Analog Devices ADUC834BS Datasheet

PRELIMINAR Y TECHNICAL D A T A
MicroConverter®, Dual 16-/24- Bit ADCs
a
with Embedded 62KB FLASH MCU
Preliminary Technical Data ADuC834
FEATURES High Resolution Sigma-Delta ADCs
Two Independent ADCs (16- and 24-Bit Resolution) 24-Bit No Missing Codes, Primary ADC 13-Bit p-p Resolution @ 20 Hz, 20 mV Range 18-Bit p-p Resolution @ 20 Hz, 2.56 V Range
Memory
AIN1 AIN2
62Kbytes On-Chip Flash/EE Program Memory 4 KBytes On-Chip Flash/EE Data Memory Flash/EE, 100 Yr Retention, 100 Kcycles Endurance In Circuit Serial Download
AIN3 AIN4 AIN5
High Speed User Bootload (5s Download) 2304 Bytes On-Chip Data RAM
8051 Based Core
8051-Compatible Instruction Set (12.58 MHz Max) 32 kHz External Crystal, On-Chip Programmable PLL 11 Interrupt Sources, Two Priority Levels Dual Data Pointer Extended 11-bit Stack Pointer
On-Chip Peripherals
12-Bit Voltage Output DAC Dual 16-Bit
Σ∆Σ∆
Σ∆ DACs/PWMs
Σ∆Σ∆
On-Chip Temperature Sensor Dual Excitation Current Sources Time Interval Counter (Real Time Clock/WakeUp Cct) UART and SPI
®
Serial I/O Timer 3 for high speed UART baud rates (incl 115,200) Watchdog Timer (WDT), Power Supply Monitor (PSM)
Power
Specified for 3 V and 5 V Operation Normal: 3 mA @ 3 V (Core CLK = 1.5 MHz) Power-Down: 20µA max with wake-up cct running
GENERAL DESCRIPTION
The ADuC834 is a complete smart transducer front-end, inte­grating two high-resolution sigma delta ADCs, an 8-bit MCU, and program/data Flash/EE Memory on a single chip.
The two independent ADCs (Primary and Auxiliary) include a temperature sensor and a PGA (allowing direct measurement of low-level signals). The ADCs with on-chip digital filtering and programmable output data rates are intended for the measure­ment of wide dynamic range, low frequency signals, such as those in weigh scale, strain-gauge, pressure transducer, or temperature measurement applications.
The device operates from a 32 kHz crystal with an on-chip PLL generating a high-frequency clock of 12.58 MHz. This clock is, routed through a programmable clock divider from which the MCU core clock operating frequency is generated. The micro­controller core is an 8052 and therefore 8051 instruction set compatible with 12 core clock periods per machine cycle.

FUNCTIONAL BLOCK DIAGRAM

AVDD
12-BIT
DAC
16-BIT
Σ∆
DAC
16-BIT
Σ∆
DAC
16-BIT
PWM
16-BIT
PWM
PERIPHERALS
2304 BYTES USER R A M
POWER SUPPLY MON
WATCHDOG TIMER
UART AND SP I
SERIAL I/O
CURRE NT
SOURCE
BUF
MUX
IEX C 1 IEX C 2
DAC
PWM0
PWM1
AVDD
MUX
MUX
TEMP
SENSOR
INTERNAL BANDGAP
VREF
EXTERNAL
VREF
DETEC T
REFIN+REFIN›
ADuC834
BUF
AGND
PROG. CLOCK
DIVIDER
OSC
PLL
PGA
AUXILIARY
16-BIT Σ∆ ADC
&
XTAL2XTAL1
PRIMARY
Σ∆
ADC
24-BIT
8051-BASED MCU WITH ADDITIONAL
62 KBYTES FLASH/EE PROGRAM MEMORY
4 KBYTES FLASH/EE DATA MEMORY
3 × 16 BIT TIMERS
×
REAL TIME CLOCK
1
4 × PARALLE L
PORTS
62 Kbytes of nonvolatile Flash/EE program memory are provided on-chip. 4 Kbytes of nonvolatile Flash/EE data memory, 256 bytes RAM and 2 KBytes of extended RAM are also integrated on-chip. The program memory can be configured as data memory in datalogging applications.
The ADuC834 also incorporates additional analog functionality with a 12-bit DAC, dual current sources, power supply monitor, and a bandgap reference. On-chip digital peripherals include two 16-bit Σ∆ DACs/PWM, watchdog timer, real time clock (time interval counter), four timers/counters, and two serial I/O ports (UART and SPI).
On-chip factory firmware supports in-circuit serial download (via UART), as well as single-pin emulation mode via the EA pin. A functional block diagram of the ADuC834 is shown above with a more detailed block diagram shown in figure 11 (page 18).
The part operates from a 3V or a 5V supply. When operating from 3V the power dissipation for the part is below 10mW. The ADuC834 is housed in a 52-lead MQFP package.
APPLICATIONS Intelligent Sensors (IEEE1451.2-Compatible) Weigh Scales Portable Instrumentation Pressure Transducers 4–20 mA Transmitters
REV. PrC (12 March 2002)
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
MicroConverter is a registered trademark of Analog Devices, Inc. SPI is a registered trademark of Motorola Inc.
ADuC834
PRELIMINAR Y TECHNICAL D A T A
TABLE OF CONTENTS
OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 8
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . 17
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . 18
MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . 21
SPECIAL FUNCTION REGISTERS (SFRS) . . . . . . . . . . 22
Accumulator (ACC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
B SFR (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Data Pointer (DPTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program Status Word (PSW) . . . . . . . . . . . . . . . . . . . . . 23
Power Control (PCON) . . . . . . . . . . . . . . . . . . . . . . . . . 23
ADuC834 Configuration SFR (CFG834) . . . . . . . . . . . . 23
Complete SFR Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PRIMARY AND AUXILIARY ADCs . . . . . . . . . . . . . . . . 25
ADCSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ADCMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
ADC0CON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
ADC1CON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
ADC0H/M/L / ADC1H/L . . . . . . . . . . . . . . . . . . . . . . . . 28
OF0H/M/L / OF1H/L . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
GN0H/M/L / GN1H/L . . . . . . . . . . . . . . . . . . . . . . . . . . 28
SF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
ICON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
PRIMARY AND AUX ADC NOISE PERFORMANCE . . 30 PRIMARY AND AUXILIARY ADC DESCRIPTION . . . 31
Primary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Auxiliary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Analog Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Primary and Auxiliary ADC Inputs . . . . . . . . . . . . . . . . . 33
Analog Input Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Programmable Gain Amplifier . . . . . . . . . . . . . . . . . . . . . 33
Bipolar/Unipolar Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Burnout Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Excitation Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Reference Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Sigma-Delta Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ADC Chopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
NONVOLATILE FLASH/EE MEMORY . . . . . . . . . . . . . 37
Flash/EE Memory Overview . . . . . . . . . . . . . . . . . . . . . . 37
Flash/EE Memory and the ADuC834 . . . . . . . . . . . . . . . 37
ADuC834 Flash/EE Memory Reliability . . . . . . . . . . . . . 37
USING THE FLASH/EE PROGRAM MEMORY . . . . . . 38
Serial/Parallel Downloading . . . . . . . . . . . . . . . . . . . . . . . 38
User Download Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Flash/EE Program Memory Security . . . . . . . . . . . . . . . . 38
USING THE FLASH/EE DATA MEMORY . . . . . . . . . . . 39
ECON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Programming the Flash/EE Data Memory . . . . . . . . . . . 40
FLASH/EE MEMORY TIMING . . . . . . . . . . . . . . . . . . . . 40
DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DACCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Using the DAC Converter . . . . . . . . . . . . . . . . . . . . . . . . 41
PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
PWMCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ON-CHIP PLL (PLLCON) . . . . . . . . . . . . . . . . . . . . . . . . 46
TIME INTERVAL COUNTER (TIMECON) . . . . . . . . . . 47
WATCHDOG TIMER (WDCON) . . . . . . . . . . . . . . . . . . 49
POWER SUPPLY MONITOR (PSMCON) . . . . . . . . . . . 50
SERIAL PERIPHERAL INTERFACE . . . . . . . . . . . . . . . . 51
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
SPICON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Using the SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 52
DUAL DATA POINTER (DPCON) . . . . . . . . . . . . . . . . . 53
8051-COMPATIBLE PERIPHERALS . . . . . . . . . . . . . . . . 54
Parallel I/O Ports 0–3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Additional High Current Digital Output Pins . . . . . . . . . 54
TIMERS/COUNTERS . . . . . . . . . . . . . . . . . . . . . . . . . . 55
TMOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
TCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Timer/Counter 0/1 Modes of Operation . . . . . . . . . . . 57
Timer 2 Operating Modes . . . . . . . . . . . . . . . . . . . . . . 58
T2CON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
UART Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
SCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
UART Operating Modes . . . . . . . . . . . . . . . . . . . . . . . 61
Baud Rate Generation using Timer 1 and Timer 2 . . . 62
Baud Rate Generation using Timer 3 . . . . . . . . . . . . . 63
INTERRUPT SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
HARDWARE DESIGN CONSIDERATIONS . . . . . . . . . . 66
External Memory Interface . . . . . . . . . . . . . . . . . . . . . . . 66
Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Power-On Reset Operation . . . . . . . . . . . . . . . . . . . . . . . 67
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Power-Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Grounding and Board Layout Recommendations . . . . . . 68
System Self-Identification . . . . . . . . . . . . . . . . . . . . . . . . 68
Clock Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
OTHER HARDWARE CONSIDERATIONS . . . . . . . . . . 69
In-Circuit Serial Download Access . . . . . . . . . . . . . . . . . 69
Embedded Serial Port Debugger . . . . . . . . . . . . . . . . . . . 69
Single-Pin Emulation Mode . . . . . . . . . . . . . . . . . . . . . . 69
Enhanced-Hooks Emulation Mode . . . . . . . . . . . . . . . . . 69
Typical System Configuration . . . . . . . . . . . . . . . . . . . . . 69
QUICKSTART DEVELOPMENT SYSTEM . . . . . . . . . . 71
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . 72
–2–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
(AVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V, DVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V,
1

