Analog Devices ADSP-TS201S User Manual

a
®
TigerSHARC
Embedded Processor
ADSP-TS201S
KEY FEATURES
Up to 600 MHz, 1.67 ns instruction cycle rate 24M bits of internal—on-chip—DRAM memory 25 mm × 25 mm (576-ball) thermally enhanced ball grid
array package
Dual-computation blocks—each containing an ALU, a
multiplier, a shifter, a register file, and a communications logic unit (CLU)
Dual-integer ALUs, providing data addressing and pointer
manipulation
Integrated I/O includes 14-channel DMA controller, external
port, four link ports, SDRAM controller, programmable flag pins, two timers, and timer expired pin for system integration
1149.1 IEEE-compliant JTAG test access port for on-chip emulation
Single-precision IEEE 32-bit and extended-precision 40-bit
floating-point data formats and 8-, 16-, 32-, and 64-bit fixed-point data formats
DATA ADDRESS GENERATION
32
32
INTEGER
KALU
32-BIT × 32-BIT
128
128
DAB
DAB
PROGRAM
SEQUENCER
ADDR
FETCH
BTB
PC
IAB
CLU
INTEGER
JALU
32-BIT × 32-BIT
J-BUS ADDR
J-BUS DATA
K-BUS ADDR
K-BUS DATA
I-BUS ADDR
I-BUS DATA
T
X
REGISTER
MULALUSHIFT
FILE
32-BIT × 32-BIT
KEY BENEFITS
Provides high performance static superscalar DSP
operations, optimized for telecommunications infrastructure and other large, demanding multiprocessor DSP applications
Performs exceptionally well on DSP algorithm and I/O
benchmarks (see benchmarks in Table 1)
Supports low overhead DMA transfers between internal
memory, external memory, memory-mapped peripherals, link ports, host processors, and other (multiprocessor) DSPs
Eases DSP programming through extremely flexible instruc-
tion set and high-level-language-friendly DSP architecture
Enables scalable multiprocessing systems with low commu-
nications overhead
Provides on-chip arbitration for glueless multiprocessing
24M BITS INTERNAL MEMORY
MEMORY BLOCKS
(PAGE CACHE)
4 × CROSSBAR CONNECT
ADADA
A
D
32
128
32
128
32
128
S-BUS ADDR
S-BUS DATA
128
128
Y
REGISTER
FILE
32-BIT × 32-BIT
D
SOC
I/F
21
128
MUL ALU SHIFT
SOC BUS
CLU
JTAG
HOST
MULTI-
PROC
SDRAM
CTRL
C-BUS
ARB
DMA
L0
OUT
L1
OUT
L2
OUT
L3
OUT
JTAG PORT
6
EXTERNAL
PORT
32
64
8
10
EXT DMA
REQ
LINK PORTS
4 8
IN
4 8 4 8
IN
4 8 4 8
IN
4 8 4 8
IN
4 8
ADDR
DATA
CTRL
CTRL
4
TigerSHARC and the TigerSHARC logo are registered trademarks of Analog Devices, Inc.
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
COMPUTATIONAL BLOCKS
Figure 1. Functional Block Diagram
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.
ADSP-TS201S

TABLE OF CONTENTS

General Description ................................................. 3
Dual Compute Blocks ............................................ 4
Data Alignment Buffer (DAB) .................................. 4
Dual Integer ALU (IALU) ....................................... 4
Program Sequencer ............................................... 5
Interrupt Controller ........................................... 5
Flexible Instruction Set ........................................ 5
DSP Memory ....................................................... 5
External Port (Off-Chip Memory/Peripherals
Interface) ......................................................... 6
Host Interface ................................................... 7
Multiprocessor Interface ...................................... 7
SDRAM Controller ............................................ 7
EPROM Interface .............................................. 7
DMA Controller ................................................... 7
Link Ports (LVDS) ................................................ 9
Timer and General-Purpose I/O ............................... 9
Reset and Booting ................................................. 9
Clock Domains .................................................... 9
Power Domains .................................................. 10
Filtering Reference Voltage and Clocks .................... 10
Development Tools ............................................. 10
Evaluation Kit .................................................... 11
Designing an Emulator-Compatible
DSP Board (Target) .......................................... 11
Additional Information ........................................ 11
Pin Function Descriptions ....................................... 12
Strap Pin Function Descriptions ................................ 20
ADSP-TS201S—Specifications .................................. 21
Operating Conditions .......................................... 21
Electrical Characteristics ....................................... 22
Package Information ........................................... 23
Absolute Maximum Ratings .................................. 23
ESD Sensitivity ................................................... 23
Timing Specifications .......................................... 24
General AC Timing .......................................... 24
Link Port Low Voltage, Differential-Signal (LVDS)
Electrical Characteristics, and Timing ................ 30
Link Port—Data Out Timing ........................... 31
Link Port—Data In Timing ............................. 34
Output Drive Currents ......................................... 36
Test Conditions .................................................. 37
Output Disable Time ......................................... 37
Output Enable Time ......................................... 38
Capacitive Loading ........................................... 38
Environmental Conditions .................................... 40
Thermal Characteristics ..................................... 40
576-Ball BGA_ED Pin Configurations ......................... 41
Outline Dimensions ................................................ 45
Surface Mount Design .......................................... 45
Ordering Guide ..................................................... 46

REVISION HISTORY

12/06—Rev. B to Rev. C
Applied Corrections to:
Figure7, SCLK_VREF Filtering Scheme .................... 10
Operating Conditions ........................................... 21
Added On-Chip DRAM Refresh ............................. 27
Ordering Guide .................................................. 46
Rev. C | Page 2 of 48 | December 2006

