 12 and Table I show the node and net list for a SPICE macro-model of the OP497. The model is a simplified version of the actual device and simulates important dc parameters such as
, IOS, IB, AVO, CMR, VO, and ISY. AC parameters such as slew
V
OS
rate, gain and phase response, and CMR change with frequency are also simulated by the model.
–IN
+IN
2
1
R
IN2
C
IN
R
IN1
15 16
ECM
I
OS
CCM
RCM1
RCM2
8
7
ENZ
R1
D1 D2
R2
– +
E
OS
CNZ
RNZ1
17 18
RNZ2
9
G2
The model uses typical parameters for the OP497. The poles and zeros in the model were determined from the actual open and closed-loop gain and phase response of the OP497. In this way, the model presents an accurate ac representation of the actual device. The model assumes an ambient temperature of 25°C.
99
V1
R3 R4
C2
56
Q1 Q2
10 11
R6R5
I
1
50
19
R10
C5
G1
98
E
REF
G2
13
D3
12
C3
R7
D4
14
V2
20
C5
R15
98
99
25 26
G4 G5
D8D7
D5
23
24
D6
D10
50
V3
– +
V4
G6
R18
– +
22
G7
R19
L1
V
O
27
R16
I
SY
20
21
R17
D9
Figure 12. OP497 Macro Model
–10–
REV. D
Table I. OP497 SPICE Net-List
OP497
* Node assignments * noninverting input * inverting input * positive supply * negative supply * output * *SUBCKT OP497 1 2 99 50 27 * * INPUT STAGE AND POLE AT 6 MHz *
RIN1 1 7 2500 RIN2 2 8 2500 R1 8 3 6.782E8 R2 7 3 6.782E8 R3 5 99 542.57 R4 6 99 542.57 CIN 7 8 3E-12 C2 5 6 24.445E-12 I1 4 50 0.1E-3 IOS 7 8 15E-12 EOS 9 7 POLY(1) 16 21 40E-6 1 Q15810QX Q26911QX R5 10 4 25.374 R6 11 4 25.374 D189DX D298DX
*
EREF 98 0 21 0 1
* *GAIN STAGE AND DOMINANT POLE AT 0.11 Hz *
R7 1 98 2.1703E9 C3 2 98 666.67E-12 G1 98 12 5 V1 99 13 1.275 V2 11 9 1.275 D3 12 13 DX D4 14 12 DX
* *COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz *
RCM1 15 16 1E6 CCM 15 16 3.18E-9 RCM2 16 98 1 ECM 15 98 3 21 177.83E-3
* NEGATIVE ZERO AT 1.8 MHz *
E1 17 98 12 21 1E6 R8 17 18 1E6 C4 17 18 –88.419E-15 R9 18 98 1
* * POLE AT 6 MHz *
G2 98 19 18 21 1E-6 R15 20 98 1E6 C8 20 98 26.526E-15
* * POLE AT 1.8 MHz *
G6 98 20 19 21 1E-6 R20 20 98 1E6 C10 20 98 88.419E-15
* * OUTPUT STAGE *
R16 99 21 160 k R17 21 50 160 k ISY 99 50 331E-6 V3 23 22 1.9 D5 20 23 DX V4 22 24 1.9 D6 24 20 DX D7 99 25 DX G4 25 50 20 22 5E-3 D9 50 25 DY D8 99 26 DX G5 26 50 22 20 5E-3 D10 50 26 DY G6 22 99 99 20 5E-3 R18 99 22 200 G7 50 22 20 50 5E-3 R19 22 50 200 L1 22 27 0.1E-6
* * MODELS USED *
.MODEL QX NPN (BF = 1.25E6) .MODEL DX (IS = 1E-15) .MODEL DZ D(IS = 1E-15 BV = 50) .ENDS OP497
REV. D
–11–
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
0.005 (0.13)
14
PIN 1
0.060 (1.52)
0.015 (0.38)
0.200 (5.08) MAX
0.200 (5.08)
0.125 (3.18)
0.015 (0.381) MIN
0.210 (5.33) MAX
0.160 (4.06)
0.115 (2.92) 0.022 (0.558)
1
0.023 (0.58)
0.014 (0.36)
14
PIN 1
1
0.014 (0.36)
14-Lead Ceramic DIP
(Y-Suffix)
8
7
0.070 (1.78)
0.030 (0.76)
0.098 (2.49) MAX
0.150 (3.81)
MIN
SEATING PLANE
MIN
0.785 (19.94) MAX
0.100 (2.54)
BSC
14-Lead Epoxy DIP
(P-Suffix)
8
0.280 (7.11)
0.240 (6.10)
7
0.795 (20.19)
0.725 (18.41)
0.130
(3.30)
MIN
0.100
0.070 (1.77)
(2.54)
0.045 (1.15)
BSC
0°–15°
0°–15°
0.310 (7.87)
0.220 (5.59)
0.320 (8.13)
0.290 (7.37)
0.015 (0.38)
0.008 (0.20)
0.325 (8.25)
0.300 (7.62)
0.015 (0.38)
0.008 (0.20)
16 9
PIN 1
0.0118 (0.30)
0.0040 (0.10)
16-Lead Wide-Body SOIC
(S-Suffix)
0.4133 (10.50)
0.3977 (10.00)
0.2992 (7.60)
0.2914 (7.40)
81
0.050 (1.27) BSC
0.1043 (2.65)
0.0926 (2.35)
0.0192 (0.49)
0.0138 (0.35)
SEATING PLANE
0.4193 (10.65)
0.3937 (10.00)
0.0125 (0.32)
0.0091 (0.23)
0.0291 (0.74)
0.0098 (0.25)
8 0
C00309–0–2/02(D)
45
0.0500 (1.27)
0.0157 (0.40)

Revision History

Location Page
11/01—Data Sheet changed from REV. C to REV. D.
Edits to PIN CONNECTIONS headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Deleted WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
–12–
PRINTED IN U.S.A.
Loading...