SPECIFICATIONS

Parameter ADuC834BS Test Conditions/Comments Unit
ADC SPECIFICATIONS
Conversion Rate 5.4 On Both Channels Hz min Primary ADC
No Missing Codes Resolution 13 Range = ±20 mV, 20 Hz Update Rate Bits p-p typ
Output Noise See Table X and XI Output Noise Varies with Selected
Integral Nonlinearity ±15 1 LSB Offset Error Offset Error Drift ±10 nV/°C typ Full-Scale Error Gain Error Drift ADC Range Matching ±2 AIN = 18 mV µV typ Power Supply Rejection (PSR) 113 AIN = 7.8 mV, Range = ±20 mV dBs typ
Common-Mode DC Rejection
On AIN 95 At DC, AIN = 7.8 mV, Range = ±20 mV dBs min On AIN 113 At DC, AIN = 1 V, Range = ±2.56 V dBs typ On REFIN 125 At DC, AIN = 1 V, Range = ±2.56 V dBs typ
Common-Mode 50 Hz/60 Hz Rejection
On AIN 95 50 Hz/60 Hz ±1 Hz, AIN = 7.8 mV, dBs min
On REFIN 90 50 Hz/60 Hz ±1 Hz, AIN = 1 V, dBs min
Normal Mode 50 Hz/60 Hz Rejection
On AIN 60 50 Hz/60 Hz ±1 Hz, 20 Hz Update Rate dBs min On REFIN 60 50 Hz/60 Hz ±1 Hz, 20 Hz Update Rate dBs min
Auxiliary ADC
No Missing Codes Resolution 16 Range = ±2.5 V, 20 Hz Update Rate Bits p-p typ Output Noise See Table XII in Output Noise Varies with Selected
Integral Nonlinearity ±1 5 ppm of FSR max Offset Error Offset Error Drift 1 µV/°C typ Full-Scale Error Gain Error Drift
Power Supply Rejection (PSR) 80 AIN = 1 V, 20 Hz Update Rate dBs min
Normal Mode 50 Hz/60 Hz Rejection
On AIN 60 50 Hz/60 Hz ±1 Hz dBs min On REFIN 60 50 Hz/60 Hz ±1 Hz, 20 Hz Update Rate dBs min
DAC PERFORMANCE
DC Specifications
Resolution 12 Bits Relative Accuracy ±3 LSB typ Differential Nonlinearity –1 Guaranteed 12-Bit Monotonic LSB max Offset Error ±50 mV max Gain Error
8
AC Specifications
Voltage Output Settling Time 15 Settling Time to 1 LSB of Final Value µs typ Digital-to-Analog Glitch Energy 10 1 LSB Change at Major Carry nVs typ
2
3
4
5
2
3
6
5
7
2, 7
REFIN(+) = 2.5 V, REFIN(–) = AGND; AGND = DGND = 0 V; XTAL1/XTAL2 = 32.768 kHz Crystal; all specifications T
MIN
to T
unless otherwise noted.)
MAX
105 Programmable in 0.732 ms Increments Hz max 24 20 Hz Update Rate Bits min 18 Range = ±2.56 V, 20 Hz Update Rate Bits p-p typ in ADuC834 ADC Update Rate and Gain Range
Description (pg 30) ±3 µV typ
16
±10 µV typ ±0.5 ppm/°C typ
80 AIN = 1 V, Range = ±2.56 V dBs min
2
20 Hz Update Rate Range = ±20 mV
90 50 Hz/60 Hz ±1 Hz, AIN = 1 V , dBs min
Range = ±2.56 V
2
Range = ±2.56 V
16 Bits min
ADuC834 ADC Update Rate Description (pg 30)
–2 LSB typ –2.5 LSB typ
±0.5 ppm/°C typ
2
±1 AVDD Range % max ±1 V
Range % typ
REF
ADuC834
ppm of FSR max
REV. PrC (12 March 2002)
–3–
PRELIMINAR Y TECHNICAL D A TA
ADuC834–SPECIFICATIONS
1
Parameter ADuC834BS Test Conditions/Comments Unit
INTERNAL REFERENCE
ADC Reference
Reference Voltage 1.25 ± 1% Initial Tolerance @ 25°C, V Power Supply Rejection 45 dBs typ Reference Tempco 100 ppm/°C typ
DAC Reference
Reference Voltage 2.5 ± 1% Initial Tolerance @ 25°C, V Power Supply Rejection 50 dBs typ Reference Tempco ±100 ppm/°C typ
ANALOG INPUTS/REFERENCE INPUTS
Primary ADC
Differential Input Voltage Ranges
9, 10
External Reference Voltage = 2.5 V RN2, RN1, RN0 of ADC0CON Set to
Bipolar Mode (ADC0CON3 = 0) ±20 0 0 0 (Unipolar Mode 0 to 20 mV) m V
±40 0 0 1 (Unipolar Mode 0 to 40 mV) m V ±80 0 1 0 (Unipolar Mode 0 to 80 mV) m V ±160 0 1 1 (Unipolar Mode 0 to 160 mV) m V ±320 1 0 0 (Unipolar Mode 0 to 320 mV) m V ±640 1 0 1 (Unipolar Mode 0 to 640 mV) m V ±1.28 1 1 0 (Unipolar Mode 0 to 1.28 V) V ±2.56 1 1 1 (Unipolar Mode 0 to 2.56 V) V ±1 nA max
Analog Input Current
2
Analog Input Current Drift ±5 pA/°C typ Absolute AIN Voltage Limits AGND + 100 mV V min
– 100 mV V max
AV
Auxiliary ADC
Input Voltage Range
9, 10
DD
0 to V
REF
Unipolar Mode, for Bipolar Mode V
See Note 11 Average Analog Input Current 125 Input Current Will Vary with Input nA/V typ Average Analog Input Current Drift Absolute AIN Voltage Limits
External Reference Inputs
REFIN(+) to REFIN(–) Range
2
11
2
±2 Voltage on the Unbuffered Auxiliary ADC pA/V/°C typ AGND – 30 mV V min AV
+ 30 mV V max
DD
1V min AV
DD
Average Reference Input Current 1 Both ADCs Enabled µA/V typ Average Reference Input Current Drift ±0.1 nA/V/°C typ ‘NO Ext. REF’ Trigger Voltage 0. 3 NOXREF Bit Active if V
0.65 NOXREF Bit Inactive if V
ADC SYSTEM CALIBRATION
Full-Scale Calibration Limit +1.05 × FS V max Zero-Scale Calibration Limit –1.05 × FS V min Input Span 0.8 × FS V min
2.1 × FS V max
ANALOG (DAC) OUTPUTS
Voltage Range 0 to V
0 to AV
REF
DD
DACRN = 0 in DACCON SFR V typ
DACRN = 1 in DACCON SFR V typ
Resistive Load 10 From DAC Output to AGND typ Capacitive Load 100 From DAC Output to AGND pF typ Output Impedance 0.5 Ω typ I
SINK
50 µA typ
TEMPERATURE SENSOR
Accuracy ±2 °C typ Thermal Impedance (θJA) 90 °C/ typ
= 5 V V min/max
DD
= 5 V V min/max
DD
< 0.3 V V min
REF
> 0.65 V V max
REF
V max
–4–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834
Parameter ADuC834BS Test Conditions/Comments Unit
TRANSDUCER BURNOUT CURRENT SOURCES
AIN+ Current –100 AIN+ is the Selected Positive Input to nA typ
the Primary ADC
AIN– Current +100 AIN– is the Selected Negative Input to nA typ
the Auxiliary ADC Initial Tolerance @ 25°C ±10 % typ Drift 0.03 %/°C typ
EXCITATION CURRENT SOURCES
Output Current –200 Available from Each Current Source µA typ
Initial Tolerance @ 25°C ±10 % typ Drift 200 ppm/°C typ Initial Current Matching @ 25°C ± 1 Matching Between Both Current Sources % typ Drift Matching 20 ppm/°C typ Line Regulation (AV
)1 AV
DD
Load Regulation 0.1 µA/V typ Output Compliance AV
– 0.6 V max
DD
AGND Min
LOGIC INPUTS
All Inputs Except SCLOCK, RESET,
and XTAL1
