ANALOG DEVICES ADuC7026 Service Manual

Precision Analog Microcontroller
www.BDTIC.com/ADI
Preliminary Technical Data
FEATURES
Analog I/O Multi-Channel, 12-bit, 1MSPS ADC
- Up to 16 ADC channels * Fully differential and single-ended modes 0 to V 12-bit Voltage Output DACs
- Up to 4 DAC outputs available* On-Chip 20ppm/°C Voltage Reference On-Chip Temperature Sensor (±3°C) Uncommitted Voltage Comparator
Microcontroller
ARM7TDMI Core, 16/32-bit RISC architecture JTAG Port supports code download and debug
Clocking options: - Trimmed On-Chip Oscillator (± 3%)
45MHz PLL with Programmable Divider
Memory
62k Bytes Flash/EE Memory, 8k Bytes SRAM In-Circuit Download, JTAG based Debug Software triggered in-circuit re-programmability
On-Chip Peripherals
UART, 2 I Up to 40-Pin GPIO Port*
Analog Input Range
REF
- External Watch crystal
- External clock source
2
C and SPI Serial I/O
12-bit Analog I/O,
ARM7TDMI® MCU
ADuC702x Series
2 X General Purpose Timers Wake-up and Watchdog Timers Power Supply Monitor Three-phase 16-bit PWM generator* PLA – Programmable Logic (Array)
Power
Specified for 3V operation Active Mode: 3mA (@1MHz)
50mA (@45MHz) Packages and Temperature Range From 40 lead 6x6mm LFCSP to 80 pin LQFP*
Fully specified for –40°C to 85°C operation
Tools
Low-Cost QuickStart Development System Full Third-Party Support
* Package, PWM, GPIO availability and number of Analog I/O depend on part model. See page 9.
APPLICATIONS
Industrial Control and Automation Systems Smart Sensors, Precision Instrumentation Base Station Systems, Optical Networking
(See general description on page 11)
FUNCTIONAL BLOCK DIAGRAM
ADC0
...
...
MUX
ADC11
CMP0 CMP1
CMP
OUT
V
REF
XCLKI
XCLKO
RST
Rev. PrA
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.
+
-
OSC
&PLL
PSM
POR
1MSPS
12-BIT ADC
TEMP
SENSOR
BANDGAP
REF
ARM7TDMI-BASED MCU WITH
ADDITIONAL PERIPHERALS
PLA
4 GEN. PUR-
POSE TIMERS
2kX32 SRAM
31kX16 FLASH/EEPROM
UART, SPI, I2C
SERIAL I/O
Figure 1
DAC012-BIT DAC
ADuC7026*
GPIO
JTAG
Three­phase
PWM
EXT. MEMORY
INTERFACE
DAC112-BIT DAC
DAC212-BIT DAC
DAC312-BIT DAC
PWM0H PWM0L PWM1H PWM1L PWM2H PWM2L
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
www.analog.com
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
TABLE OF CONTENTS
ADuC702x—Specifications ............................................................ 3
Reset and Remap........................................................................ 35
Terminology ...................................................................................... 6
Absolute Maximum Ratings............................................................ 7
Ordering Guide............................................................................. 9
Pin function descriptions ..............................................................10
General Description ....................................................................... 19
Overview of the ARM7TDMI core.......................................... 19
Memory organisation................................................................. 20
ADC circuit information............................................................... 25
General Overview....................................................................... 25
ADC Transfer Function............................................................. 25
Typical Operation....................................................................... 26
Converter operation................................................................... 28
Driving the analog inputs.......................................................... 29
ADC Calibration ........................................................................ 29
Temperature Sensor ...................................................................29
Other analog peripherals............................................................... 36
DAC.............................................................................................. 36
Power Supply Monitor............................................................... 38
Comparator................................................................................. 38
Oscillator and PLL - Power control ......................................... 39
Digital peripherals.......................................................................... 41
Three-phase PWM..................................................................... 41
General Purpose I/O.................................................................. 48
Serial Port Mux........................................................................... 50
Programmable Logic Array (PLA)........................................... 60
Processor reference peripherals.................................................... 63
Interrupt System ......................................................................... 63
Timers.......................................................................................... 65
ADuC702x Hardware Design considerations ............................ 73
Power supplies ............................................................................ 73
Bandgap Reference..................................................................... 29
Nonvolatile Flash/EE Memory ..................................................... 31
Flash/EE memory overview ...................................................... 31
Flash/EE Memory and the ADuC702x.................................... 31
Flash/EE memory security ........................................................ 31
Flash/EE Control Interface........................................................ 32
Execution time from SRAM and FLASH/EE .........................33
Grounding and Board Layout Recommendations................. 73
Clock Oscillator.......................................................................... 74
Power-on reset operation .......................................................... 74
Typical sysem configuration ..................................................... 75
Development Tools ........................................................................ 76
In-Circuit Serial Downloader................................................... 76
Outline Dimensions....................................................................... 77
Rev. PrA | Page 2 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
ADUC702X—SPECIFICATIONS
Table 1. (AV unless otherwise noted.)
Parameter ADuC702x Unit Test Conditions/Comments ADC CHANNEL SPECIFICATIONS
ADC Powerup Time 500 uS DC Accuracy
Resolution 12 Bits Integral Nonlinearity
Integral Nonlinearity Differential Nonlinearity
Differential Nonlinearity DC Code Distribution
CALIBRATED ENDPOINT ERRORS
Offset Error Offset Error Match Gain Error Gain Error Match
DYNAMIC PERFORMANCE Fin = 10kHz Sine Wave, f
Signal-to-Noise Ratio (SNR) Total Harmonic Distortion (THD) -78 dB typ Peak Harmonic or Spurious Noise Channel-to-Channel Crosstalk
ANALOG INPUT
Input Voltage Ranges
Differential mode V
Single-ended mode 0 to V Leakage Current ±5 µA max Input Capacitance 20 pF typ During ADC Acquisition
ON-CHIP VOLTAGE REFERENCE
Output Voltage Accuracy ±10 mV max Measured at TA = 25°C Reference Temperature Coefficient Power Supply Rejection Ratio Output Impedance Internal V
EXTERNAL REFERENCE INPUT9
Input Voltage Range
Input Impedance
DAC CHANNEL SPECIFICATIONS
DC ACCURACY
Resolution 12 Bits Relative Accuracy ±2 LSB typ Differential Nonlinearity ±1 LSB max Guaranteed Monotonic Offset Error
Gain Error Gain Error Mismatch
= IOVDD = 2.7 V to 3.6 V, V
DD
2, 3
4
4
5
6
7
Power-On Time
REF
1
= 2.5 V Internal Reference, f
REF
f
±1.5 ±0.5 ±2.0 +1/-0.9 ±0.5 +1/-0.9 1
±5 ±1 ±5 ±1
LSB max LSB typ LSB max LSB max LSB typ LSB max LSB typ
LSB max LSB typ LSB max LSB typ
71 dB typ
-78
-80
8
±V
/2 Volts
CM
REF
Volts
REF
2.5
±10 80 10 1
0.625 AV
DD
TBD
dB typ dB typ
V
ppm/°C typ dB typ
typ ms typ
V min V max KΩ typ
±2 ±5 ±0.5 TBD
mV max mV max % max % typ
= 45MHz, All specifications TA = T
CORE
= 1MSPS
SAMPLE
2.5V internal reference
2.5V internal reference
1.0V external reference
2.5V internal reference
2.5V internal reference
1.0V external reference ADC input is a dc voltage
SAMPLE
0.47µF from V
to AGND
REF
= 5k, CL = 100pF
R
L
DAC output unbuffered DAC output buffered
% of fullscale on DAC0
MAX
= 1MSPS
to T
MIN
,
Rev. PrA | Page 3 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
Parameter ADuC702x Unit Test Conditions/Comments
ANALOG OUTPUTS
Output Voltage Range_0 Ouput Voltage Range_1 Output Voltage Range_2 Output Impedance 10
DAC AC CHARACTERISTICS
Voltage Output Settling Time Voltage Output Settling Time Digital to Analog Glitch Energy
COMPARATOR
Input Offset Voltage Input Bias Current Input Voltage Range Input Capacitance Hysteresis
Response Time
TEMPERATURE SENSOR
Voltage Output at 25°C Voltage TC Accuracy ±3 °C typ
POWER SUPPLY MONITOR (PSM)
IOVDD Trip Point Selection 2.79 V Two selectable Trip Points
3.07 V Power Supply Trip Point Accuracy ±2.5 % max Of the selected nominal Trip Point Voltage
Watchdog Timer (WDT)
Timeout Period
Flash/EE MEMORY
Endurance10 10,000 Cycles min Data Retention11 30 Years min TJ = 55°C
Digital Inputs
Input Leakage Current
Input Capacitance
Logic Inputs4
VINL, Input Low Voltage VINH, Input High Voltage
Logic Outputs
VOH, Output High Voltage IOVDD – 400mV V min I VOL, Output Low Voltage12 0.4 V max I
MCU CLOCK RATE 355.5
STARTUP TIME
At Power-On From Idle Mode From Power-Down Mode
Programmable Logic Array (PLA)
Propagation Delay
4
0 to DACREF 0 to 2.5V 0 to DACV
10 15 TBD
±10 5 AGND to AV 7 5 10 1 10
TBD
-2.0
0 TBD
±10 ±1 10
0.4
2.0
45.5
TBD TBD TBD
TBD
DD
DD
-1.2
V typ V typ
V typ
typ
µs typ µs typ nV-sec typ
mV nA typ Vmin/Vmax pF typ mV min mv max µs min µs max
mV typ mV/°C typ
ms min ms max
µA max µA typ pF typ
V max V min
kHz min MHz max
ns typ
DACREF range: DACGND to DACV
DD
DAC Output buffered DAC Output unbuffered I LSB change at major carry
Hysteresis can be turned on or off via the CMPHYST bit in the CMPCON register
Response time may be modified via the CMPRES bits in the CMPCON register
All digital inputs including XTAL1 and XTAL2
All Logic inputs including XTAL1 and XTAL2
= 1.6mA
SOURCE
= 1.6mA
SINK
8 programmable core clock selections within this range
Core Clock = TBD MHz
From input pin to output pin
Rev. PrA | Page 4 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
Parameter ADuC702x Unit Test Conditions/Comments
POWER REQUIREMENTS 13, 14
Power Supply Voltage Range AVDD – AGND and IOVDD - IOGND 2.7 V min
3.6 V max
Power Supply Current Normal Mode 3mA
Power Supply Current Idle Mode
Power Supply Current Power Down Mode
1
Temperature Range -40° to +85°C
2
All ADC Channel Specifications are guaranteed during normal MicroConverter core operation.