GENERAL DESCRIPTION

ADSP-TS201S
The ADSP-TS201S TigerSHARC processor is an ultrahigh per­formance, static superscalar processor optimized for large signal processing tasks and communications infrastructure. The DSP combines very wide memory widths with dual computation blocks—supporting floating-point (IEEE 32-bit and extended precision 40-bit) and fixed-point (8-, 16-, 32-, and 64-bit) pro­cessing—to set a new standard of performance for digital signal processors. The TigerSHARC static superscalar architecture lets the DSP execute up to four instructions each cycle, performing 24 fixed-point (16-bit) operations or six floating-point operations.
Four independent 128-bit wide internal data buses, each con­necting to the six 4M bit memory banks, enable quad-word data, instruction, and I/O access and provide 33.6G bytes per second of internal memory bandwidth. Operating at 600 MHz, the ADSP-TS201S processor’s core has a 1.67 ns instruction cycle time. Using its single-instruction, multiple-data (SIMD) features, the ADSP-TS201S processor can perform 4.8 billion, 40-bit MACS or 1.2 billion, 80-bit MACS per second. Table 1 shows the DSP’s performance benchmarks.
Table 1. General-Purpose Algorithm Benchmarks at 600 MHz
Clock
Benchmark Speed
Cycles
32-bit algorithm, 1.2 billion MACS/s peak performance 1K point complex FFT 64K point complex FFT
1
(Radix2) 15.7 μs 9419
1
(Radix2) 2.33 ms 1397544 FIR filter (per real tap) 0.83 ns 0.5 [8 × 8][8 × 8] matrix multiply (complex,
floating-point) 2.3 μs 1399 16-bit algorithm, 4.8 billion MACS/s peak performance 256 point complex FFT
(Radix 2)
0.975 μs 585
1
I/O DMA transfer rate External port 1G bytes/s n/a Link ports (each) 1G bytes/s n/a
1
Cache preloaded
The ADSP-TS201S processor is code compatible with the other TigerSHARC processors.
The Functional Block Diagram on Page 1 shows the ADSP-TS201S processor’s architectural blocks. These blocks include:
• Dual compute blocks, each consisting of an ALU, multi­plier, 64-bit shifter, 128-bit CLU, and 32-word register file and associated data alignment buffers (DABs)
• Dual integer ALUs (IALUs), each with its own 31-word register file for data addressing and a status register
• A program sequencer with instruction alignment buffer (IAB) and branch target buffer (BTB)
• An interrupt controller that supports hardware and soft­ware interrupts, supports level- or edge-triggers, and supports prioritized, nested interrupts
• Four 128-bit internal data buses, each connecting to the six 4M bit memory banks
• On-chip DRAM (24M bit)
• An external port that provides the interface to host proces­sors, multiprocessing space (DSPs), off-chip memory­mapped peripherals, and external SRAM and SDRAM
• A 14-channel DMA controller
• Four full-duplex LVDS link ports
• Two 64-bit interval timers and timer expired pin
• An 1149.1 IEEE-compliant JTAG test access port for on­chip emulation
Figure 2 on Page 3 shows a typical single-processor system with
external SRAM and SDRAM. Figure 4 on Page 8 shows a typical multiprocessor system.
ADSP-TS201S
RST_IN RST_OUT
CLOCK
REFERENCE
REFERENCE
SDRAM
MEMORY
(OPTIONAL)
CS
CLK ADDR
RAS CAS
DATA
DQM
WE
CKE
A10
LINK
DEVICES
(4 MAX)
(OPTIONAL)
POR_IN
SCLK
SCLKRA T2–0
SCLK_V
REF
V
REF
IRQ3–0
FLAG3–0
ID2–0
MSSD3–0 RAS CAS
LDQM
HDQM
SDWE
SDCKE
SDA10
IORD IOWR IOEN
LxDATO3–0P/N
LxCLKOUTP/N
LxACKI
LxBCMPO
LxDATI3–0P/N
LxCLKINP/N
LxACKO
LxBCMPI
CONTROLIMP1–0 TMR0E DS2–0
BMS
BRST
ADDR31–0
DATA63–0
WRH/WRL
ACK
MS1–0
MSH HBR HBG
BOFF
BR7–0
CPA DPA
DMAR3–0
BM
BUSLOCK
JTAG
RD
L
S S
O
E
R
R
T
D
N
D
O
A
C
Figure 2. ADSP-TS201S Single-Processor System with External SDRAM
A T A D
BOOT
EPROM
(OPTIONAL)
CS
ADDR
DATA
MEMORY
(OPTIONAL)
ADDR
DATA
OE WE
ACK
CS
HOST
PROCESSOR
INTERFACE (OPTIONAL)
ADDR
DATA
DMA DEVICE
(OPTIONAL)
DATA
Rev. C | Page 3 of 48 | December 2006
ADSP-TS201S
TM
The TigerSHARC DSP uses a Static Superscalar This architecture is superscalar in that the ADSP-TS201S pro­cessor’s core can execute simultaneously from one to four 32-bit instructions encoded in a very large instruction word (VLIW) instruction line using the DSP’s dual compute blocks. Because the DSP does not perform instruction re-ordering at runtime— the programmer selects which operations will execute in parallel prior to runtime—the order of instructions is static.
With few exceptions, an instruction line, whether it contains one, two, three, or four 32-bit instructions, executes with a throughput of one cycle in a 10-deep processor pipeline.
For optimal DSP program execution, programmers must follow the DSP’s set of instruction parallelism rules when encoding an instruction line. In general, the selection of instructions that the DSP can execute in parallel each cycle depends on the instruc­tion line resources each instruction requires and on the source and destination registers used in the instructions. The program­mer has direct control of three core components—the IALUs, the compute blocks, and the program sequencer.
The ADSP-TS201S processor, in most cases, has a two-cycle execution pipeline that is fully interlocked, so—whenever a computation result is unavailable for another operation depen­dent on it—the DSP automatically inserts one or more stall cycles as needed. Efficient programming with dependency-free instructions can eliminate most computational and memory transfer data dependencies.
In addition, the ADSP-TS201S processor supports SIMD opera­tions two ways—SIMD compute blocks and SIMD computations. The programmer can load both compute blocks with the same data (broadcast distribution) or different data (merged distribution).

DUAL COMPUTE BLOCKS

The ADSP-TS201S processor has compute blocks that can exe­cute computations either independently or together as a single­instruction, multiple-data (SIMD) engine. The DSP can issue up to two compute instructions per compute block each cycle, instructing the ALU, multiplier, shifter, or CLU to perform independent, simultaneous operations. Each compute block can execute eight 8-bit, four 16-bit, two 32-bit, or one 64-bit SIMD computations in parallel with the operation in the other block. These computation units support IEEE 32-bit single-precision floating-point, extended-precision 40-bit floating point, and 8-, 16-, 32-, and 64-bit fixed-point processing.
The compute blocks are referred to as X and Y in assembly syn­tax, and each block contains four computational units—an ALU, a multiplier, a 64-bit shifter, a 128-bit CLU—and a 32­word register file.
• Register File—each compute block has a multiported 32­word, fully orthogonal register file used for transferring data between the computation units and data buses and for
Static Superscalar is a trademark of Analog Devices, Inc.
architecture.
storing intermediate results. Instructions can access the registers in the register file individually (word-aligned), in sets of two (dual-aligned), or in sets of four (quad-aligned).
• ALU—the ALU performs a standard set of arithmetic oper­ations in both fixed- and floating-point formats. It also performs logic operations.
• Multiplier—the multiplier performs both fixed- and float­ing-point multiplication and fixed-point multiply and accumulate.
• Shifter—the 64-bit shifter performs logical and arithmetic shifts, bit and bit stream manipulation, and field deposit and extraction operations.
• Communications Logic Unit (CLU)—this 128-bit unit pro­vides trellis decoding (for example, Viterbi and Turbo decoders) and executes complex correlations for CDMA communication applications (for example, chip-rate and symbol-rate functions).
Using these features, the compute blocks can:
• Provide 8 MACS per cycle peak and 7.1 MACS per cycle sustained 16-bit performance and provide 2 MACS per cycle peak and 1.8 MACS per cycle sustained 32-bit perfor­mance (based on FIR)
• Execute six single-precision floating-point or execute 24 fixed-point (16-bit) operations per cycle, providing
3.6G FLOPS or 14.4G/s regular operations performance at 600 MHz
• Perform two complex 16-bit MACS per cycle
• Execute eight trellis butterflies in one cycle

DATA ALIGNMENT BUFFER (DAB)

The DAB is a quad-word FIFO that enables loading of quad­word data from nonaligned addresses. Normally, load instruc­tions must be aligned to their data size so that quad words are loaded from a quad-aligned address. Using the DAB signifi­cantly improves the efficiency of some applications, such as FIR filters.

