Information furnished by Analog Devices is believed to be accurate and reliable. However, no
Trademarks and registered trademarks are the property of their respective owners.
Technical Supportwww.analog.com
–IN
A
1
+IN
A
2
NC
3
V–
4
OUT A
16
NC
15
NC
14
V+
13
NC
5
NC
12
+IN B
6
NC
1
1
–IN B
7
OUT B
10
NC
8
NC
9
NC = NO CONNECT
00322-001
OUT A
1
–IN A
2
+IN A
3
V–
4
V+
8
OUT B
7
–IN B
6
+IN B
5
OP200
00322-002
A
B
Data Sheet
FEATURES
Low input offset voltage: 75 µV maximum
Low offset voltage drift, over −55°C < T
0.5 µV/°C maximum
Low supply current (per amplifier): 725 µA maximum
High open-loop gain: 5000 V/mV minimum
Low input bias current: 2 nA maximum
Low noise voltage density: 11 nV/√Hz at 1 kHz
Stable with large capacitive loads: 10 nF typical
< +125°C
A
Dual Low Offset, Low Power
PIN CONNECTIONS
Figure 1. 16-Lead SOIC (S-Suffix)
GENERAL DESCRIPTION
The OP200 is the first monolithic dual operational amplifier
to offer OP77 type precision performance. Available in the
industry standard 8-lead pinout, the OP200 combines precision
performance with the space and cost savings offered by a dual
amplifier.
The OP200 features an extremely low input offset voltage of
less than 75 µV with a drift below 0.5 µV/°C, guaranteed over
the full military temperature range. Open-loop gain of the OP200
exceeds 5,000,000 into a 10 kΩ load; input bias current is under
2 nA; CMRR is over 120 dB; and PSRR is below 1.8 µV/V. On-chip
Zener zap trimming is used to achieve the extremely low input
offset voltage of the OP200 and eliminates the need for offset
pulling.
Figure 2. 8-Lead PDIP (P-Suffix)
8-Lead CERDIP (Z-Suffix)
Power consumption of the OP200 is low, with each amplifier
drawing less than 725 µA of supply current. The total current
drawn by the dual OP200 is less than one-half that of a single
OP07, yet the OP200 offers significant improvements over this
industry-standard op amp. The voltage noise density of the OP200,
11 nV/√Hz at 1 kHz, is half that of most competitive devices.
The OP200 is an ideal choice for applications requiring multiple
precision op amps and where low power consumption is critical.
For a quad precision op amp, see the OP400.
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
• AN-649: Using the Analog Devices Active Filter Design
Tool
Data Sheet
• OP200: Dual Low Offset, Low Power Operational
Amplifier Data Sheet
• OP200: Military Data Sheet
Tools and Simulations
• OP200 SPICE Macro-Model
Reference Materials
Analog Dialogue
• Ask The Applications Engineer - 25 Op Amps Driving
Capacitive Loads
Last Content Update: 08/30/2016
Design Resources
• OP200 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints
Discussions
View all OP200 EngineerZone Discussions
Sample and Buy
Visit the product page to see pricing options
Technical Support
Submit a technical question or find your regional support
number
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be
frequently modified.
Page 3
OP200 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Edits to Features................................................................................. 1
Edits to General Description ........................................................... 1
Edits to Ordering Information ........................................................ 1
Edits to Pin Connections .................................................................. 1
Edits to Absolute Maximum Ratings .............................................. 2
Edits to Package Type ....................................................................... 2
Rev. F | Page 2 of 16
Page 4
Data Sheet OP200
00322-003
+IN
VOLTAGE
LIMITING
NETWORK
–IN
BIAS
OUT
V–
V+
Figure 3. Simplified Schematic (One of Two Amplifiers Shown)
Rev. F | Page 3 of 16
Page 5
OP200 Data Sheet
Input Noise Current Density
in
fO = 10 Hz
0.4
0.4
pA/√Hz
RL = 2 kΩ
2000
3700
1500
3200
M/mV
INPUT CHARACTERISTICS
Large Signal Voltage Gain
AVO
VO = 10 V
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = ±15 V, TA = 25°C, unless otherwise noted.