3
These specification apply to all ADC input channels.
4
These numbers are not production tested but are supported by design and/or characterization data on production release.
5
Based on external ADC system components, the user may need to execute a system calibration to remove external endpoint and achieve these specifications..
6
SNR calculation includes distortion and noise components.
7
Channel-to-channel crosstalk is measured on adjacent channels.
8
The input signal can be centered on any dc common-mode voltage (VCM) as long as this value is within the ADC voltage input range specified.
9
When using an external reference input pin, the internal reference must be disabled by setting the lsb in the REFCON Memeory Mapped Register to 0.
10
Endurance is qualified to 50,000 cycles as per JEDEC Std. 22 method A117 and measured at -40°C, +25°C and +85°C. Typical endurance at 25°C is 70,000 cycles.
11
Retention lifetime equivalent at junction temperature (Tj) = 55°C as per JEDEC Std. 22 method A117. Retention lifetime will derate with junction temperature.
12
Test carried out with a maximum of 20 I/O set to a low output level.
13
Power supply current consumption is measured in normal, idle and power-down modes under the following conditions: Normal Mode: TBD Idle Mode: TBD Power-Down: TBD
14
DVDD power supply current increases typically by TBD mA during a Flash/EE memory program or erase cycle.
1MHz clock 1MHz clock 45MHz clock
5 50
mA typ mA max mA typ
60 mA max 45MHz clock
1
30 100
mA max
µA typ µA max
External Crystal or Internal Osc ON External Crystal or Internal Osc ON
Rev. PrA | Page 5 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
TERMINOLOGY
ADC Specifications
Integral Nonlinearity
This is the maximum deviation of any code from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale, a point 1/2 LSB below the first code transition and full scale, a point 1/2 LSB above the last code transition.
fundamental. Noise is the rms sum of all nonfundamental signals up to half the sampling frequency (fS/2), excluding dc. The ratio is dependent upon the number of quantization levels in the digitisation process; the more levels, the smaller the quantization noise. The theoretical signal to (noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by:
Signal to (Noise + Distortion) = (6.02N + 1.76) dB
Differential Nonlinearity
This is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.
Offset Error
This is the deviation of the first code transition (0000 . . . 000) to (0000 . . . 001) from the ideal, i.e., +1/2 LSB.
Gain Error
This is the deviation of the last code transition from the ideal AIN voltage (Full Scale – 1.5 LSB) after the offset error has been adjusted out.
Signal to (Noise + Distortion) Ratio
This is the measured ratio of signal to (noise + distortion) at the output of the ADC. The signal is the rms amplitude of the
Thus for a 12-bit converter, this is 74 dB.
Total Harmonic Distortion
Total Harmonic Distortion is the ratio of the rms sum of the harmonics to the fundamental.
DAC SPECIFICATIONS
Relative Accuracy
Relative accuracy or endpoint linearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error.
Voltage Output Settling Time
This is the amount of time it takes for the output to settle to within a 1 LSB level for a full-scale input change..
Rev. PrA | Page 6 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
ABSOLUTE MAXIMUM RATINGS
Table 2. Absolute Maximum Ratings (TA = 25°C unless otherwise noted)
Parameter Rating
AVDD to DVDD TBD AGND to DGND TBD DVDD to DGND, AVDD to AGND TBD Digital Input Voltage to DGND TBD Digital Output Voltage to DGND TBD VREF to AGND TBD Analog Inputs to AGND TBD Operating Temperature Range
Industrial ADuC702x Storage Temperature Range TBD Junction Temperature TBD
θJA Thermal Impedance (CSP)
θJA Thermal Impedance (LQFP)
Lead Temperature, Soldering
Vapor Phase (60 sec) TBD Infrared (15 sec) TBD
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
–40°C to +85°C
TBD TBD
ESD Caution
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. PrA | Page 7 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
PIN CONFIGURATION
40-Lead CSP
40
1
PIN 1
IDENTIFIER
31
30
64
1
64-Lead LQFP
PIN 1 IDENTIFIER
49
48
TOP VIE W
(Not to Scale)
10
11
21
20
16
64-Lead CSP
64
IDENTIFIER
17
PIN 1
ADuC7024/A D u C7025
TOP V IEW
(Not to Scale)
1
16
49
48
33
32
80
1
ADuC7024/ADuC7025
64-LEAD L QFP
17
80-Lead LQFP
PIN 1 IDENTIFIER
ADuC7026 80-LEAD LQFP
TOP VIEW
(Not to Scale)
TOP VIEW
(No t to S cale )
33
32
61
60
20
21
41
40
Rev. PrA | Page 8 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
ORDERING GUIDE
Model ADC
Channels
DAC Channels
FLASH / RAM
PWM Ext
Memory
GPIO Temp
Range
Package Description
Package Option
ADuC7020BCP62 5 4 62kB/8kB 14
ADuC7021BCP62 8 2 62kB/8kB 13
ADuC7021BCP32 8 2 32kB/4kB 13
ADuC7021ACP32
ADuC7022BCP62 10 62kB/8kB 13
ADuC7022BCP32 10 32kB/4kB 13
ADuC7022ACP32
ADuC7024BCP62 10 2 62kB/8kB Yes 30
ADuC7024BST62 10 2 62kB/8kB Yes 30
ADuC7025BCP62 12 62kB/8kB Yes 30
ADuC7025BCP32 12 32kB/4kB Yes 30
ADuC7026BST62 12 4 62kB/8kB Yes Yes 40
ADuC7027BST62 16 62kB/8kB Yes Yes 40
ADuC7027AST62
EVAL-ADuC7020QS
EVAL-ADuC7024QS
EVAL-ADuC7026QS
8 (10 Bit NMC)
10 (10 Bit NMC)
16 (10 Bit NMC)
2 32kB/4kB 13
62kB/8kB 13
62kB/8kB Yes Yes 40
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
–40°C to + 85°C
Contact the factory for chip availability.