DUAL INTEGER ALU (IALU)

The ADSP-TS201S processor has two IALUs that provide pow­erful address generation capabilities and perform many general­purpose integer operations. The IALUs are referred to as J and K in assembly syntax and have the following features:
• Provide memory addresses for data and update pointers
• Support circular buffering and bit-reverse addressing
• Perform general-purpose integer operations, increasing programming flexibility
• Include a 31-word register file for each IALU
As address generators, the IALUs perform immediate or indi­rect (pre- and post-modify) addressing. They perform modulus and bit-reverse operations with no constraints placed on mem­ory addresses for the modulus data buffer placement. Each IALU can specify either a single-, dual-, or quad-word access from memory.
Rev. C | Page 4 of 48 | December 2006
ADSP-TS201S
The IALUs have hardware support for circular buffers, bit reverse, and zero-overhead looping. Circular buffers facilitate efficient programming of delay lines and other data structures required in digital signal processing, and they are commonly used in digital filters and Fourier transforms. Each IALU pro­vides registers for four circular buffers, so applications can set up a total of eight circular buffers. The IALUs handle address pointer wraparound automatically, reducing overhead, increas­ing performance, and simplifying implementation. Circular buffers can start and end at any memory location.
Because the IALU’s computational pipeline is one cycle deep, in most cases integer results are available in the next cycle. Hard­ware (register dependency check) causes a stall if a result is unavailable in a given cycle.

PROGRAM SEQUENCER

The ADSP-TS201S processor’s program sequencer supports the following:
• A fully interruptible programming model with flexible pro­gramming in assembly and C/C++ languages; handles hardware interrupts with high throughput and no aborted instruction cycles
• A 10-cycle instruction pipeline—four-cycle fetch pipe and six-cycle execution pipe—computation results available two cycles after operands are available
• Supply of instruction fetch memory addresses; the sequencer’s instruction alignment buffer (IAB) caches up to five fetched instruction lines waiting to execute; the pro­gram sequencer extracts an instruction line from the IAB and distributes it to the appropriate core component for execution
• Management of program structures and program flow determined according to JUMP, CALL, RTI, RTS instruc­tions, loop structures, conditions, interrupts, and software exceptions
• Branch prediction and a 128-entry branch target buffer (BTB) to reduce branch delays for efficient execution of conditional and unconditional branch instructions and zero-overhead looping; correctly predicted branches occur with zero overhead cycles, overcoming the five-to-nine stage branch penalty
• Compact code without the requirement to align code in memory; the IAB handles alignment

Interrupt Controller

The DSP supports nested and nonnested interrupts. Each inter­rupt type has a register in the interrupt vector table. Also, each has a bit in both the interrupt latch register and the interrupt mask register. All interrupts are fixed as either level-sensitive or edge-sensitive, except the IRQ3–0 are programmable.
hardware interrupts, which
The DSP distinguishes between hardware interrupts and soft­ware exceptions, handling them differently. When a software exception occurs, the DSP aborts all other instructions in the instruction pipe. When a hardware interrupt occurs, the DSP continues to execute instructions already in the instruction pipe.

Flexible Instruction Set

The 128-bit instruction line, which can contain up to four 32-bit instructions, accommodates a variety of parallel operations for concise programming. For example, one instruction line can direct the DSP to conditionally execute a multiply, an add, and a subtract in both computation blocks while it also branches to another location in the program. Some key features of the instruction set include:
• CLU instructions for communications infrastructure to govern trellis decoding (for example, Viterbi and Turbo decoders) and despreading via complex correlations
• Algebraic assembly language syntax
• Direct support for all DSP, imaging, and video arithmetic types
• Eliminates toggling DSP hardware modes because modes are supported as options (for example, rounding, satura­tion, and others) within instructions
• Branch prediction encoded in instruction; enables zero­overhead loops
• Parallelism encoded in instruction line
• Conditional execution optional for all instructions
• User-defined partitioning between program and data memory

DSP MEMORY

The DSP’s internal and external memory is organized into a unified memory map, which defines the location (address) of all elements in the system, as shown in Figure 3.
The memory map is divided into four memory areas—host space, external memory, multiprocessor space, and internal memory—and each memory space, except host memory, is sub­divided into smaller memory spaces.
The ADSP-TS201S processor internal memory has 24M bits of on-chip DRAM memory, divided into six blocks of 4M bits (128K words × 32 bits). Each block—M0, M2, M4, M6, M8, and M10—can store program instructions, data, or both, so applica­tions can configure memory to suit specific needs. Placing program instructions and data in different memory blocks, however, enables the DSP to access data while performing an instruction fetch. Each memory segment contains a 128K bit cache to enable single cycle access to internal DRAM.
The six internal memory blocks connect to the four 128-bit wide internal buses through a crossbar connection, enabling the DSP to perform four memory transfers in the same cycle. The DSP’s internal bus architecture provides a total memory bandwidth of
Rev. C | Page 5 of 48 | December 2006
ADSP-TS201S
INTERNAL S PACE
RESERVED
SO C RE GISTE RS (URE GS)
RESERVED
INTERNAL REGISTERS (UREG S)
RESERVED
INTERNAL MEMORY BLOCK 1 0
RESERVED
INTERNAL M EMORY BLOCK 8
RESERVED
INTERNAL MEMORY BLOCK 6
RESERVED
INTERNAL MEMORY BLOCK 4
RESERVED
INTERNAL M EMORY BLOCK 2
RESERVED
INTERNAL M EMORY BLOCK 0
0x03FFFFFF
0x 00 1F0 3F F
0x001F0000
0x 001 E0 3F F
0x001E0000
0x0015FFFF
0x0 01 40 00 0
0x0011FFFF
0x0 01 00 00 0
0x000DFFFF
0x 00 0C0 000
0x0009FFFF
0x0 00 80 00 0
0x0005FFFF
0x0 00 40 00 0
0x0001FFFF
0x0 00 00 00 0
GLOBAL SPACE
HOST (MSH)
RESE RV ED
MSSD BANK 3 (MSSD3)
E C A P S
Y R O M E M L A N R E T X E
E C A P S
Y R O M E M
R O S S E C O R IP T L U M
RESE RV ED
MSSD BANK 2 (MSSD2)
RESE RV ED
MSSD BANK 1 (MSSD1)
RESE RV ED
MSSD BANK 0 (MSSD0)
BANK 1 (MS 1)
BANK 0 (MS 0)
PROC ES SOR I D 7
PROC ES SOR I D 6
PROC ES SOR I D 5
PROC ES SOR I D 4
PROC ES SOR I D 3
PROC ES SOR I D 2
PROC ES SOR I D 1
PROC ES SOR I D 0
BROADCAST
RE S ER V ED
INTER NAL MEMORY
0xFFFFFFFF
0x 80 00 00 00
0x 74 00 00 00
0x 70 00 00 00
0x 64 00 00 00
0x 60 00 00 00
0x 54 00 00 00
0x 50 00 00 00
0x4 40 00 00 0
0x4 00 00 00 0
0x 38 00 00 00
0x 300 00 00 0
0x 2C00 00 00
0x 280 00 00 0
0x 240 00 00 0
0x 200 00 00 0
0x 1C00 00 00
0x 180 00 00 0
0x 140 00 00 0
0x 100 00 00 0
0x 0C00 00 00
0x 03 FFFF F F
0x 000 00 00 0
EACH IS A COPY
OF INTERNAL SPACE
Figure 3. ADSP-TS201S Memory Map
33.6G bytes per second, enabling the core and I/O to access eight 32-bit data-words and four 32-bit instructions each cycle. The DSP’s flexible memory structure enables:
• DSP core and I/O accesses to different memory blocks in the same cycle
• DSP core access to three memory blocks in parallel—one instruction and two data accesses
• Programmable partitioning of program and data memory
• Program access of all memory as 32-, 64-, or 128-bit words—16-bit words with the DAB

