Dual-Axis, High-g,
05365-001
ADXL278
V
DD
V
S
V
DD2
V
DD3
DIFFERENTIAL
SENSOR
EXC
DEMOD
AMP
Y
OUT
400Hz
BESSEL
FILTER
TIMING
GENERATOR
DIFFERENTIAL
SENSOR
EXC
DEMOD
AMP
X
OUT
400Hz
BESSEL
FILTER
SELF-TEST
FEATURES
Complete dual-axis acceleration measurement system on a
single monolithic IC
Available in ±35 g/±35 g, ±50 g/±50 g, or ±70 g/±35 g output
full-scale ranges
Full differential sensor and circuitry for high resistance to
EMI/RFI
Environmentally robust packaging
Complete mechanical and electrical self-test on digital
command
Output ratiometric to supply
Sensitive axes in the plane of the chip
High linearity (0.2% of full scale)
Frequency response down to dc
Low noise
Low power consumption
Tight sensitivity tolerance and 0 g offset capability
Largest available prefilter clipping headroom
400 Hz, 2-pole Bessel filter
Single-supply operation
Compatible with Sn/Pb and Pb-free solder processes
Qualified for automotive applications
MEMS® Accelerometers
GENERAL DESCRIPTION
The ADXL278 is a low power, complete, dual-axis
accelerometer with signal conditioned voltage outputs that are
on a single monolithic IC. This product measures acceleration
with a full-scale range of (X-axis/Y-axis) ±35 g/±35 g, ±50 g/
±50 g, or ±70 g/±35 g (minimum). The ADXL278 can also
measure both dynamic acceleration (vibration) and static
acceleration (gravity).
The ADXL278 is the fourth-generation surface micromachined
iMEMS® accelerometer from ADI with enhanced performance
and lower cost. Designed for use in front and side impact airbag
applications, this product also provides a complete costeffective solution useful for a wide variety of other applications.
The ADXL278 is temperature stable and accurate over the
automotive temperature range, with a self-test feature that fully
exercises all the mechanical and electrical elements of the sensor
with a digital signal applied to a single pin.
The ADXL278 is available in a 5 mm × 5 mm × 2 mm,
8-terminal ceramic LCC package.
APPLICATIONS
Vibration monitoring and control
Vehicle collision sensing
Shock detection
FUNCTIONAL BLOCK DIAGRAM
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.
www.analog.com