40-Lead Chip Scale Package
40-Lead Chip Scale Package
40-Lead Chip Scale Package
40-Lead Chip Scale Package
40-Lead Chip Scale Package
40-Lead Chip Scale Package
40-Lead Chip Scale Package
64-Lead Chip Scale Package
64 Lead Plastic Quad Flatpack
64-Lead Chip Scale Package
64-Lead Chip Scale Package
80 Lead Plastic Quad Flatpack
80 Lead Plastic Quad Flatpack
80 Lead Plastic Quad Flatpack
Development System
Development System
Development System
CP-40
CP-40
CP-40
CP-40
CP-40
CP-40
CP-40
CP-64-1
ST-64
CP-64-1
CP-64-1
ST-80
ST-80
ST-80
Rev. PrA | Page 9 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
PIN FUNCTION DESCRIPTIONS – ADUC7020/ADUC7021/ADUC7022
Table 3. Pin Function Descriptions
Pin# ADuC702X
7020 7021 7022
38 37 36 ADC0 I Single-ended or differential Analog input 0 39 38 37 ADC1 I Single-ended or differential Analog input 1 40 39 38 ADC2/CMP0 I Single-ended or differential Analog input 2 / Comparator Positive Input
1 40 39 ADC3/CMP1 I Single-ended or differential Analog input 3 / Comparator Negative Input 2 1 40 ADC4 I Single-ended or differential Analog input 4
- 2 1 ADC5 I Single-ended or differential Analog input 5
- 3 2 ADC6 I Single-ended or differential Analog input 6
- 4 3 ADC7 I Single-ended or differential Analog input 7
- - 4 ADC8 I Single-ended or differential Analog input 8
- - 5 ADC9 I Single-ended or differential Analog input 9
3 5 6 GND
4 6 - DAC0/ADC12 I/O DAC0 Voltage Output / Single-ended or differential Analog input 12 5 7 - DAC1/ADC13 I/O DAC1 Voltage Output / Single-ended or differential Analog input 13 6 - - DAC2/ADC14 I/O DAC2 Voltage Output / Single-ended or differential Analog input 14 7 - - DAC3/ADC15 I/O DAC3 Voltage Output / Single-ended or differential Analog input 15 8 8 7 TMS I JTAG Test Port Input - Test Mode Select. Debug and download access 9 9 8 TDI I JTAG Test Port Input – Test Data In. Debug and download access
10 10 9
11 11 10
12 12 11 TCK/XCLK I
13 13 12 TDO O JTAG Test Port Output - Test Data Out. Debug and download access 14 14 13 IOGND S Ground for GPIO. Typically connected to DGND 15 15 14 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
16 16 15 LVDD S
17 17 16 DGND S Ground for core logic. 18 18 17 TRST I JTAG Test Port Output - Test Reset. Debug and download access 19 19 18 RST I Reset Input. (active low)
20 20 19
21 21 20
22 22 21
23 23 22
Mnemonic Type* Function
S
REF
BM/P0.0/CMP LAI[7]
P0.6/T1/MRST/PLA O[3]
IRQ0/P0.4/CONV
/PLAO[1]
ART
IRQ1/P0.5/ADC /PLAO[2]
P2.0/SPM9/PLAO[ 5]/CONV
P0.7/ECLK/SPM8/P LAO[4]
START
/P
OUT
ST
BUSY
Ground voltage reference for the ADC. For optimal performance the analog power supply should be separated from IOGND and DGND
Multifunction I/O pin: Boot Mode. The ADuC702X will enter UART serial download mode if BM
I/O
is low at reset and will execute code if BM is pulled high at reset through a 1kOhm resistor/ General Purpose Input-Output Port 0.0 / Voltage Comparator Output/ Programmable Logic Array Input Element 7
Multifunction pin: driven low after reset
O
General Purpose Output Port 0.6 / Timer 1 Input / Power on reset output / Programmable Logic Array Output Element 3
JTAG Test Port Input - Test Clock. Debug and download access / Input to the internal clock generator circuits
2.5V. Output of the on-chip voltage regulator. Must be connected to a
0.47µF capacitor to DGND
Multifunction I/O pin: External Interrupt Request 0, active high / General Purpose Input-Output
I/O
Port 0.4 / Start conversion input signal for ADC / Programmable Logic Array Output Element 1
Multifunction I/O pin:
I/O
External Interrupt Request 1, active high / General Purpose Input-Output Port 0.5 / ADC
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 2.0 / UART / Programmable Logic Array Output Element 5/ Start conversion input signal for ADC
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 0.7 / Output for External Clock signal / UART / Programmable Logic Array Output Element 4
signal / Programmable Logic Array Output Element 2
BUSY
Rev. PrA | Page 10 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
Pin# ADuC702X
7020 7021 7022
24 24 23 XCLKO O Output to the crystal oscillator inverter
25 24 24 XCLKI I
26 26 25
27 27 26 P1.6/SPM6/PLAI[6] I/O
28 28 27 P1.5/SPM5/PLAI[5] I/O
29 29 28 P1.4/SPM4/PLAI[4] I/O
30 30 29 P1.3/SPM3/PLAI[3] I/O
31 31 30 P1.2/SPM2/PLAI[2] I/O
32 32 31 P1.1/SPM1/PLAI[1] I/O
33 33 32
34 - - P4.2/PLAO[10] I/O
35 34 33 V
36 35 34 AGND S Analog Ground. Ground reference point for the analog circuitry 37 36 35 AVDD S 3.3V Analog Power
*
I = Input, O = Output, S = Supply.
- No pin assigned.
Mnemonic Type* Function
Input to the crystal oscillator inverter and input to the internal clock generator circuits
P1.7/SPM7/PLAO[ 0]
P1.0/T1/SPM0/PLA I[0]
I/O
REF
Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 1.7 / UART / SPI / Programmable Logic Array Output Element 0
Serial Port Multiplexed: General Purpose Input-Output Port 1.6 / UART / SPI / Programmable
Logic Array Input Element 6 Serial Port Multiplexed: General Purpose Input-Output Port 1.5 / UART / SPI / Programmable
Logic Array Input Element 5 Serial Port Multiplexed: General Purpose Input-Output Port 1.4 / UART / SPI / Programmable
Logic Array Input Element 4 Serial Port Multiplexed: General Purpose Input-Output Port 1.3/ UART / I2C1 /Programmable
Logic Array Input Element 3 Serial Port Multiplexed: General Purpose Input-Output Port 1.2 / UART / I2C1 /Programmable
Logic Array Input Element 2 Serial Port Multiplexed: General Purpose Input-Output Port 1.1 / UART / I2C0 / Programmable
Logic Array Input Element 1 Serial Port Multiplexed:
I/O
General Purpose Input-Output Port 1.0/ Timer 1 Input / UART / I2C0 / Programmable Logic Array Input Element 0
General Purpose Input-Output Port 4.2 / Programmable Logic Array Output Element 10
2.5V internal Voltage Reference. Must be connected to a 0.47uF capacitor when using the internal reference.
Rev. PrA | Page 11 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
PIN FUNCTION DESCRIPTIONS – ADUC7024/ADUC7025
Table 4. Pin Function Descriptions
Pin# Mnemonic Type* Function
1 ADC4 I Single-ended or differential Analog input 4 2 ADC5 I Single-ended or differential Analog input 5 3 ADC6 I Single-ended or differential Analog input 6 4 ADC7 I Single-ended or differential Analog input 7 5 ADC8 I Single-ended or differential Analog input 8 6 ADC9 I Single-ended or differential Analog input 9
7 GND
8 ADCNEG I
9 DAC0**/ADC12 I/O DAC0 Voltage Output / Single-ended or differential Analog input 12 10 DAC1**/ADC13 I/O DAC1 Voltage Output / Single-ended or differential Analog input 13 11 TMS I JTAG Test Port Input - Test Mode Select. Debug and download access 12 TDI I JTAG Test Port Input – Test Data In. Debug and download access
13 P4.6/PLAO[14] I/O
14 P4.7/PLAO[15] I/O
15 BM/P0.0/CMP
16 P0.6/T1/MRST/PLAO[3] O
17 TCK I JTAG Test Port Input - Test Clock. Debug and download access 18 TDO O JTAG Test Port Output - Test Data Out. Debug and download access 19 IOGND S Ground for GPIO. Typically connected to DGND 20 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
