ANALOG DEVICES OP 200 GPZ Datasheet

Page 1
Operational Amplifier
OP200
Rev. F Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
Trademarks and registered trademarks are the property of their respective owners.
Technical Support www.analog.com
–IN
A
1
+IN
A
2
NC
3
V–
4
OUT A
16
NC
15
NC
14
V+
13
NC
5
NC
12
+IN B
6
NC
1
1
–IN B
7
OUT B
10
NC
8
NC
9
NC = NO CONNECT
00322-001
OUT A
1
–IN A
2
+IN A
3
V–
4
V+
8
OUT B
7
–IN B
6
+IN B
5
OP200
00322-002
A
B
Data Sheet

FEATURES

Low input offset voltage: 75 µV maximum Low offset voltage drift, over −55°C < T
0.5 µV/°C maximum Low supply current (per amplifier): 725 µA maximum High open-loop gain: 5000 V/mV minimum Low input bias current: 2 nA maximum Low noise voltage density: 11 nV/√Hz at 1 kHz Stable with large capacitive loads: 10 nF typical
< +125°C
A
Dual Low Offset, Low Power

PIN CONNECTIONS

Figure 1. 16-Lead SOIC (S-Suffix)

GENERAL DESCRIPTION

The OP200 is the first monolithic dual operational amplifier to offer OP77 type precision performance. Available in the industry standard 8-lead pinout, the OP200 combines precision performance with the space and cost savings offered by a dual amplifier.
The OP200 features an extremely low input offset voltage of less than 75 µV with a drift below 0.5 µV/°C, guaranteed over the full military temperature range. Open-loop gain of the OP200 exceeds 5,000,000 into a 10 kΩ load; input bias current is under 2 nA; CMRR is over 120 dB; and PSRR is below 1.8 µV/V. On-chip Zener zap trimming is used to achieve the extremely low input offset voltage of the OP200 and eliminates the need for offset pulling.
Figure 2. 8-Lead PDIP (P-Suffix)
8-Lead CERDIP (Z-Suffix)
Power consumption of the OP200 is low, with each amplifier drawing less than 725 µA of supply current. The total current drawn by the dual OP200 is less than one-half that of a single
OP07, yet the OP200 offers significant improvements over this
industry-standard op amp. The voltage noise density of the OP200, 11 nV/√Hz at 1 kHz, is half that of most competitive devices.
The OP200 is an ideal choice for applications requiring multiple precision op amps and where low power consumption is critical.
For a quad precision op amp, see the OP400.
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1978–2015 Analog Devices, Inc. All rights reserved.
Page 2
OP200* Product Page Quick Links
Comparable Parts
View a parametric search of comparable parts
Documentation
Application Notes
• AN-649: Using the Analog Devices Active Filter Design Tool
Data Sheet
• OP200: Dual Low Offset, Low Power Operational Amplifier Data Sheet
• OP200: Military Data Sheet
Tools and Simulations
• OP200 SPICE Macro-Model
Reference Materials
Analog Dialogue
• Ask The Applications Engineer - 25 Op Amps Driving Capacitive Loads
Last Content Update: 08/30/2016
Design Resources
• OP200 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints
Discussions
View all OP200 EngineerZone Discussions
Sample and Buy
Visit the product page to see pricing options
Technical Support
Submit a technical question or find your regional support number
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.
Page 3
OP200 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Pin Connections ............................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 4
Electrical Characteristics ............................................................. 4
Absolute Maximum Ratings ............................................................ 7
Thermal Resistance ...................................................................... 7
ESD Caution .................................................................................. 7
Typical Performance Characteristics ............................................. 8