, Input Low Voltage 0.8 DVDD = 5 V V max
V
INL
0.4 DV
, Input High Voltage 2.0 V min
V
INH
SCLOCK and RESET Only
(Schmitt-Triggered Inputs)
V
T+
2
1.3/3 DVDD = 5 V V min/V max
0.95/2.5 DV
V
T–
0.8/1.4 DVDD = 5 V V min/V max
0.4/1.1 DV
V
T+
– V
T–
0.3/0.85 DVDD = 5 V V min/V max
0.3/0.85 DV
Input Currents
Port 0, P1.2–P1.7, EA ±10 V
SCLOCK, MOSI, MISO, SS
12
–10 min, –40 max VIN = 0 V, DVDD = 5 V, Internal Pull-Up µA min/µA ma x ±10 V
RESET ±10 V
35 min, 105 max V
P1.0, P1.1, Ports 2 and 3 ±1 0 V
–180 V –660 µA max –20 V –75 µA max
Input Capacitance 5 All Digital Inputs pF typ
CRYSTAL OSCILLATOR (XTAL1 AND XTAL2)
Logic Inputs, XTAL1 Only
V
, Input Low Voltage 0.8 DVDD = 5 V V max
INL
0.4 DV
V
, Input High Voltage 3.5 DVDD = 5 V V min
INH
2.5 DV XTAL1 Input Capacitance 18 pF typ XTAL2 Output Capacitance 18 pF typ
= 5 V + 5% µA/V typ
DD
= 3 V V max
DD
= 3 V V min/V max
DD
= 3 V V min/V max
DD
= 3 V V min/V max
DD
= 0 V or V
IN
= VDD, DVDD = 5 V µA max
IN
= 0 V, DVDD = 5 V µA max
IN
= VDD, DVDD = 5 V, µA min/µA max
IN
DD
µA max
Internal Pull-Down
= VDD, DVDD = 5 V µA max
IN
= 2 V, DVDD = 5 V µA min
IN
= 450 mV, DVDD = 5 V µA min
IN
= 3 V V max
DD
= 3 V V min
DD
REV. PrC (12 March 2002)
–5–
PRELIMINAR Y TECHNICAL D A TA
ADuC834–SPECIFICATIONS
1
Parameter ADuC834BS Test Conditions/Comments Unit
LOGIC OUTPUTS (Not Including XTAL2)
VOH, Output High Voltage 2.4 VDD = 5 V, I V
, Output Low Voltage
OL
13
Floating State Leakage Current ± 10 µA max Floating State Output Capacitance 5 pF typ
POWER SUPPLY MONITOR (PSM)
AVDD Trip Point Selection Range 2.63 Four Trip Points Selectable in This Range V mi n
Power Supply Trip Point Accuracy ±3.5 % max
AV
DD
DV
Trip Point Selection Range 2.63 Four Trip Points Selectable in This Range V m in
DD
DVDD Power Supply Trip Point Accuracy ±3.5 % max
WATCHDOG TIMER (WDT)
Timeout Period 0 Nine Timeout Periods in This Range ms min
MCU CORE CLOCK RATE Clock Rate Generated via On-Chip PLL
MCU Clock Rate
2
START-UP TIME
At Power-On 300 ms typ From Idle Mode 1 ms typ From Power-Down Mode
Oscillator Running OSC_PD Bit = 0 in PLLCON SFR
Wakeup with INT0 Interrupt 1 ms typ Wakeup with SPI Interrupt 1 ms typ Wakeup with TIC Interrupt 1 ms typ Wakeup with External RESET 3.4 ms typ
Oscillator Powered Down OSC_PD Bit = 1 in PLLCON SFR
Wakeup with External RESET 0.9 sec typ
After External RESET in Normal Mode 3.3 ms typ After WDT Reset in Normal Mode 3.3 Controlled via WDCON SFR ms typ
FLASH/EE MEMORY RELIABILITY CHARACTERISTICS
Endurance Data Retention
15
16
POWER REQUIREMENTS DV
Power Supply Voltages
, 3 V Nominal Operation 2.7 V min
AV
DD
AV
, 5 V Nominal Operation 4.75 V min
DD
, 3 V Nominal Operation 2.7 V min
DV
DD
, 5 V Nominal Operation 4.75 V min
DV
DD
2
= 80 µA V min
2.4 V
0.4 I
= 3 V, I
DD
= 8 mA, SCLOCK/D0, V max
SINK
SOURCE
= 20 µA V min
SOURCE
MOSI/D1
0.4 I
0.4 I
= 10 mA, P1.0 and P1.1 V max
SINK
= 1.6 mA, All Other Outputs V max
SINK
4.63 Programmed via TPA1–0 in PSMCON V max
4.63 Programmed via TPD1–0 in PSMCON V max
2000 Programmed via PRE3–0 in WDCON ms max
98.3 Programmable via CD2–0 Bits in kHz min PLLCON SFR
12.58 MHz max
14
100,000 Cycles min 100 Years min
and AVDD Can Be Set
DD
Independently
3.6 V max
5.25 V max
3.6 V max
5.25 V max
–6–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834
Parameter ADuC834BS Test Conditions/Comments Unit
POWER REQUIREMENTS (continued)
Power Supply Currents Normal Mode
DVDD Current 4 DVDD = 4.75 V to 5.25 V, Core CLK = 1.57 MHz mA max
Current 170 AVDD = 5.25 V, Core CLK = 1.57 MHz µA max
AV
DD
DV
Current 15 DVDD = 4.75 V to 5.25 V, Core CLK = 12.58 MH z mA max
DD
Current 170 AVDD = 5.25 V, Core CLK = 12.58 MHz µA max
AV
DD
Power Supply Currents Idle Mode
DVDD Current 1.2 DVDD = 4.75 V to 5.25 V, Core CLK = 1.57 MHz mA max AV
Current 140 Measured @ AVDD = 5.25 V, Core CLK = 1.57 MHz µA typ
DD
DV
Current 2 DVDD = 4.75 V to 5.25 V, Core CLK = 12.58 MH z mA typ
DD
AV
Current 140 Measured at AVDD = 5.25 V, Core CLK = 12.58 MHz µA typ
DD
Power Supply Currents Power-Down Mode
Current 50 DVDD = 4.75 V to 5.25 V, Osc. On, TIC On µA max
DV
DD
AV
Current 1 Measured at AVDD = 5.25 V, Osc. On or Osc. Off µA max
DD
Current 20 DVDD = 4.75 V to 5.25 V, Osc. Off µA max
DV
DD
Typical Additional Power Supply Currents Core CLK = 1.57 MHz, AV
and DIDD)
(AI
DD
PSM Peripheral 50 µA typ Primary ADC 1 mA typ Auxiliary ADC 500 µA typ DAC 150 µA typ Dual Current Sources 400 µA typ
NOTES
1
Temperature Range –40°C to +85°C.
2
These numbers are not production tested but are guaranteed by Design and/or Characterization data on production release.
3
System Zero-Scale Calibration can remove this error.
4
The primary ADC is factory calibrated at 25°C with AVDD = DVDD = 5 V yielding this full-scale error of 10 µV. If user power supply or temperature conditions are significantly different than these, an Internal Full-Scale Calibration will restore this error to 10 µV. A system zero-scale and full-scale calibration will remove this error altogether.
5
Gain Error Drift is a span drift. To calculate Full-Scale Error Drift, add the Offset Error Drift to the Gain Error Drift times the full-scale input.
6
The auxiliary ADC is factory calibrated at 25°C with AVDD = DVDD = 5 V yielding this full-scale error of –2.5 LSB. A system zero-scale and full-scale calibration will remove this error altogether.
7
DAC linearity and AC Specifications are calculated using:
reduced code range of 48 to 4095, 0 to V reduced code range of 48 to 3995, 0 to VDD.
8
Gain Error is a measure of the span error of the DAC.
9
In general terms, the bipolar input voltage range to the primary ADC is given by Range