21 LVDD S
22 DGND S Ground for core logic.
23 P3.0/PWM0H/PLAI[8] I/O
24 P3.1/PWM0L/PLAI[9] I/O
25 P3.2/PWM1H/PLAI[10] I/O
26 P3.3/PWM1L/PLAI[11] I/O
27 P0.3/TRST/ADC
28 RST I Reset Input. (active low)
29 P3.4/PWM2H/PLAI[12] I/O
30 P3.5/PWM2L/PLAI[13] I/O
S
REF
/PLAI[7] I/O
OUT
I/O
BUSY
Ground voltage reference for the ADC. For optimal performance the analog power supply should be separated from IOGND and DGND
Bias point or Negative Analog Input of the ADC in pseudo differential mode. Must be connected to the ground of the signal to convert. This bias point must be between 0V and 1V
General Purpose Input-Output Port 4.6/ Programmable Logic Array Output Element 14
General Purpose Input-Output Port 4.7/ Programmable Logic Array Output Element 15
Multifunction I/O pin: Boot Mode. The ADuC7024/ADuC7025 will enter UART serial download mode
if BM is low at reset and will execute code if BM is pulled high at reset through a 1kOhm resistor/ General Purpose Input-Output Port 0.0 / Voltage Comparator Output/ Programmable Logic Array Input Element 7
Multifunction pin: driven low after reset General Purpose Output Port 0.6 / Timer 1 Input / Power on reset output /
Programmable Logic Array Output Element 3
2.5V. Output of the on-chip voltage regulator. Must be connected to a 0.47µF capacitor to DGND
General Purpose Input-Output Port 3.0/ PWM phase 0 high side output / Programmable Logic Array Input Element 8
General Purpose Input-Output Port 3.1/ PWM phase 0 low side output / Programmable Logic Array Input Element 9
General Purpose Input-Output Port 3.2/ PWM phase 1 high side output / Programmable Logic Array Input Element 10
General Purpose Input-Output Port 3.3/ PWM phase 1 low side output / Programmable Logic Array Input Element 11
General Purpose Input-Output Port 0.3 / JTAG Test Port Input – Test Reset. Debug and download access / ADC
General Purpose Input-Output Port 3.4 / PWM phase 2 high side output / Programmable Logic Array Input 12
General Purpose Input-Output Port 3.5 / PWM phase 2 low side output / Programmable Logic Array Input Element 13
signal output
BUSY
Rev. PrA | Page 12 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
Pin# Mnemonic Type* Function
Multifunction I/O pin:
31 IRQ0/P0.4/CONV
32 IRQ1/P0.5/ADC
33 P2.0/PWM
34 P0.7/ECLK/SPM8/PLAO[4] I/O
35 XCLKO O Output to the crystal oscillator inverter
36 XCLKI I
37 P3.6/PWM
38 P3.7/PWMSYNC/PLAI[15] I/O
39 P1.7/SPM7/PLAO[0] I/O
40 P1.6/SPM6/PLAI[6] I/O
41 IOGND S Ground for GPIO. Typically connected to DGND 42 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
43 P4.0/PLAO[8] I/O
44 P4.1/PLAO[9] I/O
45 P1.5/SPM5/PLAI[5] I/O
46 P1.4/SPM4/PLAI[4] I/O
47 P1.3/SPM3/PLAI[3] I/O
48 P1.2/SPM2/PLAI[2] I/O
49 P1.1/SPM1/PLAI[1] I/O
50 P1.0/T1/SPM0/PLAI[0] I/O
51 P4.2/PLAO[10] I/O
TRIP
TRIP
/PLAO[1] I/O
START
/PLAO[2] I/O
BUSY
/SPM9/PLAO[5]/CONV
/PLAI[14] I/O
I/O
START
External Interrupt Request 0, active high / General Purpose Input-Output Port
0.4 / Start conversion input signal for ADC / Programmable Logic Array Output Element 1
Multifunction I/O pin: External Interrupt Request 1, active high / General Purpose Input-Output Port
0.5 / ADC Serial Port Multiplexed: General Purpose Input-Output Port 2.0 / PWM safety cut off / UART /
Programmable Logic Array Output Element 5/ Start conversion input signal for ADC
Serial Port Multiplexed: General Purpose Input-Output Port 0.7 / Output for External Clock signal /
UART / Programmable Logic Array Output Element 4
Input to the crystal oscillator inverter and input to the internal clock generator circuits
General Purpose Input-Output Port 3.6/ PWM safety cut off / Programmable Logic Array Input Element 14
General Purpose Input-Output Port 3.7/ PWM synchronisation input output /Programmable Logic Array Input Element 15
Serial Port Multiplexed: General Purpose Input-Output Port 1.7 / UART / SPI / Programmable Logic
Array Output Element 0 Serial Port Multiplexed: General Purpose Input-Output Port 1.6 / UART / SPI / Programmable Logic
Array Input Element 6
General Purpose Input-Output Port 4.0 / Programmable Logic Array Output Element 8
General Purpose Input-Output Port 4.1 / Programmable Logic Array Output Element 9
Serial Port Multiplexed: General Purpose Input-Output Port 1.5 / UART / SPI / Programmable Logic
Array Input Element 5 Serial Port Multiplexed: General Purpose Input-Output Port 1.4 / UART / SPI / Programmable Logic
Array Input Element 4 Serial Port Multiplexed: General Purpose Input-Output Port 1.3/ UART / I2C1 /Programmable Logic
Array Input Element 3 Serial Port Multiplexed: General Purpose Input-Output Port 1.2 / UART / I2C1 /Programmable Logic
Array Input Element 2 Serial Port Multiplexed: General Purpose Input-Output Port 1.1 / UART / I2C0 / Programmable Logic
Array Input Element 1 Serial Port Multiplexed: General Purpose Input-Output Port 1.0/ Timer 1 Input / UART / I
Programmable Logic Array Input Element 0 General Purpose Input-Output Port 4.2 / Programmable Logic Array Output
Element 10
signal / Programmable Logic Array Output Element 2
BUSY
2
C0 /
Rev. PrA | Page 13 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
Pin# Mnemonic Type* Function
52 P4.3/PLAO[11] I/O
53 P4.4/PLAO[12] I/O
54 P4.5/PLAO[13] I/O
55 V
56 DAC 57 DACGND S Ground for the DAC. Typically connected to AGND 58 AGND S Analog Ground. Ground reference point for the analog circuitry 59 AVDD S 3.3V Analog Power 60 DACVDD S 3.3V Power Supply for the DACs. Typically connected to AVDD 61 ADC0 I Single-ended or differential Analog input 0 62 ADC1 I Single-ended or differential Analog input 1 63 ADC2/CMP0 I Single-ended or differential Analog input 2/ Comparator positive input 64 ADC3/CMP1 I Single-ended or differential Analog input 3/ Comparator negative input
*
I = Input, O = Output, S = Supply.
** DAC outputs not present on ADuC7025
I/O
REF
I External Voltage Reference for the DACs. Range: DACGND to DACVDD
REF
General Purpose Input-Output Port 4.3 / Programmable Logic Array Output Element 11
General Purpose Input-Output Port 4.4 / Programmable Logic Array Output Element 12
General Purpose Input-Output Port 4.5 / Programmable Logic Array Output Element 13
2.5V internal Voltage Reference. Must be connected to a 0.47uF capacitor when using the internal reference.
Rev. PrA | Page 14 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
PIN FUNCTION DESCRIPTIONS – ADUC7026/ADUC7027
Table 5. Pin Function Descriptions
Pin# Mnemonic Type* Function
1 ADC4 I Single-ended or differential Analog input 4 2 ADC5 I Single-ended or differential Analog input 5 3 ADC6 I Single-ended or differential Analog input 6 4 ADC7 I Single-ended or differential Analog input 7 5 ADC8 I Single-ended or differential Analog input 8 6 ADC9 I Single-ended or differential Analog input 9 7 ADC10 I Single-ended or differential Analog input 10
8 GND
9 ADCNEG I
10 DAC0/ADC12 I/O DAC0 Voltage Output / Single-ended or differential Analog input 12 11 DAC1/ADC13 I/O DAC1 Voltage Output / Single-ended or differential Analog input 13 12 DAC1/ADC14 I/O DAC2 Voltage Output / Single-ended or differential Analog input 14 13 DAC1/ADC15 I/O DAC3 Voltage Output / Single-ended or differential Analog input 15 14 TMS I JTAG Test Port Input - Test Mode Select. Debug and download access 15 TDI I JTAG Test Port Input – Test Data In. Debug and download access 16 17 P2.3/AE
18 P4.6/AD14/PLAO[14] I/O
19 P4.7/AD15/PLAO[15] I/O
20 BM/P0.0/CMP
21 P0.6/T1/MRST/PLAO[3]/AE O
22 TCK I JTAG Test Port Input - Test Clock. Debug and download access 23 TDO O JTAG Test Port Output - Test Data Out. Debug and download access 24 25 IOGND S Ground for GPIO. Typically connected to DGND 26 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
