4 X General Purpose Timers
Wake-up and Watchdog Timers
Power Supply Monitor
Three-phase 16-bit PWM generator*
PLA – Programmable Logic (Array)
Power
Specified for 3V operation
Active Mode: 3mA (@1MHz)
50mA (@45MHz)
Packages and Temperature Range
From 40 lead 6x6mm LFCSP to 80 pin LQFP*
Fully specified for –40°C to 125°C operation
Tools
Low-Cost QuickStart Development System
Full Third-Party Support
* Package, PWM, GPIO availability and number of Analog I/O
depend on part model. See page 9.
APPLICATIONS
Industrial Control and Automation Systems
Smart Sensors, Precision Instrumentation
Base Station Systems, Optical Networking
(See general description on page 11)
FUNCTIONAL BLOCK DIAGRAM
ADC0
...
...
MUX
ADC11
CMP0
CMP1
CMP
OUT
V
REF
XCLKI
XCLKO
RST
Rev. PrB
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective companies.
Parameter ADuC702x Unit Test Conditions/Comments
ADC CHANNEL SPECIFICATIONS
ADC Powerup Time 500 uS
DC Accuracy
Resolution 12 Bits
Integral Nonlinearity
Integral Nonlinearity
Differential Nonlinearity
Differential Nonlinearity
DC Code Distribution
CALIBRATED ENDPOINT ERRORS
Offset Error
Offset Error Match
Gain Error
Gain Error Match
DYNAMIC PERFORMANCE Fin = 10kHz Sine Wave, f
Signal-to-Noise Ratio (SNR)
Total Harmonic Distortion (THD) -78 dB typ
Peak Harmonic or Spurious Noise
Channel-to-Channel Crosstalk
ANALOG INPUT
Input Voltage Ranges
Differential mode V
Single-ended mode 0 to V
Leakage Current ±5 µA max
Input Capacitance 20 pF typ During ADC Acquisition
ON-CHIP VOLTAGE REFERENCE
Output Voltage
Accuracy ±10 mV max Measured at TA = 25°C
Reference Temperature Coefficient
Power Supply Rejection Ratio
Output Impedance
Internal V
EXTERNAL REFERENCE INPUT9
Input Voltage Range
Input Impedance
DAC CHANNEL SPECIFICATIONS
DC ACCURACY
Resolution 12 Bits
Relative Accuracy ±2 LSB typ
Differential Nonlinearity ±1 LSB max Guaranteed Monotonic
Offset Error
Gain Error
Gain Error Mismatch
= IOVDD = 2.7 V to 3.6 V, V
DD
2, 3
4
4
5
6
7
Power-On Time
REF
1
= 2.5 V Internal Reference, f
REF
f
±1.5
±0.5
±2.0
+1/-0.9
±0.5
+1/-0.9
1
±5
±1
±5
±1
LSB max
LSB typ
LSB max
LSB max
LSB typ
LSB max
LSB typ
LSB max
LSB typ
LSB max
LSB typ
71 dB typ
-78
-80
8
±V
/2 Volts
CM
REF
Volts
REF
2.5
±10
80
10
1
0.625
AV
DD
TBD
dB typ
dB typ
V
ppm/°C typ
dB typ
Ω typ
ms typ
V min
V max
KΩ typ
±2
±5
±0.5
TBD
mV max
mV max
% max
% typ
= 45MHz, All specifications TA = T
CORE
= 1MSPS
SAMPLE
2.5V internal reference
2.5V internal reference
1.0V external reference
2.5V internal reference
2.5V internal reference
1.0V external reference
ADC input is a dc voltage
SAMPLE
0.47µF from V
to AGND
REF
= 5kΩ, CL = 100pF
R
L
DAC output unbuffered
DAC output buffered
% of fullscale on DAC0
MAX
= 1MSPS
to T
MIN
,
Rev. PrB | Page 3 of 80
ADuC702x Series Preliminary Technical Data
Parameter ADuC702x Unit Test Conditions/Comments
ANALOG OUTPUTS
Output Voltage Range_0
Ouput Voltage Range_1
Output Voltage Range_2
0 to DACREF
0 to 2.5V
0 to DACV
DD
Output Impedance 10
DAC AC CHARACTERISTICS
Voltage Output Settling Time
Voltage Output Settling Time
Digital to Analog Glitch Energy
10
15
TBD
COMPARATOR
Input Offset Voltage
Input Bias Current
Input Voltage Range
Input Capacitance
Hysteresis
Response Time
±10
5
AGND to AV
7
5
10
1
DD
-1.2
10
TEMPERATURE SENSOR
Voltage Output at 25°C
Voltage TC
TBD
-1.5
Accuracy ±3 °C typ
POWER SUPPLY MONITOR (PSM)
IOVDD Trip Point Selection 2.79 V Two selectable Trip Points
3.07 V
Power Supply Trip Point Accuracy ±2.5 % max Of the selected nominal Trip Point Voltage
Watchdog Timer (WDT)
Timeout Period
4
0
TBD
Flash/EE MEMORY
Endurance10 10,000 Cycles min
Data Retention11 30 Years min TJ = 55°C
Digital Inputs
Input Leakage Current
Input Capacitance
Logic Inputs4
VINL, Input Low Voltage
VINH, Input High Voltage
±10
±1
10
0.4
2.0
Logic Outputs
VOH, Output High Voltage IOVDD – 400mV V min I
VOL, Output Low Voltage12 0.4 V max I
MCU CLOCK RATE 355.5
45.5
STARTUP TIME
At Power-On
From Idle Mode
From Power-Down Mode
Programmable Logic Array (PLA)
Propagation Delay
TBD
TBD
TBD
TBD
V typ
V typ
V typ
Ω typ
µs typ
µs typ
nV-sec typ
mV
nA typ
Vmin/Vmax
pF typ
mV min
mv max
µs min
µs max
mV typ
mV/°C typ
ms min
ms max
µA max
µA typ
pF typ
V max
V min
kHz min
MHz max
ns typ
DACREF range: DACGND to DACV
DD
DAC Output buffered
DAC Output unbuffered
I LSB change at major carry
Hysteresis can be turned on or off via the
CMPHYST bit in the CMPCON register
Response time may be modified via the CMPRES
bits in the CMPCON register
All digital inputs including XTAL1 and XTAL2
All Logic inputs including XTAL1 and XTAL2
= 1.6mA
SOURCE
= 1.6mA
SINK
8 programmable core clock selections within this
range
Core Clock = TBD MHz
From input pin to output pin
Rev. PrB | Page 4 of 80
Preliminary Technical Data ADuC702x Series
Parameter ADuC702x Unit Test Conditions/Comments
POWER REQUIREMENTS 13, 14
Power Supply Voltage Range
AVDD – AGND and IOVDD - IOGND 2.7 V min
3.6 V max
Power Supply Current Normal Mode 3mA
Power Supply Current Idle Mode
Power Supply Current Power Down
Mode
1
Temperature Range -40° to +85°C
2
All ADC Channel Specifications are guaranteed during normal MicroConverter core operation.
3
These specification apply to all ADC input channels.
4
These numbers are not production tested but are supported by design and/or characterization data on production release.
5
Based on external ADC system components, the user may need to execute a system calibration to remove external endpoint and achieve these specifications..
6
SNR calculation includes distortion and noise components.
7
Channel-to-channel crosstalk is measured on adjacent channels.
8
The input signal can be centered on any dc common-mode voltage (VCM) as long as this value is within the ADC voltage input range specified.
9
When using an external reference input pin, the internal reference must be disabled by setting the lsb in the REFCON Memeory Mapped Register to 0.