V
= REFIN(+) to REFIN(–) voltage and V
REF
RN = decimal equivalent of RN2, RN1, RN0, e.g., V In unipolar mode the effective range is 0 V to 1.28 V in our example.
10
1.25 V is used as the reference voltage to the ADC when internal V
11
In bipolar mode, the Auxiliary ADC can only be driven to a minimum of A bipolar range is still –V
12
Pins configured in SPI mode, pins configured as digital inputs during this test.
13
Pins configured in High Current Output mode only.
14
Flash/EE Memory Reliability Characteristics apply to both the Flash/EE program memory and Flash/EE data memory.
15
Endurance is qualified to 100 Kcycles as per JEDEC Std. 22 method A117 and measured at –40°C, +25°C and +85°C, typical endurance at 25°C is 700 Kcycles.
16
Retention lifetime equivalent at junction temperature (TJ) = 55°C as per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of
0.6eV will derate with junction temperature as shown in Figure 27 in the Flash/EE Memory description section of this data sheet.
17
Power Supply current consumption is measured in Normal, Idle, and Power-Down Modes under the following conditions:
Normal Mode: Reset = 0.4 V, Digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON, Core Executing internal software loop.
18
DVDD power supply current will increase typically by 3 mA (3 V operation) and 10 mA (5 V operation) during a Flash/EE memory program or erase cycle.
Specifications subject to change without notice
= 2.5 V and RN2, RN1, RN0 = 1, 1, 0 the Range
REF
to +V
REF
Idle Mode: Reset = 0.4 V, Digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON, PCON.0 = 1, Core Execution suspended in idle mode. Power-Down Mode: Reset = 0.4 V, All P0 pins and P1.2–P1.7 pins = 0.4 V, All other digital I/O pins are open circuit, Core Clk changed via CD bits in
PLLCON, PCON.1 = 1, Core Execution suspended in power-down mode, OSC turned ON or OFF via OSC_PD bit (PLLCON.7) in PLLCON SFR.
; however, the negative voltage is limited to –30 mV.
REF
17, 18
2.1 DV
8DV
17, 18
750 DV
1DV
17, 18
20 DV
5DV
,
REF
= 1.25 V when internal ADC V
REF
= ±1.28 V.
ADC
REF
= 2.7 V to 3.6 V, Core CLK = 1.57 MH z mA max
DD
= 2.7 V to 3.6 V, Core CLK = 12.58 MH z mA max
DD
= 2.7 V to 3.6 V, Core CLK = 1.57 MH z µA typ
DD
= 2.7 V to 3.6 V, Core CLK = 12.58 MH z mA typ
DD
Core CLK = 1.57 MHz or 12.58 MHz
= 2.7 V to 3.6 V, Osc. On, TIC On µA max
DD
= 2.7 V to 3.6 V, Osc. Off µA typ
DD
= ±(V
ADC
is selected.
REF
is selected via XREF0 and XREF1 bits in ADC0CON and ADC1CON respectively.
– 30 mV as indicated by the Auxiliary ADC absolute AIN voltage limits. The
GND
2RN)/125, where:
REF
= DVDD = 5 V
DD
REV. PrC (12 March 2002)
–7–
ADuC834
PRELIMINAR Y TECHNICAL D A T A
(AVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V, DVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V; all specifications T
MIN
to T
unless otherwise noted.)
MAX
TIMING SPECIFICATIONS
1, 2, 3
32.768 kHz External Crystal
Parameter Min Typ Max Unit Figure
CLOCK INPUT (External Clock Driven XTAL1)
t
CK
t
CKL
t
CKH
t
CKR
t
CKF
1/t
CORE
t
CORE
t
CYC
NOTES
1
AC inputs during testing are driven at DVDD – 0.5 V for a Logic 1, and 0.45 V for a Logic 0. Timing measurements are made at VIH min for a Logic 1, and VIL max for a Logic 0 as shown in Figure 2.
2
For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded VOH/VOL level occurs as shown in Figure 2.
3
C
for Port0, ALE, PSEN outputs = 100 pF; C
LOAD
4
ADuC834 internal PLL locks onto a multiple (384 times) the external crystal frequency of 32.768 kHz to provide a Stable 12.583 MHz internal clock for the system. The core can operate at this frequency or at a binary submultiple called Core_Clk, selected via the PLLCON SFR.
5
This number is measured at the default Core_Clk operating frequency of 1.57 MHz.
6
ADuC834 Machine Cycle Time is nominally defined as 12/Core_CLK.
XTAL1 Period 30.52 µs 1 XTAL1 Width Low 15.16 µs 1 XTAL1 Width High 15.16 µs 1 XTAL1 Rise Time 20 ns 1 XTAL1 Fall Time 20 ns 1 ADuC834 Core Clock Frequency ADuC834 Core Clock Period ADuC834 Machine Cycle Time
LOAD
4
5
6
0.098 12.58 MHz
0.636 µs
0.95 7.6 122.45 µs
for all other outputs = 80 pF unless otherwise noted.
t
CHK
t
CKR
DVDD 0.5 V
0.45V
t
CKL
t
CK
Figure 1. XTAL1 Input
+ 0.9V
0.2DV
DD
TEST POINTS
0.2DVDD 0.1V
V
LOAD
V
LOAD
LOAD
+ 0.1V
0.1V
V
Figure 2. Timing Waveform Characteristics
t
TIMING
REFEREN CE
POINTS
CKF
V
V
LOAD
LOAD
0.1V
+ 0.1V
V
LOAD
–8–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834
12.58 MHz Core_Clk Variable Core_Clk
Parameter Min Max Min Max Unit Figure
EXTERNAL PROGRAM MEMORY
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
AVIV
t
PLAZ
t
PHAX
ALE Pulsewidth 119 2t Address Valid to ALE Low 39 t Address Hold after ALE Low 49 t ALE Low to Valid Instruction In 218 4t ALE Low to PSEN Low 49 t
PSEN Pulsewidth 193 3t PSEN Low to Valid Instruction In 133 3t
– 40 ns 3
CORE
– 40 ns 3
CORE
– 30 ns 3
CORE
– 30 ns 3
CORE
– 45 ns 3
CORE
– 100 ns 3
CORE
– 105 ns 3
CORE
Input Instruction Hold after PSEN 00 ns3 Input Instruction Float after PSEN 54 t Address to Valid Instruction In 292 5t
– 25 ns 3
CORE
– 105 ns 3
CORE
PSEN Low to Address Float 25 25 ns 3 Address Hold after PSEN High 0 0 ns 3
CORE_C LK
ALE (O)
PSEN
(O)
PORT 0 (I/O)
PORT 2 (O)
t
LHLL
PLAZ
PCH
t
PLPH
t
LLIV
t
PLIV
t
PXIX
INSTRUCTION
(IN)
t
AVLL
PCL
(OUT )
t
LLPL
t
LLAX
t
t
AVIV
Figure 3. External Program Memory Read Cycle
t
PXIZ
t
PHAX
REV. PrC (12 March 2002)
–9–
PRELIMINAR Y TECHNICAL D A T A
ADuC834
12.58 MHz Core_Clk Variable Core_Clk
Parameter Min Max Min Max Unit Figure