EXTERNAL PORT (OFF-CHIP MEMORY/PERIPHERALS INTERFACE)

The ADSP-TS201S processor’s external port provides the DSP’s interface to off-chip memory and peripherals. The 4G word address space is included in the DSP’s unified address space.
Rev. C | Page 6 of 48 | December 2006
The separate on-chip buses—four 128-bit data buses and four 32-bit address buses—are multiplexed at the SOC interface and transferred to the external port over the SOC bus to create an external system bus transaction. The external system bus pro­vides a single 64-bit data bus and a single 32-bit address bus. The external port supports data transfer rates of 1G byte per second over the external bus.
The external bus can be configured for 32-bit or 64-bit, little­endian operations. When the system bus is configured for 64-bit operations, the lower 32 bits of the external data bus connect to even addresses, and the upper 32 bits connect to odd addresses.
The external port supports pipelined, slow, and SDRAM proto­cols. Addressing of external memory devices and memory­mapped peripherals is facilitated by on-chip decoding of high order address lines to generate memory bank select signals.
ADSP-TS201S
The ADSP-TS201S processor provides programmable memory, pipeline depth, and idle cycle for synchronous accesses; and external acknowledge controls to support interfacing to pipe­lined or slow devices, host processors, and other memory­mapped peripherals with variable access, hold, and disable time requirements.

Host Interface

The ADSP-TS201S processor provides an easy and configurable interface between its external bus and host processors through the external port (see Figure 4). To accommodate a variety of host processors, the host interface supports pipelined or slow protocols for ADSP-TS201S processor access of the host as slave or pipelined for host access of the ADSP-TS201S processor as slave. Each protocol has programmable transmission parame­ters, such as idle cycles, pipe depth, and internal wait cycles.
The host interface supports burst transactions initiated by a host processor. After the host issues the starting address of the burst and asserts the BRST internally while the host continues to assert BRST
The host interface provides a deadlock recovery mechanism that enables a host to recover from deadlock situations involving the DSP. The BOFF nism. When the host asserts BOFF current transaction and asserts HBG external bus.
The host can directly read or write the internal memory of the ADSP-TS201S processor, and it can access most of the DSP reg­isters, including DMA control (TCB) registers. Vector interrupts support efficient execution of host commands.
signal, the DSP increments the address
.
signal provides the deadlock recovery mecha-
, the DSP backs off the
and relinquishes the

Multiprocessor Interface

The ADSP-TS201S processor offers powerful features tailored to multiprocessing DSP systems through the external port and link ports (see Figure 4). This multiprocessing capability pro­vides the highest bandwidth for interprocessor communication, including:
• Up to eight DSPs on a common bus
• On-chip arbitration for glueless multiprocessing
• Link ports for point-to-point communication
The external port and link ports provide integrated, glueless multiprocessing support.
The external port supports a unified address space (see Figure 3) that enables direct interprocessor accesses of each ADSP-TS201S processor’s internal memory and registers. The DSP’s on-chip distributed bus arbitration logic provides simple, glueless connection for systems containing up to eight ADSP-TS201S processors and a host processor. Bus arbitration has a rotating priority. Bus lock supports indivisible read­modify-write sequences for semaphores. A bus fairness feature prevents one DSP from holding the external bus too long.
The DSP’s four link ports provide a second path for interproces­sor communications with throughput of 4G bytes per second. The cluster bus provides 1G byte per second throughput—with a total of 4.8G bytes per second interprocessor bandwidth (lim­ited by SOC bandwidth).

SDRAM Controller

The SDRAM controller controls the ADSP-TS201S processor’s transfers of data to and from external synchronous DRAM (SDRAM) at a throughput of 32 bits or 64 bits per SCLK cycle using the external port and SDRAM control pins.
The SDRAM interface provides a glueless interface with stan­dard SDRAMs—16M bit, 64M bit, 128M bit, 256M bit, and 512M bit. The DSP supports directly a maximum of four banks of 64M words × 32 bits of SDRAM. The SDRAM interface is mapped in external memory in each DSP’s unified memory map.

EPROM Interface

The ADSP-TS201S processor can be configured to boot from an external 8-bit EPROM at reset through the external port. An automatic process (which follows reset) loads a program from the EPROM into internal memory. This process uses 16 wait cycles for each read access. During booting, the BMS tions as the EPROM chip select signal. The EPROM boot procedure uses DMA Channel 0, which packs the bytes into 32-bit instructions. Applications can also access the EPROM (write flash memories) during normal operation through DMA.
The EPROM or flash memory interface is not mapped in the DSP’s unified memory map. It is a byte address space limited to a maximum of 16M bytes (24 address bits). The EPROM or flash memory interface can be used after boot via a DMA.
pin func-

DMA CONTROLLER

The ADSP-TS201S processor’s on-chip DMA controller, with 14 DMA channels, provides zero-overhead data transfers with­out processor intervention. The DMA controller operates independently and invisibly to the DSP’s core, enabling DMA operations to occur while the DSP’s core continues to execute program instructions.
The DMA controller performs DMA transfers between internal memory, external memory, and memory-mapped peripherals; the internal memory of other DSPs on a common bus, a host processor, or link port I/O; between external memory and exter­nal peripherals or link port I/O; and between an external bus master and internal memory or link port I/O. The DMA con­troller performs the following DMA operations:
• External port block transfers. Four dedicated bidirectional DMA channels transfer blocks of data between the DSP’s internal memory and any external memory or memory­mapped peripheral on the external bus. These transfers support master mode and handshake mode protocols.
• Link port transfers. Eight dedicated DMA channels (four transmit and four receive) transfer quad-word data only between link ports and between a link port and internal or
Rev. C | Page 7 of 48 | December 2006
ADSP-TS201S
001
LINK
DEVICES
000
RESET
CLOCK
REFERENCE
REFERENCE
LINK
DEVICES
(2 MAX)
(OPTIONAL)
ID2–0
RST_IN
CLKS/REFS
ID2–0
RST_IN
CLKS/REFS
RST_OUT POR_IN
SCLK
SCLK_V
V
REF
SCLKRAT2–0
IRQ3–0
FLAG3–0
LINK
LxDATO3–0P/N
LxCLKOUTP/N
LxACKI
LxBCMPO
LxDATI3–0P/N
LxCLKINP/N
LxACKO
LxBCMPI
TMR0E
BM
CONTROLIMP1–0
DS2–0
ADSP-TS201S #7 ADSP-TS201S #6 ADSP-TS201S #5 ADSP-TS201S #4 ADSP-TS201S #3 ADSP-TS201S #2
ADSP-TS201S #1
ADDR31–0
DATA31–0
CONTROL
LINK
ADSP-TS201S #0
ADDR31–0
DATA31–0
BUSLOCK
REF
DMAR3–0
MSSD3–0
JTAG
CONTROL
BR7–2,0
BR1
BR7–1
BR0
RD
WRL
ACK
MS1–0
BMS
CPA
DPA
BRST
BOFF
HBR HBG
MSH
IORD
IOWR
IOEN
RAS CAS
LDQM
SDWE
SDCKE
SDA10
L
S S
O R T N O C
L O R T N O C
A
E
T
R
A
D
D
D A
S S
A
E
T
R
A
D
D
D A
ADDR
DATA
OE WE
ACK
CS
CS
ADDR
DATA
ADDR
DATA
CS
SDRAM MEMORY
RAS CAS
DQM
WE
CKE
A10
ADDR
DATA
GLOBAL
MEMORY
AND
PERIPHERALS
(OPTIONAL)
BOOT
EPROM
(OPTIONAL)
CLOCK
HOST
PROCESSOR
INTERFACE (OPTIONAL)
(OPTIONAL)
CLK
Figure 4. ADSP-TS201S Shared Memory Multiprocessing System
external memory. These transfers only use handshake mode protocol. DMA priority rotates between the four receive channels.
• AutoDMA transfers. Two dedicated unidirectional DMA channels transfer data received from an external bus master to internal memory or to link port I/O. These transfers only use slave mode protocol, and an external bus master must initiate the transfer.
The DMA controller provides these additional features:
• Flyby transfers. Flyby operations only occur through the external port (DMA Channel 0) and do not involve the DSP’s core. The DMA controller acts as a conduit to trans­fer data from an I/O device to external SDRAM memory.
Rev. C | Page 8 of 48 | December 2006
During a transaction, the DSP relinquishes the external data bus; outputs addresses and memory selects (MSSD3–0 RD
); outputs the IORD, IOWR, IOEN, and
/WR strobes; and responds to ACK.
• DMA chaining. DMA chaining operations enable applica­tions to automatically link one DMA transfer sequence to another for continuous transmission. The sequences can occur over different DMA channels and have different transmission attributes.
• Two-dimensional transfers. The DMA controller can access and transfer two-dimensional memory arrays on any DMA transmit or receive channel. These transfers are implemented with index, count, and modify registers for both the X and Y dimensions.
ADSP-TS201S