10
Endurance is qualified to 50,000 cycles as per JEDEC Std. 22 method A117 and measured at -40°C, +25°C and +85°C. Typical endurance at 25°C is 70,000 cycles.
11
Retention lifetime equivalent at junction temperature (Tj) = 55°C as per JEDEC Std. 22 method A117. Retention lifetime will derate with junction temperature.
12
Test carried out with a maximum of 20 I/O set to a low output level.
13
Power supply current consumption is measured in normal, idle and power-down modes under the following conditions:
Normal Mode: TBD
Idle Mode: TBD
Power-Down: TBD
14
DVDD power supply current increases typically by TBD mA during a Flash/EE memory program or erase cycle.
1MHz clock
1MHz clock
45MHz clock
5
50
mA typ
mA max
mA typ
60 mA max 45MHz clock
1
30
100
mA max
µA typ
µA max
External Crystal or Internal Osc ON
External Crystal or Internal Osc ON
Rev. PrB | Page 5 of 80
ADuC702x Series Preliminary Technical Data
TERMINOLOGY
ADC Specifications
Integral Nonlinearity
This is the maximum deviation of any code from a straight line
passing through the endpoints of the ADC transfer function.
The endpoints of the transfer function are zero scale, a point 1/2
LSB below the first code transition and full scale, a point 1/2
LSB above the last code transition.
fundamental. Noise is the rms sum of all nonfundamental
signals up to half the sampling frequency (fS/2), excluding dc.
The ratio is dependent upon the number of quantization levels
in the digitisation process; the more levels, the smaller the
quantization noise. The theoretical signal to (noise + distortion)
ratio for an ideal N-bit converter with a sine wave input is given
by:
Signal to (Noise + Distortion) = (6.02N + 1.76) dB
Differential Nonlinearity
This is the difference between the measured and the ideal 1 LSB
change between any two adjacent codes in the ADC.
Offset Error
This is the deviation of the first code transition (0000 . . . 000) to
(0000 . . . 001) from the ideal, i.e., +1/2 LSB.
Gain Error
This is the deviation of the last code transition from the ideal
AIN voltage (Full Scale – 1.5 LSB) after the offset error has been
adjusted out.
Signal to (Noise + Distortion) Ratio
This is the measured ratio of signal to (noise + distortion) at the
output of the ADC. The signal is the rms amplitude of the
Thus for a 12-bit converter, this is 74 dB.
Total Harmonic Distortion
Total Harmonic Distortion is the ratio of the rms sum of the
harmonics to the fundamental.
DAC SPECIFICATIONS
Relative Accuracy
Relative accuracy or endpoint linearity is a measure of the
maximum deviation from a straight line passing through the
endpoints of the DAC transfer function. It is measured after
adjusting for zero error and full-scale error.
Voltage Output Settling Time
This is the amount of time it takes for the output to settle to
within a 1 LSB level for a full-scale input change..
AVDD to DVDD -0.3V to +0.3V
AGND to DGND -0.3V to +0.3V
DVDD to DGND, AVDD to AGND -0.3V to +7V
Digital Input Voltage to DGND -0.3V to +5.5V
Digital Output Voltage to DGND -0.3V to +5.5V
VREF to AGND -0.3V to AVDD+0.3V
Analog Inputs to AGND -0.3V to AVDD+0.3V
Operating Temperature Range
Industrial ADuC702x
Storage Temperature Range TBD
Junction Temperature 125°C
θJA Thermal Impedance (CSP)
θJA Thermal Impedance (LQFP)
Lead Temperature, Soldering
Vapor Phase (60 sec) TBD
Infrared (15 sec) TBD
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;
functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
–40°C to +125°C
TBD
TBD
ESD Caution
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the
human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. PrB | Page 7 of 80
ADuC702x Series Preliminary Technical Data
PIN CONFIGURATION
40-Lead CSP
40
31
1
PIN 1
IDENTIFIER
ADuC7020/21/22
30
64
1
TOP VIEW
64-Lead LQFP
PIN 1
IDENTIFIER
49
48
(Not to Scale)
10
11
21
20
ADuC7024/ADuC7025
64-LEAD L QFP
TOP VIEW
(Not to Scale)
64-Lead CSP
64
1
PIN 1
IDENTIFIER
49
48
16
17
33
32
ADuC7024/A D u C7025
TOP V IEW
(Not to Scale)
80
1
PIN 1
IDENTIFIER
80-Lead LQFP
61
60
16
17
33
32
ADuC7026/ADuC7027 80-LEAD
LQFP
TOP VIEW
(Not to Scale)
20
21
41
40
Rev. PrB | Page 8 of 80
Preliminary Technical Data ADuC702x Series
ORDERING GUIDE
Model ADC
Channels
DAC
Channels
FLASH /
RAM
PWM Ext
Memory
GPIO Temp
Range
Package
Description
Package
Option
ADuC7020BCP62 5 4 62kB/8kB Single 14
ADuC7021BCP62 8 2 62kB/8kB Single 13
ADuC7021BCP32 8 2 32kB/4kB Single 13
ADuC7021ACP32
ADuC7022BCP62 10 62kB/8kB Single 13
ADuC7022BCP32 10 32kB/4kB Single 13
ADuC7022ACP32
ADuC7024BCP62 10 2 62kB/8kB
ADuC7024BST62 10 2 62kB/8kB
ADuC7025BCP62 12 62kB/8kB
ADuC7025BCP32 12 32kB/4kB
ADuC7026BST62 12 4 62kB/8kB
ADuC7027BST62 16 62kB/8kB
ADuC7027AST62
EVAL-ADuC7020QS
EVAL-ADuC7024QS
EVAL-ADuC7026QS
8 (10 Bit
NMC)
10 (10 Bit
NMC)
16 (10 Bit
NMC)
2 32kB/4kB Single 13
62kB/8kB Single 13
Three
Phase
Three
Phase
Three
Phase
Three
Phase
Three
Phase
Three
Phase
62kB/8kB
Three
Phase
30
30
30
30
Yes 40
Yes 40
Yes 40
–40°C to +
85°C
–40°C to +
85°C
–40°C to +
85°C
–40°C to +
85°C
–40°C to +
85°C
–40°C to +
85°C
–40°C to +
85°C
–40°C to +
85°C
–40°C to +
125°C
–40°C to +
85°C
–40°C to +
85°C
–40°C to +
125°C
–40°C to +
125°C
–40°C to +
125°C
Contact the factory for chip availability.