27 LVDD S
28 DGND S Ground for core logic.
29 P3.0/AD0/PWM0H/PLAI[8] I/O
30 P3.1/AD1/PWM0L/PLAI[9] I/O
31 P3.2/AD2/PWM1H/PLAI[10] I/O
32 P3.3/AD3/PWM1L/PLAI[11] I/O
33 P2.4/MS0 I/O General Purpose Input-Output Port 2.4 / External Memory select 0
S
REF
BLE
P0.1/
P0.2/
BHE
/PLAI[7] I/O
OUT
Ground voltage reference for the ADC. For optimal performance the analog power supply should be separated from IOGND and DGND
Bias point or Negative Analog Input of the ADC in pseudo differential mode. Must be connected to the ground of the signal to convert. This bias point must be between 0V and 1V
I/O General Purpose Input-Output Port 0.1
General Purpose Input-Output Port 4.6/ External Memory Interface/Programmable Logic Array Output Element 14
General Purpose Input-Output Port 4.7/ External Memory Interface / Programmable Logic Array Output Element 15
Multifunction I/O pin: Boot Mode. The ADuC7026 will enter UART serial download mode if BM is low
at reset and will execute code if BM is pulled high at reset through a 1kOhm resistor/ General Purpose Input-Output Port 0.0 / Voltage Comparator Output/ Programmable Logic Array Input Element 7
Multifunction pin: driven low after reset General Purpose Output Port 0.6 / Timer 1 Input / Power on reset output /
Programmable Logic Array Output Element 3
I/O General Purpose Input-Output Port 0.2
2.5V. Output of the on-chip voltage regulator. Must be connected to a 0.47µF capacitor to DGND
General Purpose Input-Output Port 3.0 / External Memory Interface/ PWM phase 0 high side output / Programmable Logic Array Input Element 8
General Purpose Input-Output Port 3.1 / External Memory Interface / PWM phase 0 low side output / Programmable Logic Array Input Element 9
General Purpose Input-Output Port 3.2 / External Memory Interface / PWM phase 1 high side output / Programmable Logic Array Input Element 10
General Purpose Input-Output Port 3.3 / External Memory Interface / PWM phase 1 low side output / Programmable Logic Array Input Element 11
Rev. PrA | Page 15 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
Pin# Mnemonic Type* Function
34 P0.3/TRST/A16/ADC
35 P2.5/MS1 I/O General Purpose Input-Output Port 2.5 / External Memory select 1 36 P2.6/MS2 I/O General Purpose Input-Output Port 2.6 / External Memory select 2 37 RST I Reset Input. (active low)
38 P3.4/AD4/PWM2H/PLAI[12] I/O
39 P3.5/AD5/PWM2L/PLAI[13] I/O
40 IRQ0/P0.4/CONV
41 IRQ1/P0.5/ADC
42 P2.0/PWM
43 P0.7/ECLK/SPM8/PLAO[4] I/O
44 XCLKO O Output to the crystal oscillator inverter
45 XCLKI I
46 P3.6/AD6/PWM
47 P3.7/AD7/ECLK/PLAI[15] I/O
48 P2.7/MS3 I/O General Purpose Input-Output Port 2.7 / External Memory select 3 49 P2.1/WS I/O General Purpose Input-Output Port 2.1 / External Memory Write Strobe 50 P2.2/RS I/O General Purpose Input-Output Port 2.2 / External Memory Read Strobe
51 P1.7/SPM7/PLAO[0] I/O
52 P1.6/SPM6/PLAI[6] I/O
53 IOGND S Ground for GPIO. Typically connected to DGND 54 IOVDD S 3.3V Supply for GPIO and input of the on-chip voltage regulator.
55 P4.0/AD8/PLAO[8] I/O
56 P4.1/AD9/PLAO[9] I/O
57 P1.5/SPM5/PLAI[5] I/O
58 P1.4/SPM4/PLAI[4] I/O
59 P1.3/SPM3/PLAI[3] I/O Serial Port Multiplexed:
BUSY
/SPM9/PLAO[5]/CONV
TRIP
I/O
BUSY
/PLAO[1] I/O
START
/PLAO[2] I/O
I/O
START
/PLAI[14] I/O
TRIP
General Purpose Input-Output Port 0.3 / JTAG Test Port Input – Test Reset. Debug and download access / ADC
General Purpose Input-Output Port 3.4 / External Memory Interface / PWM phase 2 high side output / Programmable Logic Array Input 12
General Purpose Input-Output Port 3.5 / External Memory Interface /PWM phase 2 low side output / Programmable Logic Array Input Element 13
Multifunction I/O pin: External Interrupt Request 0, active high / General Purpose Input-Output Port
0.4 / Start conversion input signal for ADC / Programmable Logic Array Output Element 1
Multifunction I/O pin: External Interrupt Request 1, active high / General Purpose Input-Output Port
0.5 / ADC Serial Port Multiplexed: General Purpose Input-Output Port 2.0 / PWM safety cut off / UART /
Programmable Logic Array Output Element 5/ Start conversion input signal for ADC
Serial Port Multiplexed: General Purpose Input-Output Port 0.7 / Output for External Clock signal /
UART / Programmable Logic Array Output Element 4
Input to the crystal oscillator inverter and input to the internal clock generator circuits
General Purpose Input-Output Port 3.6 / External Memory Interface / PWM safety cut off / Programmable Logic Array Input Element 14
General Purpose Input-Output Port 3.7/ / External Memory Interface / Output for External Clock signal /Programmable Logic Array Input Element 15
Serial Port Multiplexed: General Purpose Input-Output Port 1.7 / UART / SPI / Programmable Logic
Array Output Element 0 Serial Port Multiplexed: General Purpose Input-Output Port 1.6 / UART / SPI / Programmable Logic
Array Input Element 6
General Purpose Input-Output Port 4.0 / External Memory Interface / Programmable Logic Array Output Element 8
General Purpose Input-Output Port 4.1 / External Memory Interface /Programmable Logic Array Output Element 9
Serial Port Multiplexed: General Purpose Input-Output Port 1.5 / UART / SPI / Programmable Logic
Array Input Element 5 Serial Port Multiplexed: General Purpose Input-Output Port 1.4 / UART / SPI / Programmable Logic
Array Input Element 4
signal / Programmable Logic Array Output Element 2
BUSY
signal output
BUSY
Rev. PrA | Page 16 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
Pin# Mnemonic Type* Function
General Purpose Input-Output Port 1.3/ UART / I2C1 /Programmable Logic Array Input Element 3
Serial Port Multiplexed:
60 P1.2/SPM2/PLAI[2] I/O
61 P1.1/SPM1/PLAI[1] I/O
62 P1.0/T1/SPM0/PLAI[0] I/O
63 P4.2/AD10/PLAO[10] I/O
64 P4.3/AD11/PLAO[11] I/O
65 P4.4/AD12/PLAO[12] I/O
66 P4.5/AD13/PLAO[13] I/O
67 REFGND S Ground for the reference. Typically connected to AGND
68 V
69 DAC 70 DACGND S Ground for the DAC. Typically connected to AGND 71 AGND S Analog Ground. Ground reference point for the analog circuitry 72 AGND S Analog Ground. Ground reference point for the analog circuitry 73 AVDD S 3.3V Analog Power 74 AVDD S 3.3V Analog Power 75 DACVDD S 3.3V Power Supply for the DACs. Typically connected to AVDD 76 ADC11 I Single-ended or differential Analog input 11 77 ADC0 I Single-ended or differential Analog input 0 78 ADC1 I Single-ended or differential Analog input 1 79 ADC2/CMP0 I Single-ended or differential Analog input 2/ Comparator positive input 80 ADC3/CMP1 I Single-ended or differential Analog input 3/ Comparator negative input
*
I = Input, O = Output, S = Supply.
I/O
REF
I External Voltage Reference for the DACs. Range: DACGND to DACVDD
REF
General Purpose Input-Output Port 1.2 / UART / I Array Input Element 2
Serial Port Multiplexed: General Purpose Input-Output Port 1.1 / UART / I2C0 / Programmable Logic
Array Input Element 1 Serial Port Multiplexed: General Purpose Input-Output Port 1.0/ Timer 1 Input / UART / I
Programmable Logic Array Input Element 0 General Purpose Input-Output Port 4.2 / External Memory Interface /
Programmable Logic Array Output Element 10
General Purpose Input-Output Port 4.3 / External Memory Interface /Programmable Logic Array Output Element 11
General Purpose Input-Output Port 4.4 / External Memory Interface /Programmable Logic Array Output Element 12
General Purpose Input-Output Port 4.5 / External Memory Interface /Programmable Logic Array Output Element 13
2.5V internal Voltage Reference. Must be connected to a 0.47uF capacitor when using the internal reference.