EXTERNAL DATA MEMORY READ CYCLE

t
RLRH
t
AVLL
t
LLAX
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
RLAZ
t
WHLH
RD Pulsewidth 377 6t Address Valid after ALE Low 39 t Address Hold after ALE Low 44 t RD Low to Valid Data In 232 5t
– 100 ns 4
CORE
– 40 ns 4
CORE
– 35 ns 4
CORE
– 165 ns 4
CORE
Data and Address Hold after RD 00 ns4 Data Float after RD 89 2t ALE Low to Valid Data In 486 8t Address to Valid Data In 550 9t ALE Low to RD Low 188 288 3t Address Valid to RD Low 188 4t
– 50 3t
CORE
– 130 ns 4
CORE
– 70 ns 4
CORE
– 150 ns 4
CORE
– 165 ns 4
CORE
+ 50 ns 4
CORE
RD Low to Address Float 0 0 ns 4 RD High to ALE High 39 119 t
CORE_CLK
– 40 t
CORE
+ 40 ns 4
CORE
ALE (O)
PSEN
(O)
RD
(O)
POR T 0 (I/O)
PORT 2 (O)
t
LLDV
t
AVLL
A0 › A7
(OUT )
t
A16
AVDV
› A23
t
LLAX
t
AVWL
t
LLWL
t
RLAZ
t
RLDV
A8
› A15
t
RLRH
t
RHDX
DATA (IN)
Figure 4. External Data Memory Read Cycle
t
WHLH
t
RHDZ
–10–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834
12.58 MHz Core_Clk Variable Core_Clk
Parameter Min Max Min Max Unit Figure

EXTERNAL DATA MEMORY WRITE CYCLE

t
WLWH
t
AVLL
t
LLAX
t
LLWL
t
AVWL
t
QVWX
t
QVWH
t
WHQX
t
WHLH
WR Pulsewidth 377 6t Address Valid after ALE Low 39 t Address Hold after ALE Low 44 t ALE Low to WR Low 188 288 3t Address Valid to WR Low 188 4t Data Valid to WR Transition 29 t Data Setup before WR 406 7t Data and Address Hold after WR 29 t WR High to ALE High 39 119 t
CORE_CLK
– 100 ns 5
CORE
– 40 ns 5
CORE
– 35 ns 5
CORE
– 50 3t
CORE
– 130 ns 5
CORE
– 50 ns 5
CORE
– 150 ns 5
CORE
– 50 ns 5
CORE
– 40 t
CORE
+ 50 ns 5
CORE
+ 40 ns 5
CORE
ALE (O)
PSEN
(O)
WR
(O)
PORT 0 (O)
PORT 2 (O)
t
QVWX
t
QVWH
DATA
t
WLWH
t
LLWL
t
AVWL
t
t
AVLL
LLAX
A0 A7
A16 A23 A8 A15
Figure 5. External Data Memory Write Cycle
t
WHLH
t
WHQX
REV. PrC (12 March 2002)
–11–
PRELIMINAR Y TECHNICAL D A T A
ADuC834
12.58 MHz Core_Clk Variable Core_Clk
Parameter Min Typ Max Min Typ Max Unit Figure
UART TIMING (Shift Register Mode)
t
XLXL
t
QVXH
t
DVXH
t
XHDX
t
XHQX
Serial Port Clock Cycle Time 0.95 12t Output Data Setup to Clock 662 10t Input Data Setup to Clock 292 2t
– 133 ns 6
CORE
+ 133 ns 6
CORE
CORE
µs 6
Input Data Hold after Clock 0 0 ns 6 Output Data Hold after Clock 42 2t
ALE (O)
– 117 ns 6
CORE
t
XLXL
(OUTPUT CLOCK)
(OUTP U T D A TA )
TXD
RXD
RXD
(INPUT DATA)
01
MSB
67
t
QVXH
BIT 6MSB
t
DVXH
BIT 6 BIT 1 LSB
t
XHQX
t
XHDX
BIT 1
Figure 6. UART Timing in Shift Register Mode
SET RI
OR
SET TI
–12–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834
Parameter Min Typ Max Unit Figure

SPI MASTER MODE TIMING (CPHA = 1)

t
SL
t
SH
t
DAV
t
DSU
t
DHD
t
DF
t
DR
t
SR
t
SF
NOTE *Characterized under the following conditions:
a. Core clock divider bits CD2, CD1, and CD0 bits in PLLCON SFR set to 0, 1, and 1 respectively, i.e., core clock frequency = 1.57 MHz and b. SPI bit-rate selection bits SPR1 and SPR0 bits in SPICON SFR set to 0 and 0 respectively.
SCLOCK Low Pulsewidth* 630 ns 7 SCLOCK High Pulsewidth* 630 ns 7 Data Output Valid after SCLOCK Edge 50 ns 7 Data Input Setup Time before SCLOCK Edge 100 n s 7 Data Input Hold Time after SCLOCK Edge 100 ns 7 Data Output Fall Time 10 25 ns 7 Data Output Rise Time 10 25 ns 7 SCLOCK Rise Time 10 25 ns 7 SCLOCK Fall Time 10 25 ns 7
SCLOCK
(CPOL = 0)
SCLOCK
(CPOL = 1)
t
SH
t
SL
t
SR
t
SF
MOSI
MISO
t
DAV
t
DSU
MSB IN
t
DHD
t
DF
t
DR
BITS 6 › 1
BITS 6 › 1
Figure 7. SPI Master Mode Timing (CPHA = 1)
LSBMSB
LSB IN
REV. PrC (12 March 2002)
–13–
PRELIMINAR Y TECHNICAL D A T A
ADuC834
Parameter Min Typ Max Unit Figure

SPI MASTER MODE TIMING (CPHA = 0)

t
SL
t
SH
t
DAV
t
DOSU
t
DSU
t
DHD
t
DF
t
DR
t
SR
t
SF
NOTE *Characterized under the following conditions:
a. Core clock divider bits CD2, CD1 and CD0 bits in PLLCON SFR set to 0, 1, and 1 respectively, i.e., core clock frequency = 1.57 MHz and b. SPI bit-rate selection bits SPR1 and SPR0 bits in SPICON SFR set to 0 and 0 respectively.
SCLOCK Low Pulsewidth* 630 ns 8 SCLOCK High Pulsewidth* 630 ns 8 Data Output Valid after SCLOCK Edge 50 ns 8 Data Output Setup before SCLOCK Edge 150 ns 8 Data Input Setup Time before SCLOCK Edge 100 n s 8 Data Input Hold Time after SCLOCK Edge 100 ns 8 Data Output Fall Time 10 25 ns 8 Data Output Rise Time 10 25 ns 8 SCLOCK Rise Time 10 25 ns 8 SCLOCK Fall Time 10 25 ns 8
SCLOCK
(CPOL = 0)
SCLOCK
(CPOL = 1)
t
SH
t
SL
t
SR
t
SF
MOSI
MISO
t
DAV
t
DOSU
t
DSU
MSB IN
t
DF
MSB LSB
t
DHD
t
DR
BITS 6 › 1
Figure 8. SPI Master Mode Timing (CPHA = 0)
LSB INBITS 6 › 1
–14–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834
Parameter Min Typ Max Unit Figure