LINK PORTS (LVDS)

The DSP’s four full-duplex link ports each provide additional four-bit receive and four-bit transmit I/O capability, using low voltage, differential-signal (LVDS) technology. With the ability to operate at a double data rate—latching data on both the rising and falling edges of the clock—running at up to 500 MHz, each link port can support up to 500M bytes per second per direc­tion, for a combined maximum throughput of 4G bytes per second.
The link ports provide an optional communications channel that is useful in multiprocessor systems for implementing point­to-point interprocessor communications. Applications can also use the link ports for booting.
Each link port has its own triple-buffered quad-word input and double-buffered quad-word output registers. The DSP’s core can write directly to a link port’s transmit register and read from a receive register, or the DMA controller can perform DMA transfers through eight (four transmit and four receive) dedi­cated link port DMA channels.
Each link port direction has three signals that control its opera­tion. For the transmitter, LxCLKOUT is the output transmit clock, LxACKI is the handshake input to control the data flow, and the LxBCMPO
output indicates that the block transfer is complete. For the receiver, LxCLKIN is the input receive clock, LxACKO is the handshake output to control the data flow, and the LxBCMPI
input indicates that the block transfer is com­plete. The LxDATO3–0 pins are the data output bus for the transmitter and the LxDATI3–0 pins are the input data bus for the receiver.
Applications can program separate error detection mechanisms for transmit and receive operations (applications can use the checksum mechanism to implement consecutive link port transfers), the size of data packets, and the speed at which bytes are transmitted.

TIMER AND GENERAL-PURPOSE I/O

The ADSP-TS201S processor has a timer pin (TMR0E) that generates output when a programmed timer counter has expired, and four programmable general-purpose I/O pins (FLAG3–0) that can function as either single-bit input or out­put. As outputs, these pins can signal peripheral devices; as inputs, they can provide the test for conditional branching.
After reset, the ADSP-TS201S processor has four boot options for beginning operation:
• Boot from EPROM.
• Boot by an external master (host or another ADSP-TS201S processor).
•Boot by link port.
• No boot—start running from memory address selected with one of the IRQ3–0
interrupt signals. See Table 2.
Using the “no boot” option, the ADSP-TS201S processor must start running from memory when one of the interrupts is asserted.
Table 2. No Boot, Run from Memory Addresses
Interrupt Address
IRQ0 IRQ1 IRQ2 IRQ3
0x3000 0000 (External Memory) 0x3800 0000 (External Memory) 0x8000 0000 (External Memory) 0x0000 0000 (Internal Memory)
The ADSP-TS201S processor core always exits from reset in the idle state and waits for an interrupt. Some of the interrupts in the interrupt vector table are initialized and enabled after reset.
For more information on boot options, see the EE-200:
ADSP-TS20x TigerSHARC Processor Boot Loader Kernels Oper­ation on the Analog Devices website (www.analog.com).

CLOCK DOMAINS

The DSP uses calculated ratios of the SCLK clock to operate, as shown in Figure 5. The instruction execution rate is equal to CCLK. A PLL from SCLK generates CCLK which is phase­locked. The SCLKRATx pins define the clock multiplication of SCLK to CCLK (see Table 4 on Page 12). The link port clock is generated from CCLK via a software programmable divisor, and the SOC bus operates at 1/2 CCLK. Memory transfers to exter­nal and link port buffers operate at the SOCCLK rate. SCLK also provides clock input for the external bus interface and defines the ac specification reference for the external bus signals. The external bus interface runs at the SCLK frequency. The maxi­mum SCLK frequency is one quarter the internal DSP clock (CCLK) frequency.

RESET AND BOOTING

The ADSP-TS201S processor has three levels of reset:
• Power-up reset – after power-up of the system (SCLK, all static inputs, and strap pins are stable), the RST_IN must be asserted (low).
• Normal reset – for any chip reset following the power-up reset, the RST_IN
pin must be asserted (low).
• DSP-core reset – when setting the SWRST bit in EMUCTL, the DSP core is reset, but not the external port or I/O.
For normal operations, tie the RST_OUT POR_IN
pin.
pin to the
pin
Rev. C | Page 9 of 48 | December 2006
SCLK
SCLKRATx
LCTLx REGISTER
PLL
SPD BITS,
Figure 5. Clock Domains
/CR
EXTERNAL INTERFACE
CCLK (INSTRUCTION RA TE)
SOCCLK
/2
(PERIPHERAL BUS RATE)
LxCLKOUT (LINK OUTPUT RATE)
ADSP-TS201S

POWER DOMAINS

The ADSP-TS201S processor has separate power supply con­nections for internal logic (V buffer (V
), and internal DRAM (V
DD_IO
Note that the analog (V
), analog circuits (V
DD
DD_DRAM
) supply powers the clock generator
DD_A
DD_A
) power supply.
), I/O
PLLs. To produce a stable clock, systems must provide a clean power supply to power input V attention to bypassing the V
. Designs must pay critical
DD_A
supply.
DD_A

FILTERING REFERENCE VOLTAGE AND CLOCKS

Figure 6 and Figure 7 show possible circuits for filtering V
and SCLK_V
. These circuits provide the reference voltages
REF
for the switching voltage reference and system clock reference.
V
DD_IO
R1
R2 C1 C2
V
SS
R1: 2kSERIES RESISTOR (±1%) R2: 2.55kSERIES RESISTOR (±1%) C1: 1F CAPACITO R (SMD) C2: 1nF CAPACITOR (HF SMD) PLACED CLOSE TO DSP’S PINS
Figure 6. V
CLOCK DRIVER
*
VOLTAGE OR
V
DD_IO
R1
R2 C1 C2
R1: 2kSERIES RESISTOR (±1%) R2: 2.55kSERIES RESISTOR (±1%) C1: 1F CAPACITOR ( SMD) C2: 1nF CAPACITOR (HF SMD) PLACED CLOSE TO DSP’S PINS
*
IF CLOCK DRIVER VOLTAGE > V
Figure 7. SCLK_V
Filtering Scheme
REF
V
SS
DD_IO
Filtering Scheme
REF
V
REF
SCLK_V
REF
REF
,