2
C1 /Programmable Logic
2
C0 /
Rev. PrA | Page 17 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
D
F E
N
R
D
D
D
G
N
D
D N
G
G
A
D
F
V
V
E
A
A
R
D
D
D
N G O
I
D
N
D
D
V
V
G
O
O
O
I
I
I
T
D
E
D
N
S
D
E
V
G
R
L
D
D
D
F
N
D
E R
V
G
C
C
C
A
A
A
D
D
D
BM/P0.0/CMP
P4.6/PLAO/AD14 P4.7/PLAO/AD15
ADC0
ADC1 ADC2/CMP0 ADC3/CMP1
ADC4
ADC5
ADC6
ADC7
ADC8
ADC9
ADC10
ADC11
ADC
NEG
/PLAO
OUT
V
REF
DAC
DAC
PROG. LOGIC
MUX
MUX
MUX
BAND GAP
REFERENCE
ARRAY
12-BIT SAR
ADC 1MSPS
TEMP
SENSOR
62 KBYTES FLASH/EE
/IRQ
CMP
OUT
V
REF
SPI/I2CSERIAL
INTERFACE
SERIAL PORT MULTIPLEXER
8192 BYTES USER RAM
ADC
CONTROL
(31k X 16 bits)
(2k X 32 bits)
DOWNLOADER
UART
SERIAL PORT
ADuC7026*
ARM7TDMI
MCU
CORE
R O
T
G
A
A
L
T
U
J
M E
DAC
CONTROL
WAKEUP/
RTC TIMER
POWER SUPPLY
MONITOR
PROG. CLOCK
DIVIDER
POR
12-BIT
VOLTAGE
OUTPUT DAC
12-BIT
VOLTAGE
OUTPUT DAC
12-BIT
VOLTAGE
OUTPUT DAC
12-BIT
VOLTAGE
OUTPUT DAC
CONTROLLER
BUF
BUF
BUF
BUF
Three-
phase
PWM
OSC
PLL
INTERRUPT
DAC0*/ADC12
DAC1*/ADC13
DAC2*/ADC14
DAC3*/ADC15
P3.0/PWM0H/PLAI/AD0 P3.1/PWM0L/PLAI/AD1 P3.2/PWM1H/PLAI/AD2 P3.3/PWM1H/PLAI/AD3 P3.4/PWM2H/PLAI/AD4 P3.5/PWM2H/PLAI/AD5 P3.6/PWM
XCLKO XCLKI
P3.7/ECLK/PLAI/AD7
IRQ0/P0.4/CONV IRQ1/P0.5/ADC P0.0
TRIP
/PLAI/AD6
START
/PLAO
BUSY
/PLAO
0
8 D A
/ O A L P
/
0
.
4 P
1
9
1
1
D
D
D
A
/
A
A
/
/
O
O
O
A
A
A
L
L
L
P
/
P
P
/
/
1
.
2
3
.
.
4
4
4
P
P
P
I
3
2
A
1
1
L
D
D
A
A
/P
/
/
0
O
O
M
A
A
P
L
L
S
P
P
/
/
/
0
.
5
4
.
.
1
4
4
P
P
P
I
I
I
I
A
A
A
A
L
L
L
L
P
P
P
P
/
/
/
/
3
2
1
4
M
M
M
M
P
P
P
P
S
S
S
S
/
/
/
/
3
2
1
4
.
.
.
.
1
1
1
1
P
P
P
P
I
I
I
A
A
L
L
P
P
/
/
6
5
M
M
P
P
S
S
/
/
6
5
.
.
1
1
P
P
T
O
A
R
A
L
A
L
T
P
/
P
S
/
7
V
8
M
M
M
P
O
P
S
/
S
C
/
/
7
.
K
O
1
L
A
P
C
L
E
P
/
/
7
9
.
0
M
P
P /S
P
I R T
M W
P
/
0
.
2 P
I
S
D
M
T
T
Y
O
K L
D T
C X
/ K C T
E
S
A
U
/
B
O
C
A
D
L
A
P
/
/
6
T
1
S
A
R
/ T
M
/
S
6
.
R
0
T
/
P
3
.
0 P
E
S
S
A
R
W
/
/
/
3
2
1
.
.
.
2
2
2
P
P
P
3
0
1
2
E
S
S
M
M
/
/
4
5
.
.
2
2
P
P
* See selection table for feature availabilityon different models.
E
S
S
L
H
B
B
M
M
/
/
/
/
1
2
6
7
.
.
.
.
0
0
2
2
P
P
P
P
Figure 2: Detailed Block Diagram
Rev. PrA | Page 18 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
GENERAL DESCRIPTION
The ADuC702x is fully integrated, 1MSPS, 12-bit data acquisition system incorporating a high performance multi­channel ADC, a 16/32-bit MCU and Flash/EE Memory on a single chip.
The ADC consists of up to 12 single-ended inputs. An additional 4 inputs are available but are multiplexed with the 4 DAC output pins. The 4 DAC outputs are only available on certain models of the ADuC702x, though in many cases where the DAC is not present this pin can still be used as an additional ADC input, giving a maximum of 16 ADC input channels. The ADC can operate in single-ended or differential input modes. The ADC input voltage is 0 to V reference, temperature sensor and voltage comparator complete the ADC peripheral set.
The ADuC702x also integrates 4 buffered voltage output DACs on-chip. The DAC output range is programmable to one of three voltage ranges.
The device operates from an on-chip oscillator and PLL generating an internal high-frequency clock of 45 MHz. This clock is routed through a programmable clock divider from which the MCU core clock operating frequency is generated. The microcontroller core is an ARM7TDMI, 16/32-bit RISC machine, offering up to 45 MIPS peak performance. 62k Bytes of non-volatile Flash/EE are provided on-chip as well as 8k Bytes of SRAM. Both the Flash/EE and SRAM memory arrays are mapped into a single linear array.
. Low drift bandgap
REF
system debugging.
Thumb mode (T)
An ARM instruction is 32-bits long. The ARM7TDMI processor supports a second instruction set that has been compressed into 16-bits, the Thumb instruction set. Faster execution from 16-bit memory and greater code density can usually be achieved by using the Thumb instruction set instead of the ARM instruction set, which makes the ARM7TDMI core particularly suitable for embedded applications.
However the Thumb mode has two limitations:
- Thumb code usually uses more instructions for the same job,
so ARM code is usually best for maximising the performance of the time-critical code.
- The Thumb instruction set does not include some
instructions that are needed for exception handling, so ARM code needs to be used for exception handling.
See ARM7TDMI User Guide for details on the core architecture, the programming model and both the ARM and ARM Thumb instruction sets.
Long Multiply (M)
The ARM7TDMI instruction set includes four extra instructions which perform 32-bit by 32-bit multiplication with 64-bit result and 32-bit by 32-bit multiplication-accumulation (MAC) with 64-bit result.
On-chip factory firmware supports in-circuit serial download via the UART and JTAG serial interface ports while non­intrusive emulation is also supported via the JTAG interface. These features are incorporated into a low-cost QuickStart Development System supporting this MicroConverter family.
The parts operate from 2.7V to 3.6V and are specified over an industrial temperature range of -40°C to 85°C. When operating at 45MHz the power dissipation is 300mW. The ADuC702x is available in a variety of memory models and packages. These are detailed on page 9.
OVERVIEW OF THE ARM7TDMI CORE
The ARM7 core is a 32-bit Reduced Instruction Set Computer (RISC). It uses a single 32-bit bus for instruction and data. The length of the data can be 8, 16 or 32 bits and the length of the instruction word is 32 bits.
The ARM7TDMI is an ARM7 core with 4 additional features:
- T support for the Thumb (16 bit) instruction set.
- D support for debug
- M support for long multiplies
- I include the EmbeddedICE module to support embedded
EmbeddedICE (I)
EmbeddedICE provides integrated on-chip support for the core. The EmbeddedICE module contains the breakpoint and watchpoint registers which allow code to be halted for debugging purposes. These registers are controlled through the JTAG test port.
When a breakpoint or watchpoint is encountered, the processor halts and enters debug state. Once in a debug state, the processor registers may be inspected as well as the Flash/EE, the SRAM and the Memory Mapped Registers.
Exceptions
ARM supports five types of exceptions, and a privileged processing mode for each type. The five type of exceptions are:
- Normal interrupt or IRQ. It is provided to service general-
purpose interrupt handling of internal and external events
- Fast interrupt or FIQ. It is provided to service data transfer or
communication channel with low latency. FIQ has priority over IRQ
- Memory abort
- Attempted execution of an undefined instruction
Rev. PrA | Page 19 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
- Software interrupt (SWI) instruction which can be used to
make a call to an operating system.