40-Lead Chip
Scale Package
40-Lead Chip
Scale Package
40-Lead Chip
Scale Package
40-Lead Chip
Scale Package
40-Lead Chip
Scale Package
40-Lead Chip
Scale Package
40-Lead Chip
Scale Package
64-Lead Chip
Scale Package
64 Lead
Plastic Quad
Flatpack
64-Lead Chip
Scale Package
64-Lead Chip
Scale Package
80 Lead
Plastic Quad
Flatpack
80 Lead
Plastic Quad
Flatpack
80 Lead
Plastic Quad
Flatpack
Development
System
Development
System
Development
System
CP-40
CP-40
CP-40
CP-40
CP-40
CP-40
CP-40
CP-64-1
ST-64
CP-64-1
CP-64-1
ST-80
ST-80
ST-80
Rev. PrB | Page 9 of 80
ADuC702x Series Preliminary Technical Data
PIN FUNCTION DESCRIPTIONS – ADUC7020/ADUC7021/ADUC7022
Table 3. Pin Function Descriptions
Pin# ADuC702X
Mnemonic Type* Function
7020 7021 7022
38 37 36 ADC0 I Single-ended or differential Analog input 0
39 38 37 ADC1 I Single-ended or differential Analog input 1
40 39 38 ADC2/CMP0 I Single-ended or differential Analog input 2 / Comparator Positive Input
1 40 39 ADC3/CMP1 I Single-ended or differential Analog input 3 / Comparator Negative Input
2 1 40 ADC4 I Single-ended or differential Analog input 4
- 2 1 ADC5 I Single-ended or differential Analog input 5
- 3 2 ADC6 I Single-ended or differential Analog input 6
- 4 3 ADC7 I Single-ended or differential Analog input 7
- - 4 ADC8 I Single-ended or differential Analog input 8
- - 5 ADC9 I Single-ended or differential Analog input 9
3 5 6 GND
S
REF
Ground voltage reference for the ADC. For optimal performance the
analog power supply should be separated from IOGND and DGND
4 6 - DAC0/ADC12 I/O DAC0 Voltage Output / Single-ended or differential Analog input 12
5 7 - DAC1/ADC13 I/O DAC1 Voltage Output / Single-ended or differential Analog input 13
6 - - DAC2/ADC14 I/O DAC2 Voltage Output / Single-ended or differential Analog input 14
7 - - DAC3/ADC15 I/O DAC3 Voltage Output / Single-ended or differential Analog input 15
8 8 7 TMS I JTAG Test Port Input - Test Mode Select. Debug and download access
9 9 8 TDI I JTAG Test Port Input – Test Data In. Debug and download access
Multifunction I/O pin:
10 10 9
BM/P0.0/CMP
LAI[7]
OUT
/P
Boot Mode. The ADuC702X will enter serial download mode if BM is low
I/O
at reset and will execute code if BM is pulled high at reset through a
1kOhm resistor/ General Purpose Input-Output Port 0.0 / Voltage
Comparator Output/ Programmable Logic Array Input Element 7
11 11 10
P0.6/T1/MRST/PLA
O[3]
Multifunction pin: driven low after reset
O
General Purpose Output Port 0.6 / Timer 1 Input / Power on reset output
/ Programmable Logic Array Output Element 3
12 12 11 TCK I JTAG Test Port Input - Test Clock. Debug and download access
13 13 12 TDO O JTAG Test Port Output - Test Data Out. Debug and download access
14 14 13 IOGND S Ground for GPIO. Typically connected to DGND
15 15 14 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
16 16 15 LVDD S
2.5V. Output of the on-chip voltage regulator. Must be connected to a
0.47µF capacitor to DGND
17 17 16 DGND S Ground for core logic.
18 18 17 P0.3/TRST/ADC
I
BUSY
General Purpose Input-Output Port 0.3 / JTAG Test Port Input – Test
Reset. Debug and download access / ADC
signal output
BUSY
19 19 18 RST I Reset Input. (active low)
Multifunction I/O pin:
20 20 19
IRQ0/P0.4/CONV
ART
/PLAO[1]
ST
External Interrupt Request 0, active high / General Purpose Input-Output
I/O
Port 0.4 / Start conversion input signal for ADC / Programmable Logic
Array Output Element 1
21 21 20
22 22 21
23 23 22
IRQ1/P0.5/ADC
/PLAO[2]
P2.0/SPM9/PLAO[
5]/CONV
P0.7/ECLK/SPM8/
PLAO[4]/XCLK
START
BUSY
Multifunction I/O pin:
I/O
External Interrupt Request 1, active high / General Purpose Input-Output
Port 0.5 / ADC
signal / Programmable Logic Array Output Element 2
BUSY
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 2.0 / UART / Programmable Logic
Array Output Element 5/ Start conversion input signal for ADC
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 0.7 / Output for External Clock signal
/ UART / Programmable Logic Array Output Element 4/ Input to the
Rev. PrB | Page 10 of 80
Preliminary Technical Data ADuC702x Series
Pin# ADuC702X
7020 7021 7022
24 24 23 XCLKO O Output from the crystal oscillator inverter
25 25 24 XCLKI I
26 26 25
27 27 26 P1.6/SPM6/PLAI[6] I/O
28 28 27
29 29 28
30 30 29 P1.3/SPM3/PLAI[3] I/O
31 31 30 P1.2/SPM2/PLAI[2] I/O
32 32 31 P1.1/SPM1/PLAI[1] I/O
33 33 32
34 - - P4.2/PLAO[10] I/O
35 34 33 V
36 35 34 AGND S Analog Ground. Ground reference point for the analog circuitry
37 36 35 AVDD S 3.3V Analog Power
*
I = Input, O = Output, S = Supply.
- No pin assigned.
Mnemonic Type* Function
internal clock generator circuits
Input to the crystal oscillator inverter and input to the internal clock
generator circuits
P1.7/SPM7/PLAO[
0]
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 1.7 / UART / SPI / Programmable
Logic Array Output Element 0
Serial Port Multiplexed:
General Purpose Input-Output Port 1.6 / UART / SPI / Programmable
Logic Array Input Element 6
P1.5/SPM5/PLAI[5]
/IRQ3
P1.4/SPM4/PLAI[4]
/IRQ2
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 1.5 / UART / SPI / Programmable
Logic Array Input Element 5/ External Interrupt Request 3, active high
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 1.4 / UART / SPI / Programmable
Logic Array Input Element 4/ External Interrupt Request 2, active high
Serial Port Multiplexed:
General Purpose Input-Output Port 1.3/ UART / I2C1 /Programmable
Logic Array Input Element 3
Serial Port Multiplexed:
General Purpose Input-Output Port 1.2 / UART / I2C1 /Programmable
Logic Array Input Element 2
Serial Port Multiplexed:
General Purpose Input-Output Port 1.1 / UART / I2C0 / Programmable
Logic Array Input Element 1
P1.0/T1/SPM0/PLA
I[0]
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 1.0/ Timer 1 Input / UART / I2C0 /
Programmable Logic Array Input Element 0
General Purpose Input-Output Port 4.2 / Programmable Logic Array
Output Element 10
I/O
REF
2.5V internal Voltage Reference. Must be connected to a 0.47uF capacitor
when using the internal reference.
Rev. PrB | Page 11 of 80
ADuC702x Series Preliminary Technical Data
PIN FUNCTION DESCRIPTIONS – ADUC7024/ADUC7025
Table 4. Pin Function Descriptions
Pin# Mnemonic Type* Function
1 ADC4 I Single-ended or differential Analog input 4
2 ADC5 I Single-ended or differential Analog input 5
3 ADC6 I Single-ended or differential Analog input 6
4 ADC7 I Single-ended or differential Analog input 7
5 ADC8 I Single-ended or differential Analog input 8
6 ADC9 I Single-ended or differential Analog input 9
7 GND
8 ADCNEG I
9 DAC0**/ADC12 I/O DAC0 Voltage Output / Single-ended or differential Analog input 12
10 DAC1**/ADC13 I/O DAC1 Voltage Output / Single-ended or differential Analog input 13
11 TMS I JTAG Test Port Input - Test Mode Select. Debug and download access
12 TDI I JTAG Test Port Input – Test Data In. Debug and download access
13 P4.6/PLAO[14] I/O
14 P4.7/PLAO[15] I/O
15 BM/P0.0/CMP
16 P0.6/T1/MRST/PLAO[3] O
17 TCK I JTAG Test Port Input - Test Clock. Debug and download access
18 TDO O JTAG Test Port Output - Test Data Out. Debug and download access
19 IOGND S Ground for GPIO. Typically connected to DGND
20 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
21 LVDD S
22 DGND S Ground for core logic.
23 P3.0/PWM0H/PLAI[8] I/O
24 P3.1/PWM0L/PLAI[9] I/O
25 P3.2/PWM1H/PLAI[10] I/O
26 P3.3/PWM1L/PLAI[11] I/O
27 P0.3/TRST/ADC
28 RST I Reset Input. (active low)
29 P3.4/PWM2H/PLAI[12] I/O
30 P3.5/PWM2L/PLAI[13] I/O
S
REF
/PLAI[7] I/O
OUT
I/O
BUSY
Ground voltage reference for the ADC. For optimal performance the analog
power supply should be separated from IOGND and DGND
Bias point or Negative Analog Input of the ADC in pseudo differential mode.