SPI SLAVE MODE TIMING (CPHA = 1)

t
SS
t
SL
t
SH
t
DAV
t
DSU
t
DHD
t
DF
t
DR
t
SR
t
SF
t
SFS
SS to SCLOCK Edge 0 ns 9 SCLOCK Low Pulsewidth 330 ns 9 SCLOCK High Pulsewidth 330 ns 9 Data Output Valid after SCLOCK Edge 50 ns 9 Data Input Setup Time before SCLOCK Edge 100 n s 9 Data Input Hold Time after SCLOCK Edge 100 ns 9 Data Output Fall Time 10 25 ns 9 Data Output Rise Time 10 25 ns 9 SCLOCK Rise Time 10 25 ns 9 SCLOCK Fall Time 10 25 ns 9 SS High after SCLOCK Edge 0 ns 9
SS
SCLOCK
(CPOL = 0)
SCLOCK
(CPOL = 1)
MISO
MOSI
t
SS
t
DF
MSB IN
MSB
t
DHD
t
SL
t
DF
t
DR
BITS 6
t
SH
t
DAV
t
DSU
Figure 9. SPI Slave Mode Timing (CPHA = 1)
t
SFS
t
SR
1
BITS 6
1LSB IN
LSB
t
SF
REV. PrC (12 March 2002)
–15–
PRELIMINAR Y TECHNICAL D A T A
ADuC834
Parameter Min Typ Max Unit Figure

SPI SLAVE MODE TIMING (CPHA = 0)

t
SS
t
SL
t
SH
t
DAV
t
DSU
t
DHD
t
DF
t
DR
t
SR
t
SF
t
SSR
t
DOSS
t
SFS
SS to SCLOCK Edge 0 ns 10 SCLOCK Low Pulsewidth 330 ns 10 SCLOCK High Pulsewidth 330 ns 10 Data Output Valid after SCLOCK Edge 50 ns 10 Data Input Setup Time before SCLOCK Edge 100 n s 10 Data Input Hold Time after SCLOCK Edge 100 ns 10 Data Output Fall Time 10 25 ns 10 Data Output Rise Time 10 25 ns 10 SCLOCK Rise Time 10 25 ns 10 SCLOCK Fall Time 10 25 ns 10 SS to SCLOCK Edge 50 ns 10 Data Output Valid after SS Edge 20 ns 10 SS High after SCLOCK Edge 0 ns 10
SS
SCLOCK
(CPOL = 0)
SCLOCK
(CPOL = 1)
MISO
MOSI
t
DOSS
t
SS
t
DSU
MSB IN
MSB
t
DHD
t
SH
t
t
SL
t
DAV
DF
t
DR
BITS 6 › 1
BITS 6 › 1
Figure 10. SPI Slave Mode Timing (CPHA = 0)
t
SR
LSB IN
LSB
t
SFS
t
SF
–16–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834

ABSOLUTE MAXIMUM RATINGS

(TA = 25°C unless otherwise noted)
1
AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
AV
to DGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
DD
to AGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
DV
DD
to DGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
DV
DD
AGND to DGND AV
to DVDD . . . . . . . . . . . . . . . . . . . . . . . . . –2 V to +5 V
DD
Analog Input Voltage to AGND Reference Input Voltage to AGND . . –0.3 V to AV
2
. . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V
3
. . . –0.3 V to AVDD +0.3 V
+0.3 V
DD
AIN/REFIN Current (Indefinite) . . . . . . . . . . . . . . . . 30 mA
Digital Input Voltage to DGND . . . . –0.3 V to DV
Digital Output Voltage to DGND . . . –0.3 V to DV
+0.3 V
DD
+0.3 V
DD
Operating Temperature Range . . . . . . . . . . –40°C to +85°C
Storage Temperature Range . . . . . . . . . . . –65°C to +150°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 53.2°C/W
θ
JA
Lead Temperature, Soldering
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2
AGND and DGND are shorted internally on the ADuC834.
3
Applies to P1.2 to P1.7 pins operating in analog or digital input modes.

PIN CONFIGURATION

52-Lead MQFP

ORDERING GUIDE

Model Temperature Package Package
Range Description Option
ADuC834BS –40°C to +85°C 52-Lead Plastic Quad Flatpack S-52
QuickStart Development System Description Model
EVAL-ADUC834QS Development System for the ADuC834 MicroConverter, Containing:
Evaluation Board Serial Port Cable Windows
®
Serial Downloader (WSD) Windows Debugger/Emulator (with C source DeBug) Windows ADuC834 Simulator (ADSIM) Windows ADC Analysis Software Program (WASP) 8051 Assembler (Metalink) Example Code Documentation

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although
34
the ADuC8
features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Windows is a registered trademark of Microsoft Corporation.
REV. PrC (12 March 2002)
–17–
PRELIMINAR Y TECHNICAL D A T A
ADuC834