Table 1.
OP200A/OP200EOP200G
Parameter Symbol Conditions
INPUT CHARACTERISTICS
Input Offset Voltage VOS 25 75 80 200 μV
Long-Term Input Voltage Stability 0.1 0.1 μV/mo
Input Offset Current IOS VCM = 0 V 0.05 1.0 0.05 3.5 nA
Input Bias Current IB VCM = 0 V 0.1 2.0 0.1 5.0 nA
Input Noise Voltage en p-p 0.1 Hz to 10 Hz 0.5 0.5 μV p-p
Input Noise Voltage Density1 en fO = 10 Hz 22 36 22 nV/√Hz
fO = 1000 Hz 11 18 11 nV/√Hz
Input Noise Current in p-p 0.1 Hz to 10 Hz 15 15 pA p-p
Input Resistance Differential Mode RIN 10 10 MΩ
Input Resistance Common Mode R
Large Signal Voltage Gain AVO VO = ±10 V
125 125 GΩ
INCM
RL = 10 kΩ 5000 12,000 3000 7000 M/mV
Unit Min Typ Max Min Typ Max
1
Sample tested.
VS = ±15 V, −55°C ≤ TA ≤ +125°C for OP200A, unless otherwise noted.
Table 2.
OP200A
Parameter Symbol Conditions
Input Offset Voltage VOS 45 125 μV
Average Input Offset Voltage Drift TCVOS 0.2 0.5 μV/°C
Input Offset Current IOS VCM = 0 V 0.15 2.5 nA
Input Bias Current IB VCM = 0 V 0.9 5.0 nA
RL = 10 kΩ 3000 9000 V/mV
RL = 2 kΩ 1000 2700 V/mV
Input Voltage Range1 IVR ±12 ±12.5 V
Common-Mode Rejection Ratio CMRR VCM = ±12 V 115 130 dB
Capacitive Load Stability AV = 1 8 nF
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 3 V to 18 V 0.2 3.2 μV/V
Supply Current Per Amplifier ISY No load 600 775 μA
OUTPUT CHARACTERISTICS
Output Voltage Swing VO RL = 10 kΩ ±12 ±12.4 V
RL = 2 kΩ ±11 ±12 V
1
Guaranteed by CMRR test.
Unit Min Typ Max
Rev. F | Page 4 of 16
Page 6
Data Sheet OP200
Input Voltage Range1
IVR ±12
±13 ±12
±13 V
Input Offset Current
IOS
VCM = 0 V
0.08
2.5 0.1
6.0
nA
Input Voltage Range1
IVR ±12
±12.5
±12
±12.5
V
OUTPUT CHARACTERISTICS
VS = ±15 V, TA = 25°C, unless otherwise noted.
Table 3.
OP200A/OP200EOP200G
Parameter Symbol Conditions
INPUT CHARACTERISTICS
Common-Mode Rejection Ratio CMRR VCM = ±12 V 120 135 110 130 dB
Channel Separation2 CS VO = 20 V p-p, fO = 10 Hz 123 145 123 145 dB
Input Capacitance CIN 3.2 3.2 pF
Capacitive Load Stability AV = 1, no oscillations 10 10 nF
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±3 V to ±18 V 0.4 1.8 0.6 5.6 μV/V
Supply Current Per Amplifier ISY No load 570 725 570 725 μA
OUTPUT CHARACTERISTICS
Output Voltage Swing VO RL= 10 kΩ ±12 ±12.6 ±12 ±12.6 V
RL = 2 kΩ ±11 ±12.2 ±11 ±12.2 V
DYNAMIC PERFORMANCE
Average Input Offset Voltage Drift TCVOS 0.2 0.5 0.6 2.0 μV/°C
Input Bias Current IB VCM = 0 V 0 3 5.0 0.5 10.0 nA
Large-Signal Voltage Gain AVO VO = ±10 V
RL= 10 kΩ 3000 10,000 2000 5000 V/mV
RL = 2 kΩ 1500 3200 1000 2500 V/mV
Common-Mode Rejection Ratio CMRR VCM = ±12 V 115 130 105 130 dB
Capacitive Load Stability AV = 1, no oscillations 10 10 nF
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±3 V to ±18 V 0.15 3.2 0.3 10.0 μV/V
Supply Current Per Amplifier ISY No load 600 775 600 775 μA
Output Voltage Swing VO RL = 10 kΩ ±12 ±12.4 ±12 ±12.4 V
RL = 2 kΩ ±11 ±12 ±11 ±12.2 V
1
Guaranteed by CMRR test.