Must be connected to the ground of the signal to convert. This bias point
must be between 0V and 1V
General Purpose Input-Output Port 4.6/ Programmable Logic Array Output
Element 14
General Purpose Input-Output Port 4.7/ Programmable Logic Array Output
Element 15
Multifunction I/O pin:
Boot Mode. The ADuC7024/ADuC7025 will enter download mode if BM is low
at reset and will execute code if BM is pulled high at reset through a 1kOhm
resistor/ General Purpose Input-Output Port 0.0 / Voltage Comparator
Output/ Programmable Logic Array Input Element 7
Multifunction pin: driven low after reset
General Purpose Output Port 0.6 / Timer 1 Input / Power on reset output /
Programmable Logic Array Output Element 3
2.5V. Output of the on-chip voltage regulator. Must be connected to a 0.47µF
capacitor to DGND
General Purpose Input-Output Port 3.0/ PWM phase 0 high side output /
Programmable Logic Array Input Element 8
General Purpose Input-Output Port 3.1/ PWM phase 0 low side output /
Programmable Logic Array Input Element 9
General Purpose Input-Output Port 3.2/ PWM phase 1 high side output /
Programmable Logic Array Input Element 10
General Purpose Input-Output Port 3.3/ PWM phase 1 low side output /
Programmable Logic Array Input Element 11
General Purpose Input-Output Port 0.3 / JTAG Test Port Input – Test Reset.
Debug and download access / ADC
General Purpose Input-Output Port 3.4 / PWM phase 2 high side output /
Programmable Logic Array Input 12
General Purpose Input-Output Port 3.5 / PWM phase 2 low side output /
Programmable Logic Array Input Element 13
signal output
BUSY
Rev. PrB | Page 12 of 80
Preliminary Technical Data ADuC702x Series
Pin# Mnemonic Type* Function
Multifunction I/O pin:
31 IRQ0/P0.4/CONV
32 IRQ1/P0.5/ADC
33 P2.0/PWM
TRIP
/PLAO[1] I/O
START
/PLAO[2] I/O
BUSY
/SPM9/PLAO[5]/CONV
I/O
START
34 P0.7/ECLK/SPM8/PLAO[4]/XCLK I/O
35 XCLKO O Output from the crystal oscillator inverter
36 XCLKI I
37 P3.6/PWM
/PLAI[14] I/O
TRIP
38 P3.7/PWMSYNC/PLAI[15] I/O
39 P1.7/SPM7/PLAO[0] I/O
40 P1.6/SPM6/PLAI[6] I/O
41 IOGND S Ground for GPIO. Typically connected to DGND
42 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
43 P4.0/PLAO[8] I/O
44 P4.1/PLAO[9] I/O
45 P1.5/SPM5/PLAI[5]/IRQ3 I/O
46 P1.4/SPM4/PLAI[4]/IRQ2 I/O
47 P1.3/SPM3/PLAI[3] I/O
48 P1.2/SPM2/PLAI[2] I/O
49 P1.1/SPM1/PLAI[1] I/O
50 P1.0/T1/SPM0/PLAI[0] I/O
51 P4.2/PLAO[10] I/O
External Interrupt Request 0, active high / General Purpose Input-Output Port
0.4 / Start conversion input signal for ADC / Programmable Logic Array
Output Element 1
Multifunction I/O pin:
External Interrupt Request 1, active high / General Purpose Input-Output Port
0.5 / ADC
signal / Programmable Logic Array Output Element 2
BUSY
Serial Port Multiplexed:
General Purpose Input-Output Port 2.0 / PWM safety cut off / UART /
Programmable Logic Array Output Element 5/ Start conversion input signal
for ADC
Serial Port Multiplexed:
General Purpose Input-Output Port 0.7 / Output for External Clock signal /
UART / Programmable Logic Array Output Element 4/ Input to the internal
clock generator circuits
Input to the crystal oscillator inverter and input to the internal clock
generator circuits
General Purpose Input-Output Port 3.6/ PWM safety cut off / Programmable
Logic Array Input Element 14
General Purpose Input-Output Port 3.7/ PWM synchronisation input output
/Programmable Logic Array Input Element 15
Serial Port Multiplexed:
General Purpose Input-Output Port 1.7 / UART / SPI / Programmable Logic
Array Output Element 0
Serial Port Multiplexed:
General Purpose Input-Output Port 1.6 / UART / SPI / Programmable Logic
Array Input Element 6
General Purpose Input-Output Port 4.0 / Programmable Logic Array Output
Element 8
General Purpose Input-Output Port 4.1 / Programmable Logic Array Output
Element 9
Serial Port Multiplexed:
General Purpose Input-Output Port 1.5 / UART / SPI / Programmable Logic
Array Input Element 5/ External Interrupt Request 3, active high
Serial Port Multiplexed:
General Purpose Input-Output Port 1.4 / UART / SPI / Programmable Logic
Array Input Element 4/ External Interrupt Request 2, active high
Serial Port Multiplexed:
2
General Purpose Input-Output Port 1.3/ UART / I
C1 /Programmable Logic
Array Input Element 3
Serial Port Multiplexed:
General Purpose Input-Output Port 1.2 / UART / I
2
C1 /Programmable Logic
Array Input Element 2
Serial Port Multiplexed:
General Purpose Input-Output Port 1.1 / UART / I
2
C0 / Programmable Logic
Array Input Element 1
Serial Port Multiplexed:
General Purpose Input-Output Port 1.0/ Timer 1 Input / UART / I2C0 /
Programmable Logic Array Input Element 0
General Purpose Input-Output Port 4.2 / Programmable Logic Array Output
Element 10
Rev. PrB | Page 13 of 80
ADuC702x Series Preliminary Technical Data
Pin# Mnemonic Type* Function
52 P4.3/PLAO[11] I/O
53 P4.4/PLAO[12] I/O
54 P4.5/PLAO[13] I/O
55 V
56 DAC
I/O
REF
I External Voltage Reference for the DACs. Range: DACGND to DACVDD
REF
57 DACGND S Ground for the DAC. Typically connected to AGND
58 AGND S Analog Ground. Ground reference point for the analog circuitry
59 AVDD S 3.3V Analog Power
60 DACVDD S 3.3V Power Supply for the DACs. Typically connected to AVDD
61 ADC0 I Single-ended or differential Analog input 0
62 ADC1 I Single-ended or differential Analog input 1
63 ADC2/CMP0 I Single-ended or differential Analog input 2/ Comparator positive input
64 ADC3/CMP1 I Single-ended or differential Analog input 3/ Comparator negative input
*
I = Input, O = Output, S = Supply.
** DAC outputs not present on ADuC7025
General Purpose Input-Output Port 4.3 / Programmable Logic Array Output
Element 11
General Purpose Input-Output Port 4.4 / Programmable Logic Array Output
Element 12
General Purpose Input-Output Port 4.5 / Programmable Logic Array Output
Element 13
2.5V internal Voltage Reference. Must be connected to a 0.47uF capacitor
when using the internal reference.