Typically the programmer will define interrupts as IRQ but for higher priority interrupt, i.e. faster response time, the programmer can define interrupt as FIQ.
ARM Registers
ARM7TDMI has a total of 37 registers, of which 31 are general purpose registers and six are status registers. Each operating mode has dedicated banked registers.
When writing user-level programs, 15 general purpose 32-bit registers (r0 to r14), the program counter (r15) and the current program status register (CPSR) are usable. The remaining registers are used only for system-level programming and for exception handling.
When an exception occurs, some of the standard register are replaced with registers specific to the exception mode. All exception modes have replacement banked registers for the stack pointer (r13) and the link register (r14) as represented in Figure 3. The fast interrupt mode has more registers (8 to 12) for fast interrupt processing, so that the interrupt processing can begin without the need to save or restore these registers and thus save critical time in the interrupt handling process.
r0 r1 r2 r3 r4
r5 r6 r7
r8 r9 r10 r11 r12 r13 r14 r15 (PC)
CPSR
r8_fiq
r9_fiq r10_fiq r11_fiq r12_fiq r13_fiq r14_fiq
SPSR_fiq
r13_svc r14_svc
SPSR_svc
r13_abt r14_abt
SPSR_abt
usable in user mode
system modes only
r13_irq r14_irq
SPSR_irq
r13_und r14_und
SPSR_und
Interrupt latency
The worst case latency for an FIQ consists of the longest time the request can take to pass through the synchronizer, plus the time for the longest instruction to complete (the longest instruction is an LDM) which loads all the registers including the PC, plus the time for the data abort entry, plus the time for FIQ entry. At the end of this time, the ARM7TDMI will be executing the instruction at 0x1C (FIQ interrupt vector address). The maximum total time is 41 processor cycles, which is just over 909 nanoseconds in a system using a continuous 45 MHz processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher priority and could delay entry into the IRQ handling routine for an arbitrary length of time.
The minimum latency for FIQ or IRQ interrupts is five cycles in total which consists of the shortest time the request can take through the synchronizer plus the time to enter the exception mode.
Note that the ARM7TDMI will always be run in ARM (32-bit) mode when in privileged modes, i.e. when executing interrupt service routines.
MEMORY ORGANISATION
The part incorporates two separate blocks of memory, 8kByte of SRAM and 64kByte of On-Chip Flash/EE memory. 62kByte of On-Chip Flash/EE memory are available to the user, and the remaining 2kBytes are reserved for the factory configured boot page. These two blocks are mapped as shown in
Figure 4
.
Note that by default, after a reset, the Flash/EE memory is mirrored at address 0x00000000. It is possible to remap the SRAM at address 0x00000000 by clearing bit 0 of the REMAP MMR. This remap function is described in more details in the Flash/EE memory chapter.
FFFFFFFFh
FFFF0000h
0008FFFFh
MMRs
Reserved
user mode fiq
mode
svc
mode
abord mode
irq
mode
undefined
mode
Figure 3: register organisation
More information relative to the programmer’s model and the ARM7TDMI core architecture can be found in the following documents from ARM:
- DDI0029G, ARM7TDMI Technical Reference Manual.
- DDI0100E, ARM Architecture Reference Manual.
Rev. PrA | Page 20 of 78
00080000h
00010000h
00000000h
Flash/EE
Reserved
00011FFFh
0000FFFFh
SRAM
Re-mappableMemory Space (Flash/EE or SRAM)
Figure 4: Physical memory map
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
Memory Access
The ARM7 core sees memory as a linear array of 232 byte location where the different blocks of memory are mapped as outlined in
Figure 4
.
The ADuC702x memory organisation is configured in little endian format: the least significant byte is located in the lowest byte address and the most significant byte in the highest byte address.
Byte0
...
89AB 4567 01
bit0
0xFFFFFFFFh
0x00000004h
0x00000000h
bit31
Byte3
...
Byte1Byte2
...
...
23
32 bits
Figure 5: little endian format
Flash/EE Memory
The total 64kBytes of Flash/EE are organised as 32k X 16 bits. 31k X 16 bits are user space and 1k X 16 bits is reserved for boot loader. The page size of this Flash/EE memory is 256Bytes.
62kBytes of Flash/EE are available to the user as code and non­volatile data memory. There is no distinction between data and program as ARM code shares the same space. The real width of the Flash/EE memory is 16 bits, which means that in ARM mode (32-bit instruction), two accesses to the Flash/EE are necessary for each instruction fetch. It is therefore recommended to use Thumb mode when executing from Flash/EE memory for optimum access speed. The maximum access speed for the Flash/EE memory is 45MHz in Thumb mode and 22.5MHz in full ARM mode. More details on Flash/EE access time are outlined later in ‘Execution from SRAM and Flash/EE’ section of this datasheet.
SRAM
8kBytes of SRAM are available to the user, organized as 2k X 32 bits, i.e. 2kWords. ARM code can run directly from SRAM at 45MHz , given that the SRAM array is configured as a 32-bit wide memory array. More details on SRAM access time are outlined later in ‘Execution from SRAM and Flash/EE’ section of this datasheet.
Memory Mapped Registers
The Memory Mapped Register (MMR) space is mapped into the upper 2 pages of the Flash/EE space and accessed by indirect addressing through the ARM7 banked registers.
The MMR space provides an interface between the CPU and all on-chip peripherals. All registers except the core registers reside in the MMR area. All shaded locations shown in Figure 6 are unoccupied or reserved locations and should not be accessed by user software. Table 6 shows a full MMR memory map.
0xFFFFFFFF
0xFFFFFC3C
0xFFFFFC00
0xFFFFF820
0xFFFFF800
0xFFFFF46C
0xFFFFF400
0xFFFF0B54
0xFFFF0B00
0xFFFF0A14
0xFFFF0A00
0xFFFF0948
0xFFFF0900
0xFFFF0848
0xFFFF0800
0xFFFF0730
0xFFFF0700
0xFFFF0620