REVISION HISTORY

10/15—Rev. E to Rev. F
Changes to General Description .................................................... 1
Changes to Ordering Guide .......................................................... 16
9/12—Rev. D to Rev. E
Changed Table 2 Conditions from V
Updated Outline Dimensions ....................................................... 15
Changes to Ordering Guide .......................................................... 16
2/09—Rev. C to Rev. D
Change to Large Signal Voltage Gain, Table 2 .............................. 4
Changes to Ordering Guide .......................................................... 16
8/08—Rev. B to Rev. C
Updated Format .................................................................. Universal
Changes to Features Section............................................................ 1
Changes to Table 1 and Table 2 ....................................................... 4
Changes to Table 3 and Table 4 ....................................................... 5
Deleted Table 7; Renumbered Sequentially................................... 5
Changes to Figure 15 ........................................................................ 9
Changes to Figure 21 ...................................................................... 10
Changes to Figure 30 and Figure 31 ............................................. 12
Changes to Programmable High Resolution Window
Comparator Section, Figure 33, and Figure 34 ........................... 13
Changes to Figure 35 ...................................................................... 14
Updated Outline Dimensions ....................................................... 15
Changes to Ordering Guide .......................................................... 16
= 15 V to VS = ±15 V ...... 4
S
Applications Information .............................................................. 12
Dual Low Power Instrumentation Amplifier ......................... 12
Precision Absolute Value Amplifier ......................................... 12
Precision Current Pump ............................................................ 12
Dual 12-Bit Voltage Output DAC ............................................ 13
Dual Precision Voltage Reference ............................................ 13
Programmable High Resolution Window Comparator ........ 14
Outline Dimensions ....................................................................... 15
Ordering Guide .......................................................................... 16
2/04—Rev. A to Rev. B.
OP200F Deleted .................................................................. Universal
Changes to Ordering Guide ............................................................. 5
Changes to Figure 4 ........................................................................... 8
Updated Outline Dimension ........................................................ 11
4/02—Rev. 0 to Rev. A.
Edits to Features................................................................................. 1
Edits to General Description ........................................................... 1
Edits to Ordering Information ........................................................ 1
Edits to Pin Connections .................................................................. 1
Edits to Absolute Maximum Ratings .............................................. 2
Edits to Package Type ....................................................................... 2
Rev. F | Page 2 of 16
Page 4
Data Sheet OP200
00322-003
+IN
VOLTAGE
LIMITING
NETWORK
–IN
BIAS
OUT
V–
V+
Figure 3. Simplified Schematic (One of Two Amplifiers Shown)
Rev. F | Page 3 of 16
Page 5
OP200 Data Sheet
Input Noise Current Density
in
fO = 10 Hz
0.4
0.4
pA/√Hz
RL = 2 kΩ
2000
3700
1500
3200
M/mV
INPUT CHARACTERISTICS
Large Signal Voltage Gain
AVO
VO = 10 V