Rev. PrB | Page 14 of 80
Preliminary Technical Data ADuC702x Series
PIN FUNCTION DESCRIPTIONS – ADUC7026/ADUC7027
Table 5. Pin Function Descriptions
Pin# Mnemonic Type* Function
1 ADC4 I Single-ended or differential Analog input 4
2 ADC5 I Single-ended or differential Analog input 5
3 ADC6 I Single-ended or differential Analog input 6
4 ADC7 I Single-ended or differential Analog input 7
5 ADC8 I Single-ended or differential Analog input 8
6 ADC9 I Single-ended or differential Analog input 9
7 ADC10 I Single-ended or differential Analog input 10
8 GND
9 ADCNEG I
10 DAC0/ADC12 I/O DAC0 Voltage Output / Single-ended or differential Analog input 12
11 DAC1/ADC13 I/O DAC1 Voltage Output / Single-ended or differential Analog input 13
12 DAC1/ADC14 I/O DAC2 Voltage Output / Single-ended or differential Analog input 14
13 DAC1/ADC15 I/O DAC3 Voltage Output / Single-ended or differential Analog input 15
14 TMS I JTAG Test Port Input - Test Mode Select. Debug and download access
15 TDI I JTAG Test Port Input – Test Data In. Debug and download access
16
17 P2.3/AE
18 P4.6/AD14/PLAO[14] I/O
19 P4.7/AD15/PLAO[15] I/O
20 BM/P0.0/CMP
21 P0.6/T1/MRST/PLAO[3]/AE O
22 TCK I JTAG Test Port Input - Test Clock. Debug and download access
23 TDO O JTAG Test Port Output - Test Data Out. Debug and download access
24
25 IOGND S Ground for GPIO. Typically connected to DGND
26 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
27 LVDD S
28 DGND S Ground for core logic.
29 P3.0/AD0/PWM0H/PLAI[8] I/O
30 P3.1/AD1/PWM0L/PLAI[9] I/O
31 P3.2/AD2/PWM1H/PLAI[10] I/O
32 P3.3/AD3/PWM1L/PLAI[11] I/O
33 P2.4/MS0 I/O General Purpose Input-Output Port 2.4 / External Memory select 0
S
REF
BLE
P0.1/
P0.2/
BHE
/PLAI[7] I/O
OUT
Ground voltage reference for the ADC. For optimal performance the analog
power supply should be separated from IOGND and DGND
Bias point or Negative Analog Input of the ADC in pseudo differential mode.
Must be connected to the ground of the signal to convert. This bias point
must be between 0V and 1V
I/O General Purpose Input-Output Port 0.1/ External memory byte low enable
General Purpose Input-Output Port 4.6/ External Memory
Interface/Programmable Logic Array Output Element 14
General Purpose Input-Output Port 4.7/ External Memory Interface /
Programmable Logic Array Output Element 15
Multifunction I/O pin:
Boot Mode. The ADuC7026 will enter UART download mode if BM is low at
reset and will execute code if BM is pulled high at reset through a 1kOhm
resistor/ General Purpose Input-Output Port 0.0 / Voltage Comparator
Output/ Programmable Logic Array Input Element 7
Multifunction pin: driven low after reset
General Purpose Output Port 0.6 / Timer 1 Input / Power on reset output /
Programmable Logic Array Output Element 3
I/O General Purpose Input-Output Port 0.2/ External memory byte high enable
2.5V. Output of the on-chip voltage regulator. Must be connected to a 0.47µF
capacitor to DGND
General Purpose Input-Output Port 3.0 / External Memory Interface/ PWM
phase 0 high side output / Programmable Logic Array Input Element 8
General Purpose Input-Output Port 3.1 / External Memory Interface / PWM
phase 0 low side output / Programmable Logic Array Input Element 9
General Purpose Input-Output Port 3.2 / External Memory Interface / PWM
phase 1 high side output / Programmable Logic Array Input Element 10
General Purpose Input-Output Port 3.3 / External Memory Interface / PWM
phase 1 low side output / Programmable Logic Array Input Element 11
Rev. PrB | Page 15 of 80
ADuC702x Series Preliminary Technical Data
Pin# Mnemonic Type* Function
34 P0.3/TRST/A16/ADC
I/O
BUSY
General Purpose Input-Output Port 0.3 / JTAG Test Port Input – Test Reset.
Debug and download access / ADC
signal output
BUSY
35 P2.5/MS1 I/O General Purpose Input-Output Port 2.5 / External Memory select 1
36 P2.6/MS2 I/O General Purpose Input-Output Port 2.6 / External Memory select 2
37 RST I Reset Input. (active low)
38 P3.4/AD4/PWM2H/PLAI[12] I/O
39 P3.5/AD5/PWM2L/PLAI[13] I/O
General Purpose Input-Output Port 3.4 / External Memory Interface / PWM
phase 2 high side output / Programmable Logic Array Input 12
General Purpose Input-Output Port 3.5 / External Memory Interface /PWM
phase 2 low side output / Programmable Logic Array Input Element 13
Multifunction I/O pin:
40 IRQ0/P0.4/CONV
/PLAO[1] I/O
START
External Interrupt Request 0, active high / General Purpose Input-Output Port
0.4 / Start conversion input signal for ADC / Programmable Logic Array
Output Element 1
Multifunction I/O pin:
41 IRQ1/P0.5/ADC
/PLAO[2] I/O
BUSY
External Interrupt Request 1, active high / General Purpose Input-Output Port
0.5 / ADC
signal / Programmable Logic Array Output Element 2
BUSY
Serial Port Multiplexed:
42 P2.0/PWM
/SPM9/PLAO[5]/CONV
TRIP
I/O
START
General Purpose Input-Output Port 2.0 / PWM safety cut off / UART /
Programmable Logic Array Output Element 5/ Start conversion input signal
for ADC
Serial Port Multiplexed:
43 P0.7/ECLK/SPM8/PLAO[4]/XCLK I/O
General Purpose Input-Output Port 0.7 / Output for External Clock signal /
UART / Programmable Logic Array Output Element 4/ Input to the internal
clock generator circuits.
