Datasheet ADRF6604 Datasheet (ANALOG DEVICES)

2500 MHz to 2900 MHz Rx Mixer with
V
V
Integrated Fractional-N PLL and VCO

FEATURES

Rx mixer with integrated fractional-N PLL RF input frequency range: 1200 MHz to 3600 MHz Internal LO frequency range: 2500 MHz to 2900 MHz Input P1dB: 14.5 dBm Input IP3: 27.5 dBm IIP3 optimization via external pin SSB noise figure
IP3SET pin open: 14.3 dB
IP3SET pin at 3.3 V: 15.5 dB Voltage conversion gain: 6.8 dB Matched 200 Ω IF output impedance IF 3 dB bandwidth: 500 MHz Programmable via 3-wire SPI interface 40-lead, 6 mm × 6 mm LFCSP

APPLICATIONS

Cellular base stations

GENERAL DESCRIPTION

The ADRF6604 is a high dynamic range active mixer with integrated phase-locked loop (PLL) and voltage controlled oscillator (VCO). The PLL/synthesizer uses a fractional-N PLL to generate a f can be divided or multiplied and then applied to the PLL phase frequency detector (PFD).
LODRV_EN
MUXOUT
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
input to the mixer. The reference input
LO
CC1
CC2VCC_LOVCC_MIXVCC_V2IVCC_LO
36
LON
37
38
LOP
16
PLL_EN
DATA
CLK
REF_IN
12
13
14
LE
6
8
SPI
INTERFACE
×2
MUX
÷2
÷4
FRACTION
TEMP
SENSOR
7 11 15 20 21 23 24 25 28 30 31 35

FUNCTIONAL BLOCK DIAGRAM

PHASE
INTEGER
N COUNTER
21 TO 123
MODULUS
REG
THIRD-ORDER
FRACTIONAL
INTERP OLAT OR
– +
FREQUENCY
DETECTOR
GND
REG
Figure 1.
ADRF6604
The PLL can support input reference frequencies from 12 MHz to 160 MHz. The PFD output controls a charge pump whose output drives an off-chip loop filter.
The loop filter output is then applied to an integrated VCO. The VCO output at 2 × f programmable PLL divider. The programmable PLL divider is controlled by a sigma-delta (Σ-) modulator (SDM). The modulus of the SDM can be programmed from 1 to 2047.
The active mixer converts the single-ended, 50  RF input to a differential, 200 Ω IF output. The IF output can operate up to 500 MHz.
The ADRF6604 is fabricated using an advanced silicon-germanium BiCMOS process. It is available in a 40-lead, RoHS-compliant, 6 mm × 6 mm LFCSP with an exposed paddle. Performance is specified over the −40°C to +85°C temperature range.
Table 1.
Internal LO
Part No.
Range
ADRF6601 750 MHz 300 MHz 450 MHz
1160 MHz 2500 MHz 1600 MHz
ADRF6602 1550 MHz 1000 MHz 1350 MHz
2150 MHz 3100 MHz 2750 MHz
ADRF6603 2100 MHz 1100 MHz 1450 MHz
2600 MHz 3200 MHz 2850 MHz
ADRF6604 2500 MHz 1200 MHz 1600 MHz
2900 MHz 3600 MHz 3200 MHz
2717101 22
34
BUFFER
BUFFER
PRESCALER
÷2
CHARGE PUMP 250µA, 500µA (DEFAULT), 750µA, 1000µA
54
R
SET
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010–2011 Analog Devices, Inc. All rights reserved.
is applied to an LO divider, as well as to a
LO
±3 dB RF Balun Range
ADRF6604
INTERNAL LO RANGE 2500MHz TO 2900MHz
DIV
2:1
BY
MUX
2, 1
VCO
CORE
3
CP VTUNE
IFP
191839
IFN
NC
32 33
NC
3.3V LDO
2.5V LDO
VCO LDO
IN
40
26
29
2
DECL3P3
9
DECL2P5
DECLVCO
RF
IP3SET
±1 dB RFIN Balun Range
IN
8553-001
ADRF6604