ADuC834 DETAILED BLOCK DIAGRAM

AIN1 AIN2
AIN3
AIN4 AIN5
REFIN REFIN
IEXC 1
IEXC 2
)
0)
1)
P0.0 (AD
P0.1 (AD
43
44
4)
5)
6)
2)
3)
P0.2 (AD
P0.3 (AD
P0.4 (AD
45
46
49
7)
P0.5 (AD
P0.6 (AD
P0.7 (AD
P1.0 (T 2)
50
51
52
P1.1 (T2EX)3P1.2 (DAC/IEXC 1)
1
2
P1.3 (AIN5/IEXC 2)
4 9
P1.4 (AI N1 )10P1.5 (AI N2 )11P1.6 (AI N3 )12P1.7 (
4/DAC AIN
ADuC834
AIN
MUX
AIN
MUX
TEMP
SENSOR
ⴙⴙⴙⴙ
ⴚⴚⴚⴚ
A
200
␮␮␮␮
CURRENT
SOURCE
MUX
5
DD
AV
6
D
AGN
BANDGAP
REFEREN CE
200
34 47
20
DD
DV
DVDDDV
V
DETECT
A
␮␮␮␮
48
PGA
BUF
AUXILIARY ADC
16-BIT
ADC
⌺⌬
⌺⌬
⌺⌬⌺⌬
REF
POR
21
35
D
D
DD
DGN
DGN
PRIMARY ADC
24-BIT
ADC
⌺⌬
⌺⌬
⌺⌬⌺⌬
ADC CONTR OL
CALIBRATION
62 KBYTES PROGRAM FLASH/EE INCLUDING
USER DOWNLOAD MODE
4 KBYTES DATA
FLASH/EE
2 KBytes USER XRAM
2 X DATA POINTERS
11-BIT S T A C K P O INTER
UART
SERIAL PORT
16
15
D
DGN
RESET
17
RXD
AND
DOWNLO ADE R
DEBUGG ER
TXD
CONTROL
CALIBRATION
UART
TIMER
28
ADC
AND
) 8 1 A
/
A17)
0
8 A
P2.0 (
1/A19)
1
1
1
1
A
A
P2.1 (A9 /
29
P2.4 (
P2.2 (
P2.3 (A1
30
31
36
8052
MCU
CORE
EMULATO R
SINGLE-PIN
40EA41
N
ALE
PSE
A
A
P2.5 (
P2.6 (
38
37
39
DAC
CONTROL
PWM
CONTROL
256 BYTES USER
POWER SUPPLY
SPI SERIAL
INTE R F AC E
26
0 /D
SCLOCK
1 A
P2.7 (
RAM
WATCHDOG
TIMER
MONITOR
27
D1
/
MOSI
)
INT 0
P3.0 (RXD)
P3.1 (TXD)18P3.2 (
16
17
19
12-BIT
VOLTAGE
OUTPUT DAC
16-BIT
SD DAC
16-BIT
SD DAC
16-BIT
PWM
16-BIT
PWM
PROG. CLOCK
TIME INTERVAL
COUNTE R
(WAKEUP CCT)
14
13
SS
MISO
)
INT 1
P3.4 (T 0)23P3.5 (T1)24P3.6 (
P3.3 (
22
MUX
16-BIT
COUNTE R
TIMERS
DIVIDER
OSC
3242
XTAL1
BUF
PLL
33
)
WR
XTAL2
)
RD
P3.7 (
25
DAC
3
PWM0
1
2
PWM1
22
T0
23
T1
1
T2
2
T2EX
INT 0
18
19
INT 1
* SHADED AREAS REPRESENT THE NEW FEATURES OF THE ADUC834 OVER THE ADUC824
Figure 11. ADuC834 Detailed Block Diagram
ADuC834 PIN BY PIN FUNCTION DESCRIPTION
Pin No. Mnemonic Type* Description
1, 2 P1.0/P1.1 I/O P1.0 and P1.1 can function as a digital inputs or digital outputs and have a
pull-up configuration as described below for Port 3. P1.0 and P1.1 have an increased current drive sink capability of 10 mA.
P1.0/T2/PWM0 I/O P1.0 and P1.1 also have various secondary functions as described below.
P1.0 can also be used to provide a clock input to Timer 2. When Enabled, counter 2 is incremented in response to a negative transition on the T2 input pin. If the PWM is enabled then the PWM0 output will appear at this pin.
P1.1/T2EX/PWM1 I/O P1.1 can also be used to provide a control input to Timer 2. When Enabled, a
negative transition on the T2EX input pin will cause a Timer 2 capture or reload event. If the PWM is enabled then the PWM1 output will appear at this pin.
–18–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834
Pin No. Mnemonic Type* Description
3-4, 9-12 P1.2-P1.7 I Port 1.2 to Port 1.7 have no digital output driver; they can function as a digital
input for which ‘0’ must be written to the port bit. As a digital input, these pins must be driven high or low externally. These pins also have the following analog functionality:
P1.2/DAC/IEXC1 I/O The voltage output from the DAC or one or both current sources (20 0 µ A o r 2 x
200 µA ) can be configured to appear at this pin. P1.3/AIN5/IEXC2 I/O Auxiliary ADC Input or one or both current sources can be configured at this pin. P1.4/AIN1 I Primary ADC, Positive Analog Input P1.5/AIN2 I Primary ADC, Negative Analog Input P1.6/AIN3 I Auxiliary ADC Input or muxed Primary ADC, Positive Analog Input P1.7/AIN4/DAC I/O Auxiliary ADC Input or muxed Primary ADC, Negative Analog Input. The voltage
output from the DAC can also be configured to appear at this pin.
5AV 6 AGND S Analog Ground. Ground reference pin for the analog circuitry.
7 REFIN(–) I Reference input, negative terminal. 8 REFIN(+) I Reference input, positive terminal.
13 SS I Slave Select Input for the SPI Interface. A weak pull-up is present on this pin. 14 MISO I/O Master Input/Slave Output for the SPI Interface. There is a weak pull-up on this
15 RESET I Reset Input. A high level on this pin for 16 core clock cycles while the oscillator is
16–19, P3.0–P3.7 I/O P3.0–P3.7 are bidirectional port pins with internal pull-up resistors. Port 3 pins 22-25 that have 1s written to them are pulled high by the internal pull-up resistors, and
DD
P3.0/RXD I/O Receiver Data for UART serial Port P3.1/TXD I/O Transmitter Data for UART serial Port P3.2/INT0 I/O External Interrupt 0. This pin can also be used as a gate control input to Timer0. P3.3/INT1 I/O External Interrupt 1. This pin can also be used as a gate control input to Timer1. P3.4/T0 I/O Timer/Counter 0 External Input P3.5/T1 I/O Timer/Counter 1 External Input P3.6/WR I/O External Data Memory Write Strobe. Latches the data byte from Port 0 into an
P3.7/RD I/O External Data Memory Read Strobe. Enables the data from an external data
S Analog Supply Voltage, 3 V or 5 V
input pin.
running resets the device. There is an internal weak pull-down and a Schmitt
trigger input stage on this pin.
in that state can be used as inputs. As inputs, Port 3 pins being pulled externally
low will source current because of the internal pull-up resistors. When driving a
0-to-1 output transition, a strong pull-up is active for two core clock periods of
the instruction cycle.
Port 3 pins also have various secondary functions described below.
external data memory.
memory to Port 0.
20, 34, 48 DV 21, 35, 47 DGND S Digital ground, ground reference point for the digital circuitry.
26 SCLOCK/D0 I/O Serial interface clock for the SPI interface. As an input this pin i s a Schmitt
27 MOSI/D1 I/O Serial master output/slave input data for the SPI interface. A weak internal
REV. PrC (12 March 2002)
DD
S Digital supply, 3 V or 5 V.
triggered input and a weak internal pull-up is present on this pin unless it is
outputting logic low.
This pin can also be controlled directly in software as a digital output pin.
pull-up is present on this pin unless it is outputting logic low.
This pin can also be controlled directly in software as a digital output pin.
19
PRELIMINAR Y TECHNICAL D A T A
ADuC834
Pin No. Mnemonic Type* Description
28–31 P2.0–P2.7 I/O Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s 36-39 (A8–A15) written to them are pulled high by the internal pull-up resistors, and in that state can
(A16–A23) be used as inputs. As inputs, Port 2 pins being pulled externally low will source current
because of the internal pull-up resistors. Port 2 emits the high order address bytes during fetches from external program memory and middle and high order address bytes during accesses to the 24-bit external data memory space.
32 XTAL1 I Input to the crystal oscillator inverter. 33 XTAL2 O Output from the crystal oscillator inverter. (see page 68 for description)
40 EA I/O External Access Enable, Logic Input. When held high, this input enables the device
to fetch code from internal program memory locations 0000h to F800h. When held low this input enables the device to fetch all instructions from external program memory. To determine the mode of code execution, i.e., internal or external, the EA pin is sampled at the end of an external RESET assertion or as part of a device power cycle. EA may also be used as an external emulation I/O pin and therefore the voltage level at this pin must not be changed during normal mode operation as it may cause an emulation interrupt that will halt code execution.
41 PSEN O Program Store Enable, Logic Output. This output is a control signal that enables
the external program memory to the bus during external fetch operations. It is active every six oscillator periods except during external data memory accesses. This pin remains high during internal program execution. PSEN can also be used to enable serial download mode when pulled low through a resistor at the end of an external RESET assertion or as part of a device power cycle.
42 ALE O Address Latch Enable, Logic Output. This output is used to latch the low byte (and
page byte for 24-bit data address space accesses) of the address to external memory during external code or data memory access cycles. It is activated every six oscillator periods except during an external data memory access. It can be disabled by setting the PCON.4 bit in the PCON SFR.
43–46 P0.0–P0.7 I/O P0.0–P0.7, these pins are part of Port0 which is an 8-bit open-drain bidirectional 49–52 (AD0–AD3) I/O port. Port 0 pins that have 1s written to them float and in that state can be used
(AD4–AD7) as high impedance inputs. An external pull-up resistor will be required on P0