44 XCLKO O Output from the crystal oscillator inverter
45 XCLKI I
46 P3.6/AD6/PWM
/PLAI[14] I/O
TRIP
47 P3.7/AD7/ECLK/PLAI[15] I/O
Input to the crystal oscillator inverter and input to the internal clock
generator circuits
General Purpose Input-Output Port 3.6 / External Memory Interface / PWM
safety cut off / Programmable Logic Array Input Element 14
General Purpose Input-Output Port 3.7/ / External Memory Interface / Output
for External Clock signal /Programmable Logic Array Input Element 15
48 P2.7/MS3 I/O General Purpose Input-Output Port 2.7 / External Memory select 3
49 P2.1/WS I/O General Purpose Input-Output Port 2.1 / External Memory Write Strobe
50 P2.2/RS I/O General Purpose Input-Output Port 2.2 / External Memory Read Strobe
Serial Port Multiplexed:
51 P1.7/SPM7/PLAO[0] I/O
General Purpose Input-Output Port 1.7 / UART / SPI / Programmable Logic
Array Output Element 0
Serial Port Multiplexed:
52 P1.6/SPM6/PLAI[6] I/O
General Purpose Input-Output Port 1.6 / UART / SPI / Programmable Logic
Array Input Element 6
53 IOGND S Ground for GPIO. Typically connected to DGND
54 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
55 P4.0/AD8/PLAO[8] I/O
56 P4.1/AD9/PLAO[9] I/O
General Purpose Input-Output Port 4.0 / External Memory Interface /
Programmable Logic Array Output Element 8
General Purpose Input-Output Port 4.1 / External Memory Interface
/Programmable Logic Array Output Element 9
Serial Port Multiplexed:
57 P1.5/SPM5/PLAI[5]/IRQ3 I/O
General Purpose Input-Output Port 1.5 / UART / SPI / Programmable Logic
Array Input Element 5/ External Interrupt Request 3, active high
Serial Port Multiplexed:
58 P1.4/SPM4/PLAI[4]/IRQ2 I/O
General Purpose Input-Output Port 1.4 / UART / SPI / Programmable Logic
Array Input Element 4 / External Interrupt Request 2, active high
59 P1.3/SPM3/PLAI[3] I/O Serial Port Multiplexed:
Rev. PrB | Page 16 of 80
Preliminary Technical Data ADuC702x Series
Pin# Mnemonic Type* Function
General Purpose Input-Output Port 1.3/ UART / I2C1 /Programmable Logic
Array Input Element 3
Serial Port Multiplexed:
60 P1.2/SPM2/PLAI[2] I/O
General Purpose Input-Output Port 1.2 / UART / I
Array Input Element 2
Serial Port Multiplexed:
61 P1.1/SPM1/PLAI[1] I/O
General Purpose Input-Output Port 1.1 / UART / I2C0 / Programmable Logic
Array Input Element 1
Serial Port Multiplexed:
62 P1.0/T1/SPM0/PLAI[0] I/O
General Purpose Input-Output Port 1.0/ Timer 1 Input / UART / I
Programmable Logic Array Input Element 0
63 P4.2/AD10/PLAO[10] I/O
General Purpose Input-Output Port 4.2 / External Memory Interface /
Programmable Logic Array Output Element 10
64 P4.3/AD11/PLAO[11] I/O
65 P4.4/AD12/PLAO[12] I/O
66 P4.5/AD13/PLAO[13] I/O
General Purpose Input-Output Port 4.3 / External Memory Interface
/Programmable Logic Array Output Element 11
General Purpose Input-Output Port 4.4 / External Memory Interface
/Programmable Logic Array Output Element 12
General Purpose Input-Output Port 4.5 / External Memory Interface
/Programmable Logic Array Output Element 13
67 REFGND S Ground for the reference. Typically connected to AGND
68 V
REF
69 DAC
I/O
I External Voltage Reference for the DACs. Range: DACGND to DACVDD
REF
2.5V internal Voltage Reference. Must be connected to a 0.47uF capacitor
when using the internal reference.
70 DACGND S Ground for the DAC. Typically connected to AGND
71 AGND S Analog Ground. Ground reference point for the analog circuitry
72 AGND S Analog Ground. Ground reference point for the analog circuitry
73 AVDD S 3.3V Analog Power
74 AVDD S 3.3V Analog Power
75 DACVDD S 3.3V Power Supply for the DACs. Typically connected to AVDD
76 ADC11 I Single-ended or differential Analog input 11
77 ADC0 I Single-ended or differential Analog input 0
78 ADC1 I Single-ended or differential Analog input 1
79 ADC2/CMP0 I Single-ended or differential Analog input 2/ Comparator positive input
80 ADC3/CMP1 I Single-ended or differential Analog input 3/ Comparator negative input
* See selection table for
feature availability on
different models.
E
S
S
L
H
B
B
M
M
/
/
/
/
1
2
6
7
.
.
.
.
0
0
2
2
P
P
P
P
Figure 2: Detailed Block Diagram
Rev. PrB | Page 18 of 80
Preliminary Technical Data ADuC702x Series
GENERAL DESCRIPTION
The ADuC702x is fully integrated, 1MSPS, 12-bit data
acquisition system incorporating a high performance multichannel ADC, a 16/32-bit MCU and Flash/EE Memory on a
single chip.
The ADC consists of up to 12 single-ended inputs. An
additional 4 inputs are available but are multiplexed with the 4
DAC output pins. The 4 DAC outputs are only available on
certain models of the ADuC702x, though in many cases where
the DAC is not present this pin can still be used as an additional
ADC input, giving a maximum of 16 ADC input channels. The
ADC can operate in single-ended or differential input modes.
The ADC input voltage is 0 to V
reference, temperature sensor and voltage comparator complete
the ADC peripheral set.
The ADuC702x also integrates 4 buffered voltage output DACs
on-chip. The DAC output range is programmable to one of
three voltage ranges.
The device operates from an on-chip oscillator and PLL
generating an internal high-frequency clock of 45 MHz. This
clock is routed through a programmable clock divider from
which the MCU core clock operating frequency is generated.
The microcontroller core is an ARM7TDMI, 16/32-bit RISC
machine, offering up to 45 MIPS peak performance. 62k Bytes
of non-volatile Flash/EE are provided on-chip as well as 8k
Bytes of SRAM. The ARM7TDMI core views all memory and
registers as a single linear array.
On-chip factory firmware supports in-circuit serial download
via the UART and JTAG serial interface ports while nonintrusive emulation is also supported via the JTAG interface.
These features are incorporated into a low-cost QuickStart
Development System supporting this MicroConverter family.
The parts operate from 2.7V to 3.6V and are specified over an
industrial temperature range of -40°C to 125°C. When
operating at 45MHz the power dissipation is 150mW. The
ADuC702x is available in a variety of memory models and
packages. These are detailed on page 9.
. Low drift bandgap
REF
OVERVIEW OF THE ARM7TDMI CORE
The ARM7 core is a 32-bit Reduced Instruction Set Computer
(RISC). It uses a single 32-bit bus for instruction and data. The
length of the data can be 8, 16 or 32 bits and the length of the
instruction word is 32 bits.
The ARM7TDMI is an ARM7 core with 4 additional features:
- T support for the Thumb (16 bit) instruction set.
- D support for debug
- M support for long multiplies
- I include the EmbeddedICE module to support embedded
system debugging.
Thumb mode (T)
An ARM instruction is 32-bits long. The ARM7TDMI
processor supports a second instruction set that has been
compressed into 16-bits, the Thumb instruction set. Faster
execution from 16-bit memory and greater code density can
usually be achieved by using the Thumb instruction set instead
of the ARM instruction set, which makes the ARM7TDMI core
particularly suitable for embedded applications.
However the Thumb mode has two limitations:
- Thumb code usually uses more instructions for the same job,
so ARM code is usually best for maximising the performance
of the time-critical code.
- The Thumb instruction set does not include some
instructions that are needed for exception handling, so the
core will automatically switch to ARM code for exception
handling.
See ARM7TDMI User Guide for details on the core
architecture, the programming model and both the ARM and
ARM Thumb instruction sets.
Long Multiply (M)
The ARM7TDMI instruction set includes four extra
instructions which perform 32-bit by 32-bit multiplication with
64-bit result and 32-bit by 32-bit multiplication-accumulation
(MAC) with 64-bit result. This result is achieved in a reduced
number of cycles than required on a standard ARM7 core.
EmbeddedICE (I)
EmbeddedICE provides integrated on-chip support for the core.
The EmbeddedICE module contains the breakpoint and
watchpoint registers which allow code to be halted for
debugging purposes. These registers are controlled through the
JTAG test port.
When a breakpoint or watchpoint is encountered, the processor
halts and enters debug state. Once in a debug state, the
processor registers may be inspected as well as the Flash/EE, the
SRAM and the Memory Mapped Registers.
Exceptions
ARM supports five types of exceptions, and a privileged
processing mode for each type. The five type of exceptions are:
- Normal interrupt or IRQ. It is provided to service general-
purpose interrupt handling of internal and external events
- Fast interrupt or FIQ. It is provided to service data transfer or
communication channel with low latency. FIQ has priority
over IRQ
Rev. PrB | Page 19 of 80
ADuC702x Series Preliminary Technical Data
- Memory abort
- Attempted execution of an undefined instruction
- Software interrupt (SWI) instruction which can be used to
make a call to an operating system.