DEVELOPMENT TOOLS

The ADSP-TS201S processor is supported with a complete set of CROSSCORE including Analog Devices emulators and VisualDSP++ opment environment. The same emulator hardware that supports other TigerSHARC processors also fully emulates the ADSP-TS201S processor.
CROSSCORE is a registered trademark of Analog Devices, Inc.
VisualDSP++ is a registered trademark of Analog Devices, Inc.
®
software and hardware development tools,
®
devel-
The VisualDSP++ project management environment lets pro­grammers develop and debug an application. This environment includes an easy to use assembler (which is based on an alge­braic syntax), an archiver (librarian/library builder), a linker, a loader, a cycle-accurate instruction-level simulator, a C/C++ compiler, and a C/C++ run-time library that includes DSP and mathematical functions. A key point for theses tools is C/C++ code efficiency. The compiler has been developed for efficient translation of C/C++ code to DSP assembly. The DSP has archi­tectural features that improve the efficiency of compiled C/C++ code.
The VisualDSP++ debugger has a number of important features. Data visualization is enhanced by a plotting package that offers a significant level of flexibility. This graphical representation of user data enables the programmer to quickly determine the performance of an algorithm. As algorithms grow in complexity, this capability can have increasing significance on the designer’s development schedule, increasing productivity. Statistical profiling enables the programmer to nonintrusively poll the processor as it is running the program. This feature, unique to VisualDSP++, enables the software developer to passively gather important code execution metrics without interrupting the real-time characteristics of the program. Essentially, the developer can identify bottlenecks in software quickly and efficiently. By using the profiler, the programmer can focus on those areas in the program that impact performance and take corrective action.
Debugging both C/C++ and assembly programs with the VisualDSP++ debugger, programmers can:
• View mixed C/C++ and assembly code (interleaved source and object information)
• Insert breakpoints
• Set conditional breakpoints on registers, memory, and stacks
• Trace instruction execution
• Perform linear or statistical profiling of program execution
• Fill, dump, and graphically plot the contents of memory
• Perform source level debugging
• Create custom debugger windows
The VisualDSP++ IDE lets programmers define and manage DSP software development. Its dialog boxes and property pages let programmers configure and manage all of the TigerSHARC processor development tools, including the color syntax high­lighting in the VisualDSP++ editor. This capability permits programmers to:
• Control how the development tools process inputs and generate outputs
• Maintain a one-to-one correspondence with the tool’s command line switches
The VisualDSP++ Kernel (VDK) incorporates scheduling and resource management tailored specifically to address the mem­ory and timing constraints of DSP programming. These capabilities enable engineers to develop code more effectively,
Rev. C | Page 10 of 48 | December 2006
ADSP-TS201S
eliminating the need to start from the very beginning when developing new application code. The VDK features include threads, critical and unscheduled regions, semaphores, events, and device flags. The VDK also supports priority-based, pre­emptive, cooperative, and time-sliced scheduling approaches. In addition, the VDK was designed to be scalable. If the application does not use a specific feature, the support code for that feature is excluded from the target system.
Because the VDK is a library, a developer can decide whether to use it or not. The VDK is integrated into the VisualDSP++ development environment, but can also be used via standard command line tools. When the VDK is used, the development environment assists the developer with many error-prone tasks and assists in managing system resources, automating the gen­eration of various VDK-based objects, and visualizing the system state, when debugging an application that uses the VDK.
VCSE is Analog Devices’ technology for creating, using, and reusing software components (independent modules of sub­stantial functionality) to quickly and reliably assemble software applications. It also is used for downloading components from the Web, dropping them into the application, and publishing component archives from within VisualDSP++. VCSE supports component implementation in C/C++ or assembly language.
Use the expert linker to visually manipulate the placement of code and data on the embedded system, view memory use in a color-coded graphical form, easily move code and data to differ­ent areas of the DSP or external memory with a drag of the mouse, and examine runtime stack and heap usage. The expert linker is fully compatible with existing linker definition file (LDF), allowing the developer to move between the graphical and textual environments.
Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access port of the ADSP-TS201S processor to monitor and con­trol the target board processor during emulation. The emulator provides full speed emulation, allowing inspection and modifi­cation of memory, registers, and processor stacks. Nonintrusive in-circuit emulation is assured by the use of the processor’s JTAG interface—the emulator does not affect target system loading or timing.
In addition to the software and hardware development tools available from Analog Devices, third parties provide a wide range of tools supporting the TigerSHARC processor family. Hardware tools include TigerSHARC processor PC plug-in cards. Third party software tools include DSP libraries, real­time operating systems, and block diagram design tools.

EVALUATION KIT

®
Analog Devices offers a range of EZ-KIT Lite forms to use as a cost-effective method to learn more about developing or prototyping applications with Analog Devices processors, platforms, and software tools. Each EZ-KIT Lite includes an evaluation board along with an evaluation suite of the VisualDSP++ development and debugging environment with the C/C++ compiler, assembler, and linker. Also included
evaluation plat-
are sample application programs, power supply, and a USB cable. All evaluation versions of the software tools are limited for use only with the EZ-KIT Lite product.
The USB controller on the EZ-KIT Lite board connects the board to the USB port of the user’s PC, enabling the VisualDSP++ evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also allows in-circuit programming of the on-board flash device to store user-specific boot code, enabling the board to run as a standalone unit, without being connected to the PC.
With a full version of VisualDSP++ installed (sold separately), engineers can develop software for the EZ-KIT Lite or any custom-defined system. Connecting one of Analog Devices JTAG emulators to the EZ-KIT Lite board enables high speed, nonintrusive emulation.

DESIGNING AN EMULATOR-COMPATIBLE DSP BOARD (TARGET)

The Analog Devices family of emulators are tools that every DSP developer needs in order to test and debug hardware and software systems. Analog Devices has supplied an IEEE 1149.1 JTAG test access port (TAP) on each JTAG DSP. The emulator uses the TAP to access the internal features of the DSP, allowing the developer to load code, set breakpoints, observe variables, observe memory, and examine registers. The DSP must be halted to send data and commands, but once an operation has been completed by the emulator, the DSP system is set running at full speed with no impact on system timing.
To use these emulators, the target board must include a header that connects the DSP’s JTAG port to the emulator.
For details on target board design issues including mechanical layout, single processor connections, multiprocessor scan chains, signal buffering, signal termination, and emulator pod logic, see the EE-68: Analog Devices JTAG Emulation Technical Reference on the Analog Devices website (www.analog.com)— use the string “EE-68” in site search. This document is updated regularly to keep pace with improvements to emulator support.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-TS201S processor’s architecture and functionality. For detailed information on the ADSP-TS201S processor’s core architecture and instruction set, see the ADSP-TS201 Tiger-
SHARC Processor Hardware Reference and the ADSP-TS201 TigerSHARC Processor Programming Reference. For detailed
information on the development tools for this processor, see the VisualDSP++ User’s Guide for TigerSHARC Processors.
EZ-Kit Lite is a registered trademark of Analog Devices, Inc.
Rev. C | Page 11 of 48 | December 2006
ADSP-TS201S