outputs to force a valid logic high level externally. Port 0 is also the multiplexed low-order address and data bus during accesses to external program or data memory. In this application it uses strong internal pull-ups when emitting 1s.
*I = Input, O = Output, S = Supply. NOTES
1. In the following descriptions, SET implies a Logic 1 state and CLEARED implies a Logic 0 state unless otherwise stated.
2. In the following descriptions, SET and CLEARED also imply that the bit is set or automatically cleared by the ADuC834 hardware unless otherwise stated.
3. User software should not write 1s to reserved or unimplemented bits as they may be used in future products.
–20–
(12 March 2002) REV. PrC
PRELIMINAR Y TECHNICAL D A T A
ADuC834
MEMORY ORGANIZATION
The ADuC834 contains 4 different memory blocks namely:
- 62kBytes of On-Chip Flash/EE Program Memory
- 4kBytes of On-Chip Flash/EE Data Memory
- 256 Bytes of General Purpose RAM
- 2kBytes of Internal XRAM
(1) Flash/EE Program Memory
The ADuC834 provides 62kBytes of Flash/EE program memory to run user code. The user can choose to run code from this internal memory or run code from an external pro­gram memory. If the user applies power or resets the device while the EA pin is pulled low, the part will execute code from the external pro­gram space, otherwise the part defaults to code execution from i ts internal 62kBytes of Flash/EE program memory. Un­like the ADuC824, where code execution can overflow from the internal code space to external code space once the PC be­comes greater than 1FFFh, the ADuC834 does not support the rollover from F7FFh in internal code space to F800h in exter­nal code space. Instead the 2048 bytes between F800h and FFFFh will appear as NOP instructions to user code. This internal code space can be downloaded via the UART serial port while the device is in-circuit. 56kBytes of the program memory can be repogrammed during runtime hence the code space can be upgraded in the field using a user defined protocol or it can be used as a data memory. This will be discussed in more detail in the Flash/EE Memory section of the datasheet.
(2) Flash/EE Data Memory
4kBytes of Flash/EE Data Memory are available to the user an d c a n b e accessed indirectly via a group of control registers mapped into the Special Function Register (SFR) area. Access to the Flash/EE Data memory is discussed in detail later as part of the Flash/EE memory section in this data sheet.
if one is going to use more than one register bank, the stack pointer should be initialized to an area of RAM not used for data storage.
7FH
GENERAL-PURPOSE AREA
30H
BANKS
SELECTED
VIA
BITS IN PSW
20H
11
18H
10
10H
01
08H
00
00H
2FH
BIT-ADDRESSABLE (BIT ADDRESSES)
1FH
17H
FOUR BANKS OF EIGHT REGISTERS
0FH
R0 R7
07H
RESET VALUE OF STACK POINTER
Figure 12. Lower 128 Bytes of Internal Data Memory
The ADuC834 contains 2048 bytes of internal XRAM, 1792 bytes of which can be configured to be used as an extended 11­bit stack pointer. By default the stack will operate exactly like an 8052 in that it will rollover from FFh to 00h in the general purpose RAM. On the ADuC834 however it is possible (by setting CFG834.7) to enable the 11-bit extended stack pointer. In this case the stack will rollover from FFh in RAM to 0100h in XRAM. The 11-bit stack pointer is visable in the SP and SPH SFRs. The SP SFR is located at 81h as with a standard 8052. The SPH SFR is located at B7h. The 3 LSBs of this SFR contain the 3 extra bits necessary to extend the 8-bit stack pointer into an 11-bit stack pointer.
(3) General Purpose RAM
The general purpose RAM is divided into two seperate memo­ries, namely the upper and the lower 128 bytes of RAM. The lower 128 bytes of RAM can be accessed through direct or indirect addressing while the upper 128 bytes of RAM can only be accessed through indirect addressing as it shares the same address space as the SFR space which can only be ac­cessed through direct addressing. The lower 128 bytes of internal data memory are mapped as shown in Figure 12. The lowest 32 bytes are grouped into four banks of eight registers addressed as R0 through R7. The next 16 bytes (128 bits), locations 20Hex through 2FHex above the register banks, form a block of directly addressable bit locations at bit addresses 00H through 7FH. The stack can be located anywhere in the internal memory address space, and the stack depth can be expanded up to 2048 bytes. Reset initializes the stack pointer to location 07 hex and incre­ments it once before loading the stack to start from locations 08 hex which is also the first register (R0) of register bank 1. Thus,
REV. PrC (12 March 2002)
–21–
07FFH
UPPER 1792
BYTES OF
ON-CHIP XRAM
(DATA +STACK
FOR EXSP=1,
DATA ONLY
100H
00H
FOR EXSP=0)
LOWER 256
BYTES OF
ON-CHIP XRAM
(DATA ONLY)
CFG834.7 = 0
FFH
256 BYTES OF
ON-CHIP DATA
(DATA + STACK)
00H
CFG834.7 = 1
RAM
Figure 13. Extended Stack Pointer Operation
ADuC834
PRELIMINAR Y TECHNICAL D A T A
External Data Memory (External XRAM)
Just like a standard 8051 compatible core the ADuC834 can access external data memory using a MOVX instruction. The MOVX instruction automatically outputs the various control strobes required to access the data memory. The ADuC834 however, can access up to 16MBytes of extrenal data memory. This is an enhancement of the 64kBytes external data memory space available on a standard 8051 compatible core. The external data memory is discussed in more detail in the ADuC834 Hardware Design Considerations section.
Internal XRAM
2kBytes of on-chip data memory exist on the ADuC834. This memory although on-chip is also accessed via the MOVX in­struction. The 2kBytes of internal XRAM are mapped into the bottom 2kBytes of the external address space if the CFG834.0 bit is set, otherwise access to the external data memory will occur just like a standard 8051.
Even with the CFG834.0 bit set access to the external XRAM will occur once the 24 bit DPTR is greater than 0007FFH.
When accessing the internal XRAM the P0, P2 port pins as well as the RD and WR strobes will not be output as per a standard 8051 MOVX instruction. This allows the user to use these port pins as standard I/O.
FFFFFFH
FFFFFFH
SPECIAL FUNCTION REGISTERS (SFRs)
The SFR space is mapped into the upper 128 bytes of internal data memory space and accessed by direct addressing only. It provides an interface between the CPU and all on chip periph­erals. A block diagram showing the programming model of the ADuC834 via the SFR area is shown in Figure 15. All registers except the Program Counter (PC) and the four general-purpose register banks, reside in the SFR area. The SFR registers include control, configuration, and data regis­ters that provide an interface between the CPU and all on-chip peripherals.
62 KBYTE ELECTRICALLY
REPROGRAMMABLE
NONVOLATILE FLASH/EE
PROGRAM MEMORY
8051-
COMPAT IBLE
CORE
256 BYTES RAM
2K XRAM
128-BYTE
SPECIAL FUNCTION REGISTER
AREA
4 KBYTE
ELECTRICALLY
REPROGRAMMABLE
NONVOLAT ILE
FLASH/EE DATA
MEMORY
DUAL
SIGMA-DELTA
ADCs
OTHER ON-CHIP
PERIPHERALS TEMP SENSOR
CURRENT SOU RCES
12-BIT D A C
SERIAL I/O WDT, PSM
TIC, PLL
EXTERNAL
MEMORY
ADDRESS
2 KBYTES
ON-CHIP
CFG834.0=1
000000H
EXTERNAL
DATA
MEMORY
SPACE (24-BIT
ADDRESS
SPACE)
CFG834.0=0
000800H 0007FFH
000000H
Figure 14. Internal and External XRAM
DATA
SPACE (24-BIT
SPACE)
XRAM
Figure 15. Programming Model
Accumulator SFR (ACC)
ACC is the Accumulator register and is used for math opera­tions including addition, subtraction, integer multiplication and division, and Boolean bit manipulations. The mnemonics for accumulator-specific instructions refer to the Accumulator as A.
B SFR (B)
The B register is used with the ACC for multiplication and division operations. For other instructions it can be treated as a general-purpose scratchpad register.
Stack Pointer (SP and SPH)
The SP SFR is the stack pointer and is used to hold an internal RAM address that is called the ‘top of the stack.’ The SP register is incremented before data is stored during PUSH and CALL executions. While the Stack may reside anywhere in on-chip RAM, the SP register is initialized to 07H after a reset. This causes the stack to begin at location 08H. As mentioned earlier the ADuC834 offers an extended 11-bit stack pointer. The 3 extra bits to make up the 11-bit stack pointer are the 3 LSBs of the SPH byte located at B7h.
–22–
(12 March 2002) REV. PrC
Loading...
+ 50 hidden pages