Typically the programmer will define interrupts as IRQ but for
higher priority interrupt, i.e. faster response time, the
programmer can define interrupt as FIQ.
ARM Registers
ARM7TDMI has a total of 37 registers, of which 31 are general
purpose registers and six are status registers. Each operating
mode has dedicated banked registers.
When writing user-level programs, 15 general purpose 32-bit
registers (r0 to r14), the program counter (r15) and the current
program status register (CPSR) are usable. The remaining
registers are used only for system-level programming and for
exception handling.
When an exception occurs, some of the standard register are
replaced with registers specific to the exception mode. All
exception modes have replacement banked registers for the
stack pointer (r13) and the link register (r14) as represented in
Figure 3. The fast interrupt mode has more registers (8 to 12)
for fast interrupt processing, so that the interrupt processing
can begin without the need to save or restore these registers and
thus save critical time in the interrupt handling process.
Interrupt latency
The worst case latency for an FIQ consists of the longest time
the request can take to pass through the synchronizer, plus the
time for the longest instruction to complete (the longest
instruction is an LDM) which loads all the registers including
the PC, plus the time for the data abort entry, plus the time for
FIQ entry. At the end of this time, the ARM7TDMI will be
executing the instruction at 0x1C (FIQ interrupt vector
address). The maximum total time is 50 processor cycles, which
is just over 1.1µS in a system using a continuous 45 MHz
processor clock. The maximum IRQ latency calculation is
similar, but must allow for the fact that FIQ has higher priority
and could delay entry into the IRQ handling routine for an
arbitrary length of time. This time can be reduced to 42 cycles
if the LDM command is not used, some compilers have an
option to compile without using this command. Another option
is to run the part in THUMB mode where this is reduced to 22
cycles.
The minimum latency for FIQ or IRQ interrupts is five cycles in
total which consists of the shortest time the request can take
through the synchronizer plus the time to enter the exception
mode.
Note that the ARM7TDMI will always be run in ARM (32-bit)
mode when in privileged modes, i.e. when executing interrupt
service routines.
r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15 (PC)
CPSR
user modefiq
r8_fiq
r9_fiq
r10_fiq
r11_fiq
r12_fiq
r13_fiq
r14_fiq
SPSR_fiq
mode
Figure 3: register organisation
r13_svc
r14_svc
SPSR_svc
svc
mode
r13_abt
r14_abt
SPSR_abt
mode
usablein user mode
system modes only
r13_irq
r14_irq
SPSR_irq
abort
mode
irq
r13_und
r14_und
SPSR_und
undefined
mode
More information relative to the programmer’s model and the
ARM7TDMI core architecture can be found in the following
documents from ARM:
- DDI0029G, ARM7TDMI Technical Reference Manual.
- DDI0100E, ARM Architecture Reference Manual.
Rev. PrB | Page 20 of 80
Preliminary Technical Data ADuC702x Series
MEMORY ORGANISATION
The part incorporates two separate blocks of memory, 8kByte of
SRAM and 64kByte of On-Chip Flash/EE memory. 62kByte of
On-Chip Flash/EE memory are available to the user, and the
remaining 2kBytes are reserved for the factory configured boot
page. These two blocks are mapped as shown in
.
Figure 4
Note that by default, after a reset, the Flash/EE memory is
mirrored at address 0x00000000. It is possible to remap the
SRAM at address 0x00000000 by clearing bit 0 of the REMAP
MMR. This remap function is described in more details in the
Flash/EE memory chapter.
FFFF0000h
00080000h
00010000h
00000000h
FFFFFFFFh
0008FFFFh
00011FFFh
0000FFFFh
MMRs
Reserved
Flash/EE
Reserved
SRAM
Re-mappableMemory Space
(Flash/EE or SRAM)
Figure 4: Physical memory map
Memory Access
The ARM7 core sees memory as a linear array of 232 byte
location where the different blocks of memory are mapped as
outlined in
Figure 4
The ADuC702x memory organisation is configured in little
endian format: the least significant byte is located in the lowest
byte address and the most significant byte in the highest byte
address.
.
Flash/EE Memory
The total 64kBytes of Flash/EE are organised as 32k X 16 bits.
31k X 16 bits are user space and 1k X 16 bits is reserved for the
on chip kernel. The page size of this Flash/EE memory is
512Bytes.
62kBytes of Flash/EE are available to the user as code and nonvolatile data memory. There is no distinction between data and
program as ARM code shares the same space. The real width of
the Flash/EE memory is 16 bits, which means that in ARM
mode (32-bit instruction), two accesses to the Flash/EE are
necessary for each instruction fetch. It is therefore
recommended to use Thumb mode when executing from
Flash/EE memory for optimum access speed. The maximum
access speed for the Flash/EE memory is 45MHz in Thumb
mode and 22.5MHz in full ARM mode. More details on
Flash/EE access time are outlined later in ‘Execution from
SRAM and Flash/EE’ section of this datasheet.
SRAM
8kBytes of SRAM are available to the user, organized as 2k X 32
bits, i.e. 2kWords. ARM code can run directly from SRAM at
45MHz , given that the SRAM array is configured as a 32-bit
wide memory array. More details on SRAM access time are
outlined later in ‘Execution from SRAM and Flash/EE’ section
of this datasheet.
Memory Mapped Registers
The Memory Mapped Register (MMR) space is mapped into
the upper 2 pages of the memory array and accessed by indirect
addressing through the ARM7 banked registers.
The MMR space provides an interface between the CPU and all
on-chip peripherals. All registers except the core registers
reside in the MMR area. All shaded locations shown in Figure 6
are unoccupied or reserved locations and should not be
accessed by user software. Table 6 shows a full MMR memory
map.
Byte0
...
89AB
4567
01
bit0
0xFFFFFFFFh
0x00000004h
0x00000000h
Rev. PrB | Page 21 of 80
bit31
Byte3
...
Byte1Byte2
...
...