Unit Min Typ Max Min Typ Max
Rev. F | Page 5 of 16
Page 7
OP200 Data Sheet
1/2
OP200
50Ω
50Ω
1/2
OP200
CHANNEL SEPARATIO N = 20 log
V
1
V2/1000
V1 20V p-p @ 10Hz
V
2
00322-004
Figure 4. Channel Separation Test Circuit
100Ω10kΩ
1/2
OP200
1/2
OP200
e
(nV/√Hz) = √2 × e
OUT
(nV/√Hz) × 101
OUT
Figure 5. Noise Test Schematic
e
OUT
TO SPECTRUM
ANALYZER
00322-005
Rev. F | Page 6 of 16
Page 8
Data Sheet OP200
Operating Temperature Range
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter Rating
Supply Voltage ±20 V
Differential Input Voltage ±30 V
Input Voltage Supply voltage
Output Short-Circuit Duration Continuous
Storage Temperature Range −65°C to +150°C
Lead Temperature (Soldering, 60 sec) 300°C
Junction Temperature Range (TJ) −65°C to +150°C
θJA is specified for worst-case mounting conditions, that is, θJA is specified for
device in socket for CERDIP and PDIP packages; θ
soldered to printed circuit board for SOIC package.
1
θJC Unit
JA
is specified for device
JA
OP200A−55°C to +125°C
OP200E, OP200G−40°C to +85°C
Stresses at or above those listed under Absolute Maximum Ratings
may cause permanent damage to the product. This is a stress
rating only; functional operation of the product at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
ESD CAUTION
Rev. F | Page 7 of 16
Page 9
OP200 Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
300
TA = 25°C
V
= ±15V
S
2
1
CHANGE IN OFF SET VOL TAGE (µ V)
INPUT OFF SET CURRENT ( pA)
VS = ±15V
250
200
150
100
50
0
01.02.03.04.05.0
TIME (Minutes)
Figure 6. Warm-Up Drift
60
VS = ±15V
50
40
30
20
INPUT OFFSET VOLTAGE ( µV)
10
0
–75–50–250255075100125
TEMPERATURE ( °C)
Figure 7. Input Offset Voltage vs. Temperature
3
VS = ±15V
2
1
0
–1
INPUT BIAS CURRENT (nA)
–2
00322-006
0
–75–50–250255075100125
TEMPERATURE (° C)
00322-009
Figure 9. Input Offset Current vs. Temperature
1.0
TA = 25°C
V
= ±15V
S
0.8
0.6
0.4
INPUT BIAS CURRENT (nA)
0.2
00322-007
0
–15–10–5 .005.01015
COMON-MODE VOLTAG E (V)
00322-010
Figure 10. Input Bias Current vs. Common-Mode Voltage
140
120
100
80
60
40
COMMON-MO DE REJECTIO N (dB)
20
TA = 25°C
= ±15V
V
S
–3
–75–50–250255075100125
TEMPERATURE (°C)
Figure 8. Input Bias Current vs. Temperature
00322-008
Rev. F | Page 8 of 16
0
1101001k10k100k
FREQUENCY (Hz)
Figure 11. Common-Mode Rejection vs. Frequency
00322-011
Page 10
Data Sheet OP200
100
VOLTAGE NOISE DENSITY (nV/√Hz)
TA = 25°C
V
= ±15V
S
1.18
TWO AMPLIFIERS
T
= 25°C
A
1.16
1.14
1.12
1.10
TOTAL S UPPLY CURRENT (mA)
1.08
10
1101001k
FREQUENCY (Hz)
Figure 12. Voltage Noise Density vs. Frequency
1000