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

VS = ±15 V, TA = 25°C, unless otherwise noted.
Table 1.
OP200A/OP200E OP200G
Parameter Symbol Conditions
INPUT CHARACTERISTICS
Input Offset Voltage VOS 25 75 80 200 μV Long-Term Input Voltage Stability 0.1 0.1 μV/mo Input Offset Current IOS VCM = 0 V 0.05 1.0 0.05 3.5 nA Input Bias Current IB VCM = 0 V 0.1 2.0 0.1 5.0 nA Input Noise Voltage en p-p 0.1 Hz to 10 Hz 0.5 0.5 μV p-p Input Noise Voltage Density1 en fO = 10 Hz 22 36 22 nV/√Hz
fO = 1000 Hz 11 18 11 nV/√Hz
Input Noise Current in p-p 0.1 Hz to 10 Hz 15 15 pA p-p
Input Resistance Differential Mode RIN 10 10 MΩ Input Resistance Common Mode R Large Signal Voltage Gain AVO VO = ±10 V
125 125 GΩ
INCM
RL = 10 kΩ 5000 12,000 3000 7000 M/mV
Unit Min Typ Max Min Typ Max
1
Sample tested.
VS = ±15 V, −55°C ≤ TA ≤ +125°C for OP200A, unless otherwise noted.
Table 2.
OP200A
Parameter Symbol Conditions
Input Offset Voltage VOS 45 125 μV Average Input Offset Voltage Drift TCVOS 0.2 0.5 μV/°C Input Offset Current IOS VCM = 0 V 0.15 2.5 nA Input Bias Current IB VCM = 0 V 0.9 5.0 nA
RL = 10 kΩ 3000 9000 V/mV
RL = 2 kΩ 1000 2700 V/mV Input Voltage Range1 IVR ±12 ±12.5 V Common-Mode Rejection Ratio CMRR VCM = ±12 V 115 130 dB Capacitive Load Stability AV = 1 8 nF
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 3 V to 18 V 0.2 3.2 μV/V Supply Current Per Amplifier ISY No load 600 775 μA
OUTPUT CHARACTERISTICS
Output Voltage Swing VO RL = 10 kΩ ±12 ±12.4 V
RL = 2 kΩ ±11 ±12 V
1
Guaranteed by CMRR test.
Unit Min Typ Max
Rev. F | Page 4 of 16
Page 6
Data Sheet OP200
Input Voltage Range1
IVR ±12
±13 ±12
±13 V
Input Offset Current
IOS
VCM = 0 V
0.08
2.5 0.1
6.0
nA
Input Voltage Range1
IVR ±12
±12.5
±12
±12.5
V
OUTPUT CHARACTERISTICS
VS = ±15 V, TA = 25°C, unless otherwise noted.
Table 3.
OP200A/OP200E OP200G
Parameter Symbol Conditions
INPUT CHARACTERISTICS
Common-Mode Rejection Ratio CMRR VCM = ±12 V 120 135 110 130 dB Channel Separation2 CS VO = 20 V p-p, fO = 10 Hz 123 145 123 145 dB Input Capacitance CIN 3.2 3.2 pF Capacitive Load Stability AV = 1, no oscillations 10 10 nF
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±3 V to ±18 V 0.4 1.8 0.6 5.6 μV/V Supply Current Per Amplifier ISY No load 570 725 570 725 μA
OUTPUT CHARACTERISTICS
Output Voltage Swing VO RL= 10 kΩ ±12 ±12.6 ±12 ±12.6 V RL = 2 kΩ ±11 ±12.2 ±11 ±12.2 V DYNAMIC PERFORMANCE
Slew Rate SR 0.1 0.15 0.1 0.15 V/μs
Gain Bandwidth Product GBP AV = 1 500 500 kHz
1
Guaranteed by CMRR test.
2
Guaranteed but not 100% tested.
V
= ±15 V, −40°C ≤ TA ≤ +85°C, unless otherwise noted.
S
Unit Min Typ Max Min Typ Max
Table 4.
OP200E OP200G
Parameter Symbol Conditions
INPUT CHARACTERISTICS
Input Offset Voltage VOS 35 100 110 300 μV
Average Input Offset Voltage Drift TCVOS 0.2 0.5 0.6 2.0 μV/°C
Input Bias Current IB VCM = 0 V 0 3 5.0 0.5 10.0 nA
Large-Signal Voltage Gain AVO VO = ±10 V
RL= 10 kΩ 3000 10,000 2000 5000 V/mV
RL = 2 kΩ 1500 3200 1000 2500 V/mV
Common-Mode Rejection Ratio CMRR VCM = ±12 V 115 130 105 130 dB
Capacitive Load Stability AV = 1, no oscillations 10 10 nF POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±3 V to ±18 V 0.15 3.2 0.3 10.0 μV/V
Supply Current Per Amplifier ISY No load 600 775 600 775 μA
Output Voltage Swing VO RL = 10 kΩ ±12 ±12.4 ±12 ±12.4 V
RL = 2 kΩ ±11 ±12 ±11 ±12.2 V
1
Guaranteed by CMRR test.
Unit Min Typ Max Min Typ Max
Rev. F | Page 5 of 16
Page 7
OP200 Data Sheet
1/2
OP200
50
50
1/2
OP200
CHANNEL SEPARATIO N = 20 log
V
1
V2/1000
V1 20V p-p @ 10Hz
V
2
00322-004
Figure 4. Channel Separation Test Circuit
100 10k
1/2
OP200
1/2
OP200
e
(nV/Hz) = 2 × e
OUT
(nV/Hz) × 101
OUT
Figure 5. Noise Test Schematic
e
OUT
TO SPECTRUM ANALYZER
00322-005
Rev. F | Page 6 of 16
Page 8
Data Sheet OP200
Operating Temperature Range