PIN FUNCTION DESCRIPTIONS

While most of the ADSP-TS201S processor’s input pins are nor­mally synchronous—tied to a specific clock—a few are asynchronous. For these asynchronous signals, an on-chip syn­chronization circuit prevents metastability problems. Use the ac specification for asynchronous signals when the system design requires predictable, cycle-by-cycle behavior for these signals.
The output pins can be three-stated during normal operation. The DSP three-states all output pins during reset, allowing these pins to get to their internal pull-up or pull-down state. Some pins have an internal pull-up or pull-down resistor (±30% toler­ance) that maintains a known value during transitions between different drivers.
Table 3. Pin Definitions—Clocks and Reset
Signal Type Term Description
SCLKRAT2–0 I (pd) na Core Clock Ratio. The DSP’s core clock (CCLK) rate = n × SCLK, where n is user-
programmable using the SCLKRATx pins to the values shown in Table 4 . These pins may change only during reset; connect these pins to V
or VSS. All reset specifica-
DD_IO
tions in Tab le 25 , Tab le 26 , and Tab le 27 must be satisfied. The core clock rate (CCLK) is the instruction cycle rate.
SCLK I na System Clock Input. The DSP’s system input clock for cluster bus. The core clock rate
is user-programmable using the SCLKRATx pins. For more information, see Clock
Domains on Page 9.
RST_IN
I/A na Reset. Sets the DSP to a known state and causes program to be in idle state. RST_IN
must be asserted a specified time according to the type of reset operation. For details,
see Reset and Booting on Page 9, Table 25 on Page 26, and Figure 13 on Page 26. RST_OUT POR_IN
O na Reset Output. Indicates that the DSP reset is complete. Connect to POR_IN. I/A na Power-On Reset for internal DRAM. Connect to RST_OUT.
I = input; A = asynchronous; O = output; OD = open-drain output; T = three-state; P = power supply; G = ground; pd = internal pull-down 5k
Ω; pu = internal pull-up 5 kΩ; pd_0 = internal pull-down 5 kΩ on DSP ID = 0; pu_0 = internal pull-up 5 kΩ on DSP ID = 0; pu_od_0 = internal
pull-up 500 Ω on DSP ID = 0; pd_m = internal pull-down 5 kΩ on DSP bus master; pu_m = internal pull-up 5 kΩ on DSP bus master; pu_ad = internal pull-up 40 k
Term (termination of unused pins) column symbols: epd = external pull-down approximately 5 k imately 5 kΩ to V
Ω. For more pull-down and pull-up information, see Electrical Characteristics on Page 22.
, nc = not connected; na = not applicable (always used); V
DD_IO
= connect directly to V
DD_IO
Ω to V
; epu = external pull-up approx-
SS
; VSS = connect directly to V
DD_IO
SS
Table 4. SCLK Ratio
SCLKRAT2–0 Ratio
000 (default) 4 001 5 010 6 011 7 100 8 101 10 110 12 111 Reserved
Rev. C | Page 12 of 48 | December 2006
ADSP-TS201S
Table 5. Pin Definitions—External Port Bus Controls
Signal Type Term Description
ADDR31–0 I/O/T
(pu_ad)
DATA63–0 I/O/T
(pu_ad)
RD
I/O/T (pu_0)
WRL
I/O/T (pu_0)
WRH
I/O/T (pu_0)
ACK I/O/T/OD
(pu_od_0)
BMS
O/T (pu_0)
MS1–0
O/T (pu_0)
MSH
O/T (pu_0)
BRST
I/O/T (pu_0)
I = input; A = asynchronous; O = output; OD = open-drain output; T = three-state; P = power supply; G = ground; pd = internal pull-down 5k
Ω; pu = internal pull-up 5 kΩ; pd_0 = internal pull-down 5 kΩ on DSP ID = 0; pu_0 = internal pull-up 5 kΩ on DSP ID = 0; pu_od_0 = internal
pull-up 500 = internal pull-up 40 k
Ω on DSP ID = 0; pd_m = internal pull-down 5 kΩ on DSP bus master; pu_m = internal pull-up 5 kΩ on DSP bus master; pu_ad
Ω. For more pull-down and pull-up information, see Electrical Characteristics on Page 22.
Term (termination of unused pins) column symbols: epd = external pull-down approximately 5 k imately 5 k
1
This external pull-up may be omitted for the ID = 000 TigerSHARC processor.
Ω to V
, nc = not connected; na = not applicable (always used); V
DD_IO
nc Address Bus. The DSP issues addresses for accessing memory and peripherals on
these pins. In a multiprocessor system, the bus master drives addresses for accessing internal memory or I/O processor registers of other ADSP-TS201S processors. The DSP inputs addresses when a host or another DSP accesses its internal memory or I/O processor registers.
nc External Data Bus. The DSP drives and receives data and instructions on these pins.
Pull-up or pull-down resistors on unused DATA pins are unnecessary.
1
epu
Memory Read. RD is asserted whenever the DSP reads from any slave in the system, excluding SDRAM. When the DSP is a slave, RD
is an input and indicates read trans­actions that access its internal memory or universal registers. In a multiprocessor system, the bus master drives RD. RD changes concurrently with ADDR pins.
1
epu
Write Low. WRL is asserted in two cases: when the ADSP-TS201S processor writes to an even address word of external memory or to another external bus agent; and when the ADSP-TS201S processor writes to a 32-bit zone (host, memory, or DSP programmed to 32-bit bus). An external master (host or DSP) asserts WRL
for writing to a DSP’s low word of internal memory. In a multiprocessor system, the bus master drives WRL
. WRL changes concurrently with ADDR pins. When the DSP is a slave, WRL is an input and indicates write transactions that access its internal memory or universal registers.
1
epu
Write High. WRH is asserted when the ADSP-TS201S processor writes a long word (64 bits) or writes to an odd address word of external memory or to another external bus agent on a 64-bit data bus. An external master (host or another DSP) must assert
for writing to a DSP’s high word of 64-bit data bus. In a multiprocessing system,
WRH the bus master drives WRH
. WRH changes concurrently with ADDR pins. When the DSP is a slave, WRH is an input and indicates write transactions that access its internal memory or universal registers.
1
epu
Acknowledge. External slave devices can deassert ACK to add wait states to external memory accesses. ACK is used by I/O devices, memory controllers, and other periph­erals on the data phase. The DSP can deassert ACK to add wait states to read and write accesses of its internal memory. The pull-up is 50 Ω on low-to-high transactions and is 500 Ω on all other transactions.
na Boot Memory Select. BMS is the chip select for boot EPROM or flash memory. During
reset, the DSP uses BMS cessor system, the DSP bus master drives BMS
as a strap pin (EBOOT) for EPROM boot mode. In a multipro-
. For details, see Reset and Booting on
Page 9 and the EBOOT signal description in Table 16 on Page 20.
nc Memory Select. MS0 or MS1 is asserted whenever the DSP accesses memory banks 0
or 1, respectively. MS1–0 with ADDR pins. When ADDR31:27 = 0b00110, MS0
are decoded memory address pins that change concurrently
is asserted. When ADDR31:27 =
0b00111, MS1 is asserted. In multiprocessor systems, the master DSP drives MS1–0.
nc Memory Select Host. MSH is asserted whenever the DSP accesses the host address