CURRENT NOISE DE NSITY (fA/ √Hz)
100
1101001k
FREQUENCY (Hz)
Figure 13. Current Noise Density vs. Frequency
TA = 25°C
V
= ±15V
S
00322-012
1.06
±2±6±10±14±18
SUPPLY VOLTAGE (V)
00322-015
Figure 15. Total Supply Current vs. Supply Voltage
1.16
TWO AMPLIFIERS
V
= ±15V
S
1.15
1.14
1.13
1.12
TOTAL S UPPLY CURRENT (mA)
00322-013
1.11
–75–50–250255075100125
TEMPERATURE ( °C)
00322-016
Figure 16. Total Supply Current vs. Temperature
140
120
NEGATIVE SUPPLY
NOISE VOLTAGE (400nV/DIV)
02 4 6810
TIME (SEC)
Figure 14. 0.1 Hz to 10 Hz Noise
00322-014
Rev. F | Page 9 of 16
100
80
60
40
POWER SUPPLY REJECTION (nA)
20
TA = 25°C
0
0.11101001k10k100k
POSITIVE SUPPLY
FREQUENCY (Hz)
Figure 17. Power Supply Rejection vs. Frequency
00322-017
Page 11
OP200 Data Sheet
0.7
0.1
0.2
0.3
0.4
0.5
0.6
–75–50
00322-018
POWER SUPPLY REJECTION (µV/V)
TEMPERATURE (°C)
–25
0
2550
75
100
125
6000
0
1000
2000
3000
4000
5000
–75–50
00322-019
OPEN-LOOP GAIN (V/mV)
TEMPERATURE (°C)
–250255075
100
125
VS = ±15V
R
L
= 2kΩ
140
–20
0
20
60
40
80
100
120
101001k10k100k1M
00322-020
OPEN-LOOP GAIN (dB)
FREQUENCY (Hz )
GAIN
PHASE
T
A
= 25°C
VS = ±15V
PHASE SHIFT (Degrees)
180
135
90
0
140
0
20
60
40
80
100
120
1101001k10k100k1M
00322-021
CLOSED-LOOP GAIN (dB)
FREQUENCY (Hz )
AV = 1000
A
V
= 100
A
V
= 10
AV = 1
TA = 25°C
V
S
= ±15V
30
0
5
10
15
20
25
101001k10k100k
00322-022
OUTPUT SWING (V)
FREQUENCY (Hz )
T
A
= 25°C
V
S
= ±15V
V p-p AT 1%
DISTORTION
1
0.001
0.01
0.1
1001k10k
00322-023
TOTAL HARMONIC DISTORTION (%)
FREQUENCY (Hz )
TA = 25°C
VS = ±15V
V
OUT
= 10V p-p
RL = 2kΩ
AV = 1
AV = 10
AV = 100
Figure 18. Power Supply Rejection vs. Temperature
Figure 19. Open-Loop Gain vs. Temperature
Figure 21. Closed-Loop Gain vs. Frequency
Figure 22. Maximum Output Swing vs. Frequency
Figure 20. Open-Loop Gain and Phase Shift vs. Frequency
Figure 23. Total Harmonic Distortion vs. Frequency
Rev. F | Page 10 of 16
Page 12
Data Sheet OP200
50
0
5
10
15
20
25
30
35
40
45
00.5
00322-024
OVERSHOOT (%)
CAPACITIVE LOAD (nF)
1.01.52.02.53.0
TA = 25°C
VS = ±15V
FALLING
RISING
29
22
23
24
25
26
27
28
01
00322-025
SHORT-CI RCUI T CURRENT (mA)
TIME (Minutes)
2
345
T
A
= 25°C
V
S
= ±15V
SINKING
SOURCING
150
90
100
110
120
130
140
101001k
10k100k
00322-026
CHANNEL SEPARATION (dB)
FREQUENCY (Hz )
00322-027
T
A
= 25°C
V
S
= ±15V
AV = +1
100µ
s 5.00V
00322-028
T
A
= 25°C
V
S
= ±15V
A
V
= +1
5µs 20mV
00322-029
T
A
= 25°C
VS = ±15V
AV = +1
5µs 20mV
Figure 24. Overshoot vs. Capacitive Load
Figure 25. Short-Circuit Current vs. Time
Figure 27. Large Signal Transient Response