ABSOLUTE MAXIMUM RATINGS

Table 5.
Parameter Rating
Supply Voltage ±20 V Differential Input Voltage ±30 V Input Voltage Supply voltage Output Short-Circuit Duration Continuous Storage Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C Junction Temperature Range (TJ) −65°C to +150°C

THERMAL RESISTANCE

Table 6.
Package Type θ
8-Lead CERDIP (Z Suffix) 148 16 °C/W 8-Lead Plastic DIP (P Suffix) 96 37 °C/W 16-Lead SOIC (S Suffix) 92 27 °C/W
1
θJA is specified for worst-case mounting conditions, that is, θJA is specified for
device in socket for CERDIP and PDIP packages; θ soldered to printed circuit board for SOIC package.
1
θJC Unit
JA
is specified for device
JA
OP200A −55°C to +125°C
OP200E, OP200G −40°C to +85°C
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

Rev. F | Page 7 of 16
Page 9
OP200 Data Sheet

TYPICAL PERFORMANCE CHARACTERISTICS

300
TA = 25°C V
= ±15V
S
2
1
CHANGE IN OFF SET VOL TAGE (µ V)
INPUT OFF SET CURRENT ( pA)
VS = ±15V
250
200
150
100
50
0
0 1.0 2.0 3.0 4.0 5.0
TIME (Minutes)
Figure 6. Warm-Up Drift
60
VS = ±15V
50
40
30
20
INPUT OFFSET VOLTAGE ( µV)
10
0
–75 –50 –25 0 25 50 75 100 125
TEMPERATURE ( °C)
Figure 7. Input Offset Voltage vs. Temperature
3
VS = ±15V
2
1
0
–1
INPUT BIAS CURRENT (nA)
–2
00322-006
0
–75 –50 –25 0 25 50 75 100 125
TEMPERATURE (° C)
00322-009
Figure 9. Input Offset Current vs. Temperature
1.0
TA = 25°C V
= ±15V
S
0.8
0.6
0.4
INPUT BIAS CURRENT (nA)
0.2
00322-007
0
–15 –10 –5 .0 0 5.0 10 15
COMON-MODE VOLTAG E (V)
00322-010
Figure 10. Input Bias Current vs. Common-Mode Voltage
140
120
100
80
60
40
COMMON-MO DE REJECTIO N (dB)
20
TA = 25°C
= ±15V
V
S
–3
–75 –50 –25 0 25 50 75 100 125
TEMPERATURE (°C)
Figure 8. Input Bias Current vs. Temperature
00322-008
Rev. F | Page 8 of 16
0
1 10 100 1k 10k 100k
FREQUENCY (Hz)
Figure 11. Common-Mode Rejection vs. Frequency
00322-011
Page 10
Data Sheet OP200
100
VOLTAGE NOISE DENSITY (nV/Hz)
TA = 25°C V
= ±15V
S
1.18 TWO AMPLIFIERS T
= 25°C
A
1.16
1.14
1.12
1.10
TOTAL S UPPLY CURRENT (mA)
1.08
10
1 10 100 1k
FREQUENCY (Hz)
Figure 12. Voltage Noise Density vs. Frequency
1000
CURRENT NOISE DE NSITY (fA/ Hz)
100
1 10 100 1k
FREQUENCY (Hz)
Figure 13. Current Noise Density vs. Frequency
TA = 25°C V
= ±15V
S
00322-012
1.06
±2 ±6 ±10 ±14 ±18
SUPPLY VOLTAGE (V)
00322-015
Figure 15. Total Supply Current vs. Supply Voltage
1.16 TWO AMPLIFIERS V
= ±15V
S
1.15
1.14
1.13
1.12
TOTAL S UPPLY CURRENT (mA)
00322-013
1.11
–75 –50 –25 0 25 50 75 100 125
TEMPERATURE ( °C)
00322-016
Figure 16. Total Supply Current vs. Temperature
140
120
NEGATIVE SUPPLY
NOISE VOLTAGE (400nV/DIV)
02 4 6810
TIME (SEC)
Figure 14. 0.1 Hz to 10 Hz Noise
00322-014
Rev. F | Page 9 of 16