space (ADDR31 = 0b1). MSH
is a decoded memory address pin that changes concur-
rently with ADDR pins. In a multiprocessor system, the bus master DSP drives MSH
1
epu
Burst. The current bus master (DSP or host) asserts this pin to indicate that it is reading or writing data associated with consecutive addresses. A slave device can ignore addresses after the first one and increment an internal address counter after each transfer. For host-to-DSP burst accesses, the DSP increments the address automati­cally while BRST
is asserted.
DD_IO
Ω to V
= connect directly to V
; epu = external pull-up approx-
SS
; VSS = connect directly to V
DD_IO
.
SS
Rev. C | Page 13 of 48 | December 2006
ADSP-TS201S
Table 6. Pin Definitions—External Port Arbitration
Signal Type Term Description
BR7–0
I/O V
DD_IO
1
Multiprocessing Bus Request Pins. Used by the DSPs in a multiprocessor system to arbitrate for bus mastership. Each DSP drives its own BRx line (corresponding to the value of its ID2–0 inputs) and monitors all others. In systems with fewer than eight DSPs, set the unused BRx
pins high (V
DD_IO
).
ID2–0 I (pd) na Multiprocessor ID. Indicates the DSP’s ID, from which the DSP determines its order in
a multiprocessor system. These pins also indicate to the DSP which bus request (BR0
–BR7) to assert when requesting the bus: 000 = BR0, 001 = BR1, 010 = BR2,
011 = BR3
, 100 = BR4, 101 = BR5, 110 = BR6, or 111 = BR7. ID2–0 must have a
constant value during system operation and can change during reset only.
BM
O na Bus Master. The current bus master DSP asserts BM. For debugging only. At reset this
is a strap pin. For more information, see Table 16 on Page 20.
BOFF
I epu Back Off. A deadlock situation can occur when the host and a DSP try to read from
each other’s bus at the same time. When deadlock occurs, the host can assert BOFF to force the DSP to relinquish the bus before completing its outstanding transaction.
BUSLOCK O/T
(pu_0)
HBR
I epu Host Bus Request. A host must assert HBR to request con trol of the DSP’s externa l bus.
na Bus Lock Indication. Provides an indication that the current bus master has locked the
bus. At reset, this is a strap pin. For more information, see Table 16 on Page 20.
When HBR
is asserted in a multiprocessing system, the bus master relinquishes the
bus and asserts HBG once the outstanding transaction is finished.
HBG
I/O/T (pu_0)
epu
2
Host Bus Grant. Acknowledges HBR and indicates that the host can take control of the external bus. When relinquishing the bus, the master DSP three-states the ADDR31–0, DATA63–0, MSH
, MSSD3–0, MS1–0, RD, WRL, WRH, BMS, BRST, IORD, IOWR, IOEN, RAS, CAS, SDWE, SDA10, SDCKE, LDQM, and HDQM pins, and the DSP puts the SDRAM in self-refresh mode. The DSP asserts HBG
until the host deasserts HBR. In multiprocessor systems, the current bus master DSP drives HBG, and all slave DSPs monitor it.
CPA
I/O/OD (pu_od_0)
epu
2
Core Priority Access. Asserted while the DSP’s core accesses external memory. This pin enables a slave DSP to interrupt a master DSP’s background DMA transfers and gain control of the external bus for core-initiated transactions. CPA
is an open drain output, connected to all DSPs in the system. If not required in the system, leave CPA unconnected (external pull-ups will be required for DSP ID = 1 through ID = 7).
DPA
I/O/OD (pu_od_0)
epu
2
DMA Priority Access. Asserted while a high priority DSP DMA channel accesses external memory. This pin enables a high priority DMA channel on a slave DSP to interrupt transfers of a normal priority DMA channel on a master DSP and gain control of the external bus for DMA-initiated transactions. DPA connected to all DSPs in the system. If not required in the system, leave DPA
is an open drain output,
uncon-
nected (external pull-ups will be required for DSP ID = 1 through ID = 7).
I = input; A = asynchronous; O = output; OD = open-drain output; T = three-state; P = power supply; G = ground; pd = internal pull-down 5k
Ω; pu = internal pull-up 5 kΩ; pd_0 = internal pull-down 5 kΩ on DSP ID = 0; pu_0 = internal pull-up 5 kΩ on DSP ID = 0; pu_od_0 = internal
pull-up 500 = internal pull-up 40 k
Term (termination of unused pins) column symbols: epd = external pull-down approximately 5 k imately 5 k
1
The BRx pin matching the ID2–0 input selection for the processor should be left nc if unused. For example, the processor with ID = 000 has BR0 = nc and BR7–1 = V
2
This external pull-up resistor may be omitted for the ID = 000 TigerSHARC processor.
Ω on DSP ID = 0; pd_m = internal pull-down 5 kΩ on DSP bus master; pu_m = internal pull-up 5 kΩ on DSP bus master; pu_ad
Ω. For more pull-down and pull-up information, see Electrical Characteristics on Page 22.
Ω to V
; epu = external pull-up approx-
Ω to V
, nc = not connected; na = not applicable (always used); V
DD_IO
= connect directly to V
DD_IO
SS
; VSS = connect directly to V
DD_IO
DD_IO
SS
.
Rev. C | Page 14 of 48 | December 2006
ADSP-TS201S
Table 7. Pin Definitions—External Port DMA/Flyby
Signal Type Term Description
DMAR3–0
IOWR
IORD
IOEN
I = input; A = asynchronous; O = output; OD = open-drain output; T = three-state; P = power supply; G = ground; pd = internal pull-down 5kΩ; pu = internal pull-up 5 kΩ; pd_0 = internal pull- down 5 kΩ on DSP ID = 0; pu_0 = internal pull-up 5 kΩ on DSP ID = 0; pu_od_0 = internal pull-up 500
Ω on DSP ID = 0; pd_m = internal pull-down 5 kΩ on DSP bus master; pu_m = internal pull-up 5 kΩ on DSP bus master; pu_ad
= internal pull-up 40 kΩ. For more pull-down and pull-up information, see Electrical Characteristics on Page 22. Term (termination of unused pins) column symbols: epd = external pull-down approximately 5 k
imately 5 k
Ω to V
DD_IO
I/A epu DMA Request Pins. Enable external I/O devices to request DMA services from the DSP.
In response to DMARx, the DSP performs DMA transfers according to the DMA channel’s initialization. The DSP ignores DMA requests from uninitialized channels.
O/T (pu_0)
nc I/O Write. When a DSP DMA channel initiates a flyby mode read transaction, the DSP
asserts the IOWR
signal during the data cycles. This assertion makes the I/O device
sample the data instead of the TigerSHARC.
O/T (pu_0)
nc I/O Read. When a DSP DMA channel initiates a flyby mode write transaction, the DSP
asserts the IORD signal during the data cycle. This assertion with the IOEN makes the I/O device drive the data instead of the TigerSHARC.
O/T (pu_0)
nc I/O Device Output Enable. Enables the output buffers of an external I/O device for fly-
by transactions between the device and external memory. Active on flyby transactions.
Ω to V
; epu = external pull-up approx-
, nc = not connected; na = not applicable (always used); V
= connect directly to V
DD_IO
SS
; VSS = connect directly to V
DD_IO
SS
Rev. C | Page 15 of 48 | December 2006
Loading...
+ 33 hidden pages