0xFFFF0600
0xFFFF0538
0xFFFF0500
0xFFFF0490
0xFFFF048C
0xFFFF0448
0xFFFF0440
0xFFFF0420
0xFFFF0404
0xFFFF0370
0xFFFF0360
0xFFFF0350
0xFFFF0340
0xFFFF0334
0xFFFF0320
0xFFFF0310
0xFFFF0300
0xFFFF0238
0xFFFF0220
0xFFFF0110
0xFFFF0000
PWM
Flash Control
Interface
GPIO
PLA
SPI
I2C1
I2C0
UART
DAC
ADC
Bandgap
Reference
Power Supply
Monitor
PLL &
Oscillator Control
Watchdog
Timer
Wake Up
Timer
General Purpose
Timer
Timer 0
Remap &
System Control
Interrupt
Controller
Figure 6: Memory Mapped
Rev. PrA | Page 21 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
Table 6. Complete MMRs list
Access Address Name Byte
Type Cycle
IRQ address base = 0xFFFF0000
0x0000 IRQSTA 4 R 1 63
0x0004 IRQSIG 4 R 1 63
0x0008 IRQEN 4 RW 1 63
0x000C IRQCLR 4 W 1 63
0x0010 SWICFG 4 W 1 64
0x0100 FIQSTA 4 R 1 63
0x0104 FIQSIG 4 R 1 63
0x0108 FIQEN 4 RW 1 63
0x010C FIQCLR 4 W 1 63
System Control address base = 0xFFFF0200
0x0220 REMAP 1 RW 1 35
0x0230 RSTSTA 1 R 1 35
0x0234 RSTCLR 1 W 1 35
Timer address base = 0xFFFF0300
0x0300 T0LD 2 RW 2 65
0x0304 T0VAL 2 R 2 65
0x0308 T0CON 2 RW 2 65
0x030C T0CLRI 1 W 2 65
0x0320 T1LD 4 RW 2 66
0x0324 T1VAL 4 R 2 66
0x0328 T1CON 2 RW 2 66
0x032C T1CLRI 1 W 2 66
0x0330 T1CAP 4 RW 2 66
0x0340 T2LD 4 RW 2 67
0x0344 T2VAL 4 R 2 67
0x0348 T2CON 2 RW 2 67
0x034C T2CLRI 1 W 2 67
0x0360 T3LD 2 RW 2 68
0x0364 T3VAL 2 R 2 68
0x0368 T3CON 2 RW 2 68
0x036C T3CLRI 1 W 2 68
PLL base address = 0xFFFF0400
0x0404 POWKY1 1 W 2 40
0x0408 POWCON 1 RW 2 40
0x040C POWKY2 1 W 2 40
0x0410 PLLKY1 1 W 2 40
Page
Address Name Byte
0x0414 PLLCON 1 RW 2 40
0x0418 PLLKY2 1 W 2 40
PSM address base = 0xFFFF0440
0x0440 PSMCON 2 RW 2 38
0x0444 CMPCON 2 RW 2 38
Reference address base = 0xFFFF0480
0x048C REFCON 1 RW 2 30
ADC address base = 0xFFFF0500
0x0500 ADCCON 1 RW 2 26
0x0504 ADCCP 1 RW 2 27
0x0508 ADCCN 1 RW 2 27
0x050C ADCSTA 1 RW 2 26
0x0510 ADCDAT 4 R 2 26
0x0514 ADCRST 1 RW 2 26
0x0530 ADCGN 2 RW 2 29
0x0534 ADCOF 2 RW 2 29
DAC address base = 0xFFFF0600
0x0600 DAC0CON 1 RW 2 36
0x0604 DAC0DAT 4 RW 2 36
0x0608 DAC1CON 1 RW 2 36
0x060C DAC1DAT 4 RW 2 36
UART base address = 0xFFFF0700
0x0700 COMTX 1 RW 2 51
COMRX 1 R 2 51
COMDIV0 1 RW 2 51
0x0704 COMIEN0 1 RW 2 52
COMDIV1 1 R/W 2 51
0x0708 COMIID0 1 R 2 52
0x070C COMCON0 1 RW 2 51
0x0710 COMCON1 1 RW 2 53
0x0714 COMSTA0 1 R 2 52
0x0718 COMSTA1 1 R 2 53
0x071C COMSCR 1 RW 2 51
0x0720 COMIEN1 1 RW 2 54
0x0724 COMIID1 1 R 2 54
0x0728 COMADR 1 RW 2 51
0X072C COMDIV2 2 RW 2 53
Access
Type Cycle
Page
Rev. PrA | Page 22 of 78
Preliminary Technical Data ADuC702x Series
www.BDTIC.com/ADI
Access Address Name Byte
Type Cycle
I2C0 base address = 0xFFFF0800
0x0800 I2C0MSTA 1 R 2 58
0x0804 I2C0SSTA 1 R 2 58
0x0808 I2C0SRX 1 R 2 57
0x080C I2C0STX 1 W 2 57
0x0810 I2C0MRX 1 R 2 57
0x0814 I2C0MTX 1 W 2 57
0x0818 I2C0CNT 1 RW 2 57
0x081C I2C0ADR 1 RW 2 57
0x0824 I2C0BYTE 1 RW 2 57
0x0828 I2C0ALT 1 RW 2 57
0x082C I2C0CFG 1 RW 2 57
0x0830 I2C0DIVH 1 RW 2 57
0x0834 I2C0DIVL 1 RW 2 57
0x0838 I2C0ID0 1 RW 2 57
0x083C I2C0ID1 1 RW 2 57
0x0840 I2C0ID2 1 RW 2 57
0x0844 I2C0ID3 1 RW 2 57
I2C1 base address = 0xFFFF0900
0x0900 I2C1MSTA 1 R 2 58
0x0904 I2C1SSTA 1 R 2 58
0x0908 I2C1SRX 1 R 2 57
0x090C I2C1STX 1 W 2 57
0x0910 I2C1MRX 1 R 2 57
0x0914 I2C1MTX 1 W 2 57
0x0918 I2C1CNT 1 RW 2 57
0x091C I2C1ADR 1 RW 2 57
0x0924 I2C1BYTE 1 RW 2 57
0x0928 I2C1ALT 1 RW 2 57
0x092C I2C1CFG 1 RW 2 57
0x0930 I2C1DIVH 1 RW 2 57
0x0934 I2C1DIVL 1 RW 2 57
0x0938 I2C1ID0 1 RW 2 57
0x093C I2C1ID1 1 RW 2 57
0x0940 I2C1ID2 1 RW 2 57
0x0944 I2C1ID3 1 RW 2 57
SPI base address = 0xFFFF0A00
0x0A00 SPISTA 1 R 2 55
Page
0x0A04 SPIRX 1 R 2 55
Access Address Name Byte
Type Cycle
0x0A08 SPITX 1 W 2 55
0x0A0C SPIDIV 1 RW 2 55
0x0A10 SPICON 2 RW 2 55
PLA base address = 0xFFFF0B00
0x0B00 PLAELM0 2 RW 2 60
0x0B04 PLAELM1 2 RW 2 60
0x0B08 PLAELM2 2 RW 2 60
0x0B0C PLAELM3 2 RW 2 60
0x0B10 PLAELM4 2 RW 2 60
0x0B14 PLAELM5 2 RW 2 60
0x0B18 PLAELM6 2 RW 2 60
0x0B1C PLAELM7 2 RW 2 60
0x0B20 PLAELM8 2 RW 2 60
0x0B24 PLAELM9 2 RW 2 60
0x0B28 PLAELM10 2 RW 2 60
0x0B2C PLAELM11 2 RW 2 60
0x0B30 PLAELM12 2 RW 2 60
0x0B34 PLAELM13 2 RW 2 60
0x0B38 PLAELM14 2 RW 2 60
0x0B3C PLAELM15 2 RW 2 60
0x0B40 PLACLK 1 RW 2 61
0x0B44 PLAIRQ 4 RW 2 61
0x0B48 PLAADC 4 RW 2 62
0x0B4C PLADIN 4 R 2 62
0x0B50 PLADOUT 4 RW 2 62
External Memory base address = 0xFFFFF000
0xF000 XMCFG 1 RW 2
0xF010 XM0CON 1 RW 2
0xF014 XM1CON 1 RW 2
0xF018 XM2CON 1 RW 2
0xF01C XM3CON 1 RW 2
0xF020 XM0PAR 2 RW 2
0xF024 XM1PAR 2 RW 2
0xF028 XM2PAR 2 RW 2
0xF02C XM3PAR 2 RW 2
GPIO base address = 0xFFFFF400
0xF400 GP0CON 4 RW 1 48
Page
Rev. PrA | Page 23 of 78
ADuC702x Series Preliminary Technical Data
www.BDTIC.com/ADI
0xF404 GP1CON 4 RW 1 48
0xF408 GP2CON 4 RW 1 48
0xF40C GP3CON 4 RW 1 48
0xF410 GP4CON 4 RW 1 48
0xF420 GP0DAT 4 RW 1 49
0xF424 GP0SET 1 W 1 49
0xF428 GP0CLR 1 W 1 49
0xF430 GP1DAT 4 RW 1 49
0xF434 GP1SET 1 W 1 49
0xF438 GP1CLR 1 W 1 49
0xF440 GP2DAT 4 RW 1 49
0xF444 GP2SET 1 W 1 49
0xFC24 PWMDAT2 2 RW 1
The ‘Access’ column corresponds to the access time reading or writing a MMR. It depends on the AMBA (Advanced Microcontroller Bus Architecture) bus used to access the peripheral. The processor has two AMBA busses, AHB (Advanced High-performance Bus) used for system modules and APB (Advanced Peripheral Bus) used for lower performance peripheral.
Access Address Name Byte
Type Cycle
0xF448 GP2CLR 1 W 1 49
0xF450 GP3DAT 4 RW 1 49
0xF454 GP3SET 1 W 1 49
0xF458 GP3CLR 1 W 1 49
0xF460 GP4DAT 4 RW 1 49
0xF464 GP4SET 1 W 1 49
0xF468 GP4CLR 1 W 1 49
Flash/EE base address = 0xFFFFF800
0xF800 FEESTA 1 R 1 32
0xF804 FEEMOD 1 RW 1 32
0xF808 FEECON 1 RW 1 32
0xF80C FEEDAT 2 RW 1 32
0xF810 FEEADR 2 RW 1 32
0xF818 FEESIGN 3 R 1 32
0xF81C FEEPRO 4 RW 1 33
0xF820 FEEHIDE 4 RW 1 33
PWM base address= 0xFFFFFC00
0xFC00 PWMCON 2 RW 1 46
0xFC04 PWMSTA 2 RW 1
0xFC08 PWMDAT0 2 RW 1
0xFC0C PWMDAT1 2 RW 1
0xFC10 PWMCFG 2 RW 1
0xFC14 PWMCH0 2 RW 1 46
0xFC18 PWMCH1 2 RW 1 46
0xFC1C PWMCH2 2 RW 1 46
0xFC20 PWMEN 2 RW 1 47
Page
Rev. PrA | Page 24 of 78
Loading...
+ 54 hidden pages