100
80
60
40
POWER SUPPLY REJECTION (nA)
20
TA = 25°C
0
0.1 1 10 100 1k 10k 100k
POSITIVE SUPPLY
FREQUENCY (Hz)
Figure 17. Power Supply Rejection vs. Frequency
00322-017
Page 11
OP200 Data Sheet
0.7
0.1
0.2
0.3
0.4
0.5
0.6
–75 –50
00322-018
POWER SUPPLY REJECTION (µV/V)
TEMPERATURE (°C)
–25
0
25 50
75
100
125
6000
0
1000
2000
3000
4000
5000
–75 –50
00322-019
OPEN-LOOP GAIN (V/mV)
TEMPERATURE (°C)
–25 0 25 50 75
100
125
VS = ±15V R
L
= 2kΩ
140
–20
0
20
60
40
80
100
120
10 100 1k 10k 100k 1M
00322-020
OPEN-LOOP GAIN (dB)
FREQUENCY (Hz )
GAIN
PHASE
T
A
= 25°C
VS = ±15V
PHASE SHIFT (Degrees)
180
135
90
0
140
0
20
60
40
80
100
120
1 10 100 1k 10k 100k 1M
00322-021
CLOSED-LOOP GAIN (dB)
FREQUENCY (Hz )
AV = 1000
A
V
= 100
A
V
= 10
AV = 1
TA = 25°C V
S
= ±15V
30
0
5
10
15
20
25
10 100 1k 10k 100k
00322-022
OUTPUT SWING (V)
FREQUENCY (Hz )
T
A
= 25°C
V
S
= ±15V
V p-p AT 1% DISTORTION
1
0.001
0.01
0.1
100 1k 10k
00322-023
TOTAL HARMONIC DISTORTION (%)
FREQUENCY (Hz )
TA = 25°C VS = ±15V V
OUT
= 10V p-p
RL = 2kΩ
AV = 1
AV = 10
AV = 100
Figure 18. Power Supply Rejection vs. Temperature
Figure 19. Open-Loop Gain vs. Temperature
Figure 21. Closed-Loop Gain vs. Frequency
Figure 22. Maximum Output Swing vs. Frequency
Figure 20. Open-Loop Gain and Phase Shift vs. Frequency
Figure 23. Total Harmonic Distortion vs. Frequency
Rev. F | Page 10 of 16
Page 12
Data Sheet OP200
50
0
5
10
15
20
25
30
35
40
45
0 0.5
00322-024
OVERSHOOT (%)
CAPACITIVE LOAD (nF)
1.0 1.5 2.0 2.5 3.0
TA = 25°C VS = ±15V
FALLING
RISING
29
22
23
24
25
26
27
28
0 1
00322-025
SHORT-CI RCUI T CURRENT (mA)
TIME (Minutes)
2
3 4 5
T
A
= 25°C
V
S
= ±15V
SINKING
SOURCING
150
90
100
110
120
130
140
10 100 1k
10k 100k
00322-026
CHANNEL SEPARATION (dB)
FREQUENCY (Hz )
00322-027
T
A
= 25°C
V
S
= ±15V
AV = +1
100µ
s 5.00V
00322-028
T
A
= 25°C
V
S
= ±15V
A
V
= +1
s 20mV
00322-029
T
A
= 25°C VS = ±15V AV = +1
s 20mV
Figure 24. Overshoot vs. Capacitive Load
Figure 25. Short-Circuit Current vs. Time
Figure 27. Large Signal Transient Response
Figure 28. Small Signal Transient Response
Figure 26. Channel Separation vs. Frequency
Figure 29. Small Signal Transient Response, C
LOAD
= 1 nF
Rev. F | Page 11 of 16
Page 13
OP200 Data Sheet
Gain
Bandwidth
10
67 kHz
00322-030
20kΩ
1
7
8
4
2
3
6
5
1/2
OP200AZ
1/2
OP200AZ
V
OUT
V
IN
V
OUT
= 5 +
VIN + V
REF
40,000
R
G
+
5kΩ
5kΩ
R
G
–15V
+15V
V
REF
20kΩ
00322-031
R3
1kΩ
R2
2kΩ
1/2
OP200AZ
1/2
OP200AZ
V
OUT
0V < V
OUT
< 10V
R1
1kΩ
C1
30pF
D1 1N4148
D1
1N4148
7
1
8
4
6
5
2
3
V
IN
–15V
+15V
C2
0.1pF
C2
0.1pF
00322-032
R5
100Ω
1
2
3
7
8
4
6
5
1/2
OP200EZ
1/2
OP200EZ
I
OUT
V
IN
I
OUT
= = 10mA/V=
V
IN
RS
V
IN
100Ω
–15V
+15V
R1
10kΩ
+
R1
10kΩ
R3
10kΩ
R4
1kΩ