Figure 28. Small Signal Transient Response
Figure 26. Channel Separation vs. Frequency
Figure 29. Small Signal Transient Response, C
LOAD
= 1 nF
Rev. F | Page 11 of 16
Page 13
OP200 Data Sheet
Gain
Bandwidth
10
67 kHz
00322-030
20kΩ
1
7
8
4
2
3
6
5
1/2
OP200AZ
1/2
OP200AZ
V
OUT
V
IN
V
OUT
= 5 +
VIN + V
REF
40,000
R
G
–
+
5kΩ
5kΩ
R
G
–15V
+15V
V
REF
20kΩ
00322-031
R3
1kΩ
R2
2kΩ
1/2
OP200AZ
1/2
OP200AZ
V
OUT
0V < V
OUT
< 10V
R1
1kΩ
C1
30pF
D1
1N4148
D1
1N4148
7
1
8
4
6
5
2
3
V
IN
–15V
+15V
C2
0.1pF
C2
0.1pF
00322-032
R5
100Ω
1
2
3
7
8
4
6
5
1/2
OP200EZ
1/2
OP200EZ
I
OUT
V
IN
I
OUT
== 10mA/V=
V
IN
RS
V
IN
100Ω
–15V
+15V
–
R1
10kΩ
+
R1
10kΩ
R3
10kΩ
R4
1kΩ
APPLICATIONS INFORMATION
The OP200 is inherently stable at all gains and is capable of
driving large capacitive loads without oscillating. Nonetheless,
good supply decoupling is highly recommended. Proper supply
decoupling reduces problems caused by supply line noise and
improves the capacitive load driving capability of the OP200.
DUAL LOW POWER INSTRUMENTATION
AMPLIFIER
A dual instrumentation amplifier that consumes less than 33 mW
of power per channel is shown in Figure 30. The linearity of the
instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is
better than 14 bits in gains from 200 to 1000. CMRR is above
115 dB (gain = 1000). Offset voltage drift is typically 0.2 μV/°C
over the military temperature range, which is comparable to the
best monolithic instrumentation amplifiers. The bandwidth of
the low power instrumentation amplifier is a function of gain
and is shown in Table 7.
Table 7. Gain Bandwidth
PRECISION ABSOLUTE VALUE AMPLIFIER
The circuit in Figure 31 is a precision absolute value amplifier
with an input impedance of 10 MΩ. The high gain and low TCV
of the OP200 ensure accurate operation with microvolt input
signals. In this circuit, the input always appears as a commonmode signal to the op amps. The CMRR of the OP200 exceeds
120 dB, yielding an error of less than 2 ppm.
OS
5 150 kHz
100 7.5 kHz
1000 500 Hz
Figure 30. Dual Low Power Instrumentation Amplifier
The output signal is specified with respect to the reference
input, which is normally connected to analog ground. The
reference input can be used to offset the output from −10 V
to +10 V if required.
Figure 31. Precision Absolute Value Amplifier
PRECISION CURRENT PUMP
The maximum output current of the precision current pump
shown in Figure 32 is ±10 mA. Voltage compliance is ±10 V
with ±15 V supplies. Output impedance of the current transmitter exceeds 3 MΩ with linearity better than 16 bits.