23
32 bits
Figure 5: little endian format
ADuC702x Series Preliminary Technical Data
0xFFFFFFFF
0xFFFFFC3C
0xFFFFFC00
0xFFFFF820
0xFFFFF800
0xFFFFF46C
0xFFFFF400
0xFFFF0B54
0xFFFF0B00
0xFFFF0A14
0xFFFF0A00
0xFFFF0948
0xFFFF0900
0xFFFF0848
0xFFFF0800
0xFFFF0730
0xFFFF0700
0xFFFF0620
0xFFFF0600
0xFFFF0538
0xFFFF0500
0xFFFF0490
0xFFFF048C
0xFFFF0448
0xFFFF0440
0xFFFF0420
0xFFFF0404
0xFFFF0370
0xFFFF0360
0xFFFF0350
0xFFFF0340
0xFFFF0334
0xFFFF0320
0xFFFF0310
0xFFFF0300
0xFFFF0238
0xFFFF0220
0xFFFF0110
0xFFFF0000
PWM
Flash Control
Interface
GPIO
PLA
SPI
I2C1
I2C0
UART
DAC
ADC
Bandgap
Reference
Power Supply
Monitor
PLL &
Oscillator Control
Watchdog
Timer
Wake Up
Timer
General Purpose
Timer
Timer 0
Remap &
System Control
Interrupt
Controller
Figure 6: Memory Mapped
Rev. PrB | Page 22 of 80
Preliminary Technical Data ADuC702x Series
Table 6. Complete MMRs list
Access Address Name Byte
Type Cycle
IRQ address base = 0xFFFF0000
0x0000 IRQSTA 4 R 1 65
0x0004 IRQSIG 4 R 1 65
0x0008 IRQEN 4 RW 1 65
0x000C IRQCLR 4 W 1 65
0x0010 SWICFG 4 W 1 66
0x0100 FIQSTA 4 R 1 65
0x0104 FIQSIG 4 R 1 65
0x0108 FIQEN 4 RW 1 65
0x010C FIQCLR 4 W 1 65
System Control address base = 0xFFFF0200
0x0220 REMAP 1 RW 1 36
0x0230 RSTSTA 1 R 1 36
0x0234 RSTCLR 1 W 1 36
Timer address base = 0xFFFF0300
0x0300 T0LD 2 RW 2 67
0x0304 T0VAL 2 R 2 67
0x0308 T0CON 2 RW 2 67
0x030C T0CLRI 1 W 2 67
0x0320 T1LD 4 RW 2 68
0x0324 T1VAL 4 R 2 68
0x0328 T1CON 2 RW 2 68
0x032C T1CLRI 1 W 2 68
0x0330 T1CAP 4 RW 2 68
0x0340 T2LD 4 RW 2 69
0x0344 T2VAL 4 R 2 69
0x0348 T2CON 2 RW 2 69
0x034C T2CLRI 1 W 2 69
0x0360 T3LD 2 RW 2 70
0x0364 T3VAL 2 R 2 70
0x0368 T3CON 2 RW 2 70
0x036C T3CLRI 1 W 2 70
PLL base address = 0xFFFF0400
0x0404 POWKEY1 2 W 2 41
0x0408 POWCON 2 RW 2 41
0x040C POWKEY2 2 W 2 41
0x0410 PLLKEY1 2 W 2 41
Page
Address Name Byte
0x0414 PLLCON 2 RW 2 41
0x0418 PLLKEY2 2 W 2 41
PSM address base = 0xFFFF0440
0x0440 PSMCON 2 RW 2 39
0x0444 CMPCON 2 RW 2 39
Reference address base = 0xFFFF0480
0x048C REFCON 1 RW 2 31
ADC address base = 0xFFFF0500
0x0500 ADCCON 1 RW 2 27
0x0504 ADCCP 1 RW 2 28
0x0508 ADCCN 1 RW 2 28
0x050C ADCSTA 1 RW 2 27
0x0510 ADCDAT 4 R 2 27
0x0514 ADCRST 1 RW 2 27
0x0530 ADCGN 2 RW 2 30
0x0534 ADCOF 2 RW 2 30
DAC address base = 0xFFFF0600
0x0600 DAC0CON 1 RW 2 37
0x0604 DAC0DAT 4 RW 2 37
0x0608 DAC1CON 1 RW 2 37
0x060C DAC1DAT 4 RW 2 37
UART base address = 0xFFFF0700
0x0700 COMTX 1 RW 2 53
COMRX 1 R 2 53
COMDIV0 1 RW 2 53
0x0704 COMIEN0 1 RW 2 54
COMDIV1 1 R/W 2 53
0x0708 COMIID0 1 R 2 54
0x070C COMCON0 1 RW 2 53
0x0710 COMCON1 1 RW 2 55
0x0714 COMSTA0 1 R 2 54
0x0718 COMSTA1 1 R 2 55
0x071C COMSCR 1 RW 2 53
0x0720 COMIEN1 1 RW 2 56
0x0724 COMIID1 1 R 2 56
0x0728 COMADR 1 RW 2 53
0X072C COMDIV2 2 RW 2 55
Access
Type Cycle
Page
Rev. PrB | Page 23 of 80
ADuC702x Series Preliminary Technical Data
Access Address Name Byte
Type Cycle
I2C0 base address = 0xFFFF0800
0x0800 I2C0MSTA 1 R 2 60
0x0804 I2C0SSTA 1 R 2 60
0x0808 I2C0SRX 1 R 2 59
0x080C I2C0STX 1 W 2 59
0x0810 I2C0MRX 1 R 2 59
0x0814 I2C0MTX 1 W 2 59
0x0818 I2C0CNT 1 RW 2 59
0x081C I2C0ADR 1 RW 2 59
0x0824 I2C0BYTE 1 RW 2 59
0x0828 I2C0ALT 1 RW 2 59
0x082C I2C0CFG 1 RW 2 59
0x0830 I2C0DIVH 1 RW 2 59
0x0834 I2C0DIVL 1 RW 2 59
0x0838 I2C0ID0 1 RW 2 59
0x083C I2C0ID1 1 RW 2 59
0x0840 I2C0ID2 1 RW 2 59
0x0844 I2C0ID3 1 RW 2 59
I2C1 base address = 0xFFFF0900
0x0900 I2C1MSTA 1 R 2 60
0x0904 I2C1SSTA 1 R 2 60
0x0908 I2C1SRX 1 R 2 59
0x090C I2C1STX 1 W 2 59
0x0910 I2C1MRX 1 R 2 59
0x0914 I2C1MTX 1 W 2 59
0x0918 I2C1CNT 1 RW 2 59
0x091C I2C1ADR 1 RW 2 59
0x0924 I2C1BYTE 1 RW 2 59
0x0928 I2C1ALT 1 RW 2 59
0x092C I2C1CFG 1 RW 2 59
0x0930 I2C1DIVH 1 RW 2 59
0x0934 I2C1DIVL 1 RW 2 59
0x0938 I2C1ID0 1 RW 2 59
0x093C I2C1ID1 1 RW 2 59
0x0940 I2C1ID2 1 RW 2 59
0x0944 I2C1ID3 1 RW 2 59
SPI base address = 0xFFFF0A00
0x0A00 SPISTA 1 R 2 57
Page
Access Address Name Byte
Type Cycle
0x0A04 SPIRX 1 R 2 57
0x0A08 SPITX 1 W 2 57
0x0A0C SPIDIV 1 RW 2 57
0x0A10 SPICON 2 RW 2 57
PLA base address = 0xFFFF0B00
0x0B00 PLAELM0 2 RW 2 62
0x0B04 PLAELM1 2 RW 2 62
0x0B08 PLAELM2 2 RW 2 62
0x0B0C PLAELM3 2 RW 2 62
0x0B10 PLAELM4 2 RW 2 62
0x0B14 PLAELM5 2 RW 2 62
0x0B18 PLAELM6 2 RW 2 62
0x0B1C PLAELM7 2 RW 2 62
0x0B20 PLAELM8 2 RW 2 62
0x0B24 PLAELM9 2 RW 2 62
0x0B28 PLAELM10 2 RW 2 62
0x0B2C PLAELM11 2 RW 2 62
0x0B30 PLAELM12 2 RW 2 62
0x0B34 PLAELM13 2 RW 2 62
0x0B38 PLAELM14 2 RW 2 62
0x0B3C PLAELM15 2 RW 2 62
0x0B40 PLACLK 1 RW 2 63
0x0B44 PLAIRQ 4 RW 2 63
0x0B48 PLAADC 4 RW 2 64
0x0B4C PLADIN 4 R 2 64
0x0B50 PLADOUT 4 RW 2 64
External Memory base address = 0xFFFFF000
0xF000 XMCFG 1 RW 2 71
0xF010 XM0CON 1 RW 2 71
0xF014 XM1CON 1 RW 2 71
0xF018 XM2CON 1 RW 2 71
0xF01C XM3CON 1 RW 2 71
0xF020 XM0PAR 2 RW 2 71
0xF024 XM1PAR 2 RW 2 71
0xF028 XM2PAR 2 RW 2 71
0xF02C XM3PAR 2 RW 2 71
GPIO base address = 0xFFFFF400
0xF400 GP0CON 4 RW 1 49
0xF404 GP1CON 4 RW 1 49
Page
Rev. PrB | Page 24 of 80
Loading...
+ 56 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.