APPLICATIONS INFORMATION

The OP200 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load driving capability of the OP200.

DUAL LOW POWER INSTRUMENTATION AMPLIFIER

A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 30. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (gain = 1000). Offset voltage drift is typically 0.2 μV/°C over the military temperature range, which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low power instrumentation amplifier is a function of gain and is shown in Table 7.
Table 7. Gain Bandwidth

PRECISION ABSOLUTE VALUE AMPLIFIER

The circuit in Figure 31 is a precision absolute value amplifier with an input impedance of 10 MΩ. The high gain and low TCV of the OP200 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a common­mode signal to the op amps. The CMRR of the OP200 exceeds 120 dB, yielding an error of less than 2 ppm.
OS
5 150 kHz
100 7.5 kHz 1000 500 Hz
Figure 30. Dual Low Power Instrumentation Amplifier
The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from −10 V to +10 V if required.
Figure 31. Precision Absolute Value Amplifier

PRECISION CURRENT PUMP

The maximum output current of the precision current pump shown in Figure 32 is ±10 mA. Voltage compliance is ±10 V with ±15 V supplies. Output impedance of the current transmit­ter exceeds 3 MΩ with linearity better than 16 bits.
Figure 32. Precision Current Pump
Rev. F | Page 12 of 16
Page 14
Data Sheet OP200
V
V

DUAL 12-BIT VOLTAGE OUTPUT DAC

The dual output DAC shown in Figure 33 is capable of providing untrimmed 12-bit accurate operation over the entire military temperature range. Offset voltage, bias current, and gain errors of the OP200 contribute less than 1/10 of an LSB error at 12 bits over the military temperature range.
5
21
V
DD
DAC8221
R

DUAL PRECISION VOLTAGE REFERENCE

A dual OP200 and a REF43, a 2.5 V reference, can be used to build a ±2.5 V precision voltage reference. Maximum output current from each reference is ±10 mA with load regulation under 25 μV/mA. Line regulation is better than 15 μV/V and output voltage drift is under 20 μV/°C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 μV p-p. R1 and D1 ensure correct startup.
FB A
3
8
10V
REFERENCE
VOLTAGE
CONTROL
DAC DATA BUS
PIN 6 (MSB)
DAC
+5
V
IN
REF43
GND
V
REF A
4
TO PIN 17 ( LSB)
V
22
REF B
18
DAC A/DAC B
19
CS
20
WR
R1 22k
2
6
V
OUT
5
TRIM
4
DAC A
1/2
DAC8221
DAC B
1/2
DAC8221
DGND
5
I
OUT A
R
FB B
I
OUT B
AGND
2
23
24
1
Figure 33. Dual 12-Bit Voltage Output DAC
D1
1N914
+5V
8
2
OP200AZ
3
1/2
4
–5V
R3
10k
1
5k
6
OP200AZ
5
R4
R3
10k
1/2
2
3
6
5
OP200AZ
OP200AZ
7
1/2
1/2
+2.5V
1
4
7
OUT A
V–
OUT B
00322-033
–2.5V
0322-034
Figure 34. Dual Precision Voltage Reference
Rev. F | Page 13 of 16
Page 15
OP200 Data Sheet
V