Figure 32. Precision Current Pump
Rev. F | Page 12 of 16
Page 14
Data Sheet OP200
V
V
DUAL 12-BIT VOLTAGE OUTPUT DAC
The dual output DAC shown in Figure 33 is capable of providing
untrimmed 12-bit accurate operation over the entire military
temperature range. Offset voltage, bias current, and gain errors
of the OP200 contribute less than 1/10 of an LSB error at 12 bits
over the military temperature range.
5
21
V
DD
DAC8221
R
DUAL PRECISION VOLTAGE REFERENCE
A dual OP200 and a REF43, a 2.5 V reference, can be used to
build a ±2.5 V precision voltage reference. Maximum output
current from each reference is ±10 mA with load regulation
under 25 μV/mA. Line regulation is better than 15 μV/V and
output voltage drift is under 20 μV/°C. Output voltage noise
from 0.1 Hz to 10 Hz is typically 75 μV p-p. R1 and D1 ensure
correct startup.
FB A
3
8
10V
REFERENCE
VOLTAGE
CONTROL
DAC DATA BUS
PIN 6 (MSB)
DAC
+5
V
IN
REF43
GND
V
REF A
4
TO PIN 17 ( LSB)
V
22
REF B
18
DAC A/DAC B
19
CS
20
WR
R1
22kΩ
2
6
V
OUT
5
TRIM
4
DAC A
1/2
DAC8221
DAC B
1/2
DAC8221
DGND
5
I
OUT A
R
FB B
I
OUT B
AGND
2
23
24
1
Figure 33. Dual 12-Bit Voltage Output DAC
D1
1N914
+5V
8
2
OP200AZ
3
1/2
4
–5V
R3
10kΩ
1
5kΩ
6
OP200AZ
5
R4
R3
10kΩ
1/2
2
3
6
5
OP200AZ
OP200AZ
7
1/2
1/2
+2.5V
1
4
7
OUT A
V–
OUT B
00322-033
–2.5V
0322-034
Figure 34. Dual Precision Voltage Reference
Rev. F | Page 13 of 16
Page 15
OP200 Data Sheet
V
PROGRAMMABLE HIGH RESOLUTION WINDOW
COMPARATOR
The programmable window comparator shown in Figure 35 is
easily capable of 12-bit accuracy over the full military temperature
V
IN
21
V
DD
range. A dual CMOS 12-bit DAC, the DAC8221, is used in the
voltage switching mode to set the upper and lower thresholds
(DAC A and DAC B, respectively).
15
8
10V
REFERENCE
VOLTAGE
CONTRO L
SIGNALS
I
OUT A
2
DAC DATA BUS
PIN 6 (MSB) TO PIN 17 (LSB)
I
24
OUT B
18
DAC
DAC A/DAC B
19
CS
20
WR
DGND
DAC A
1/2
DAC8221
DAC B
1/2
DAC8221
5
AGND
V
4
REF A
V
22
REF B
1
R1
10kΩ
15V–
R2
10kΩ
3
2
4
5
6
1/2
OP200AZ
1/2
OP200AZ
Figure 35. Programmable High Resolution Window Comparator
1
D1
1N4148
R2
10kΩ
D1
1N4148
7
R4
10kΩ
5V
Q1
2N2222
TTL OUT
00322-035
Rev. F | Page 14 of 16
Page 16
Data Sheet OP200
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
0.310 (7.87)
0.220 (5.59)
0.005 (0.13)
MIN
0.055 (1.40)
MAX
0.100 (2.54) BSC
15°
0°
0.320 (8.13)
0.290 (7.37)
0.015 (0.38)
0.008 (0.20)
SEATING
PLANE
0.200 (5.08)
MAX
0.405 (10.29) MAX
0.150 (3.81)
MIN
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.070 (1.78)
0.030 (0.76)
0.060 (1.52)
0.015 (0.38)
1
4
5
8
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES)ARE ROUNDED-O FF INCH EQUIVALENTS FOR
REFERENCE ON LY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS M AY BE CONFIG URE D AS WHOLE OR HAL F LEADS.
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLYAND ARE NOT APPROPRIATE FOR USE IN DESIGN.