PROGRAMMABLE HIGH RESOLUTION WINDOW COMPARATOR

The programmable window comparator shown in Figure 35 is easily capable of 12-bit accuracy over the full military temperature
V
IN
21
V
DD
range. A dual CMOS 12-bit DAC, the DAC8221, is used in the voltage switching mode to set the upper and lower thresholds (DAC A and DAC B, respectively).
15
8
10V
REFERENCE
VOLTAGE
CONTRO L
SIGNALS
I
OUT A
2
DAC DATA BUS
PIN 6 (MSB) TO PIN 17 (LSB)
I
24
OUT B
18
DAC
DAC A/DAC B
19
CS
20
WR
DGND
DAC A
1/2
DAC8221
DAC B
1/2
DAC8221
5
AGND
V
4
REF A
V
22
REF B
1
R1
10k
15V–
R2
10k
3
2
4
5
6
1/2
OP200AZ
1/2
OP200AZ
Figure 35. Programmable High Resolution Window Comparator
1
D1 1N4148
R2
10k
D1 1N4148
7
R4 10k
5V
Q1 2N2222
TTL OUT
00322-035
Rev. F | Page 14 of 16
Page 16
Data Sheet OP200
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
0.310 (7.87)
0.220 (5.59)
0.005 (0.13) MIN
0.055 (1.40) MAX
0.100 (2.54) BSC
15°
0.320 (8.13)
0.290 (7.37)
0.015 (0.38)
0.008 (0.20)
SEATING PLANE
0.200 (5.08) MAX
0.405 (10.29) MAX
0.150 (3.81) MIN
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.070 (1.78)
0.030 (0.76)
0.060 (1.52)
0.015 (0.38)
1
4
5
8
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES)ARE ROUNDED-O FF INCH EQUIVALENTS FOR REFERENCE ON LY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS M AY BE CONFIG URE D AS WHOLE OR HAL F LEADS.
070606-A
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
SEATING PLANE
0.015 (0.38) MIN
0.210 (5.33) MAX
0.150 (3.81)
0.130 (3.30)
0.115 (2.92)
0.070 (1.78)
0.060 (1.52)
0.045 (1.14)
8
1
4
5
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.100 (2.54) BSC
0.400 (10.16)
0.365 (9.27)
0.355 (9.02)
0.060 (1.52) MAX
0.430 (10.92) MAX
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.015 (0.38) GAUGE
PLANE
0.005 (0.13) MIN

OUTLINE DIMENSIONS

Figure 36. 8-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-8)
Z-Suffix
Dimensions shown in inches and (millimeters)
Figure 37. 8-Lead Plastic Dual In-Line Package [PDIP]
(N-8)
P-Suffix
Dimensions shown in inches and (millimeters)
Rev. F | Page 15 of 16
Page 17
OP200 Data Sheet
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLYAND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-013-AA
10.50 (0.4134)
10.10 (0.3976)
0.30 (0.0118)
0.10 (0.0039)
2.65 (0.1043)
2.35 (0.0925)
10.65 (0.4193)
10.00 (0.3937)
7.60 (0.2992)
7.40 (0.2913)
0.75 (0.0295)
0.25 (0.0098)
45°
1.27 (0.0500)
0.40 (0.0157)
COPLANARITY
0.10
0.33 (0.0130)
0.20 (0.0079)
0.51 (0.0201)
0.31 (0.0122)
SEATING PLANE
8° 0°
16
9
8
1
1.27 (0.0500) BSC
03-27-2007-B
©1978–2015 Analog Devices, Inc. All rights reserved. Trademarks and
Figure 38. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body
(RW-16)
S-Suffix
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model1 TA = 25°C VOS Max (µV) Temperature Range Package Description Package Option
OP200AZ 75 −55°C to +125°C 8-Lead CERDIP Z-Suffix (Q-8) OP200EZ 75 −40°C to +85°C 8-Lead CERDIP Z-Suffix (Q-8) OP200GPZ 200 −40°C to +85°C 8-Lead PDIP P-Suffix (N-8) OP200GSZ 200 −40°C to +85°C 16-Lead SOIC_W S-Suffix (RW-16) OP200GSZ-REEL 200 −40°C to +85°C 16-Lead SOIC_W S-Suffix (RW-16)
1
The OP200GPZ, OP200GSZ, and OP200GSZ-REEL are RoHS Compliant Parts.
registered trademarks are the property of their respective owners. D00322-0-10/15(F)
Rev. F | Page 16 of 16
Loading...