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
G
eneral Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
RF Specifications .......................................................................... 3
Synthesizer/PLL Specifications................................................... 4
Logic Input and Power Specifications ....................................... 4
Timing Characteristics ................................................................ 5
Absolute Maximum Ratings............................................................ 6
ESD Caution.................................................................................. 6
Pin Configuration and Function Descriptions............................. 7
Typical Performance Characteristics ............................................. 9
RF Frequency Sweep.................................................................... 9
IF Frequency Sweep ................................................................... 10
Spurious Performance................................................................ 15
Register Structure ........................................................................... 16
Register 0—Integer Divide Control (Default: 0x0001C0)..... 16
Register 1—Modulus Divide Control (Default: 0x003001) ........16
Register 2—Fractional Divide Control (Default: 0x001802) ......17
Register 3—Σ- Modulator Dither Control
(Default: 0x10000B)................................................................... 17
Register 4—PLL Charge Pump, PFD, and Reference Path
Control (Default: 0x0AA7E4)................................................... 18
Register 5—PLL Enable and LO Path Control
(Default: 0x0000E5) ................................................................... 19
Register 6—VCO Control and VCO Enable
(Default: 0x1E2106) ................................................................... 19
Register 7—Mixer Bias Enable and External VCO Enable
(Default: 0x000007).................................................................... 19
Theory of Operation ...................................................................... 20
Programming the ADRF6604................................................... 20
Initialization Sequence .............................................................. 20
LO Selection Logic ..................................................................... 21
Applications Information.............................................................. 22
Basic Connections for Operation............................................. 22
AC Test Fixture ............................................................................... 23
Evaluation Board............................................................................ 24
Evaluation Board Control Software......................................... 24
Schematic and Artwork............................................................. 26
Evaluation Board Configuration Options............................... 28
Outline Dimensions....................................................................... 29
Ordering Guide .......................................................................... 29

REVISION HISTORY

5/11—Rev. 0 to Rev. A
Changes to Features and General Description Sections.............. 1
Changes to Table 2............................................................................ 3
Changes to Synthesizer Specifications Parameter and to Phase
Noise Parameter, Table 3 ............................................................. 4
Changes to Power Supplies Parameter, Table 4 ............................ 4
Replaced Typical Performance Characteristics Section;
Renumbered Sequentially ........................................................... 9
Added Spurious Performance Section......................................... 15
Change to Figure 41 ....................................................................... 17
Changes to Figure 42...................................................................... 18
Changes to Theory of Operation Section.................................... 20
Changes to Figure 46...................................................................... 22
Added AC Test Fixture Section and Figure 47 ........................... 23
Changes to Evaluation Board Control Software Section and
Figure 48 ...................................................................................... 24
Changes to Figure 49...................................................................... 25
6/10—Revision 0: Initial Version
Rev. A | Page 2 of 32
ADRF6604

SPECIFICATIONS

RF SPECIFICATIONS

VS = 5 V, ambient temperature (TA) = 25°C, f
= 153.6 MHz, f
REF
using CDAC = 0xC and IP3SET = 3.3 V, unless otherwise noted.
Table 2.
Parameter Test Conditions/Commen Min Typ Max Unit
INTERNAL LO FREQUENCY RANGE 2500 2900 MHz RF INPUT FREQUENCY RANGE ±3 dB RF input range 1200 3600 MHz RF INPUT AT 2360 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) −16.2 dB Input P1dB 14.6 dBm Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 54.5 dBm Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 28 dBm Single-Sideband Noise Figure IP3SET = 3.3 V 14.8 dB
IP3SET = open 13.9 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −43 dBm
RF INPUT AT 2560 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) −21 dB Input P1dB 14.5 dBm Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 58.2 dBm Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 27.6 dBm Single-Sideband Noise Figure IP3SET = 3.3 V 14.9 dB
IP3SET = open 14.2 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −42 dBm
RF INPUT AT 2760 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) −20 dB Input P1dB 14.4 dBm Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 64.4 dBm Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 27 dBm Single-Sideband Noise Figure IP3SET = 3.3 V 15.5 dB
IP3SET = open 14.6 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −44 dBm
IF OUTPUT
Voltage Conversion Gain Differential 200 Ω load 6.8 dB IF Bandwidth Small signal 3 dB bandwidth 500 MHz Output Common-Mode Voltage External pull-up balun or inductors required 5 V Gain Flatness Over frequency range, any 5 MHz/50 MHz 0.2/0.5 dB Gain Variation Over full temperature range 1.3 dB Output Swing Differential 200 Ω load 2 V p-p Output Return Loss Relative to 200 Ω −15 dB
LO INPUT/OUTPUT (LOP, LON) Externally applied 1× LO input, inte al PLL disabled rn
Frequency Range 250 6000 MHz Output Level (LO as Output) 1× LO into a 50 Ω load, LO output buffer enabled −9 dBm Input Level (LO as Input) −6 0 +6 dBm Input Impedance 50 Ω
= 38.4 MH
PFD
ts
z, high-side LO injection, f = 140 MHz, IIP3 optimized
IF
Rev. A | Page 3 of 32
ADRF6604
SYNTHESIZER/PLL SPE
= 140 MHz, IIP3 optimi
f
IF
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
SYNTHESIZER SPECIFICATIONS Synthesizer specifications referenced to 1× LO
Frequency Range 2500 2900 MHInternally generated LO z
Figure of Merit1 P
Reference Spurs f f
−82 dBc f >f PH ASE NOISE fLO = 2500 MHz to 2900 MHz, f
1 kHz to 10 kHz offset −87.7 dBc/Hz
100 kHz offset −96 dBc/Hz
−117 dBc500 kHz offset /Hz
1 MHz offset −126 dBc/Hz
5 MHz offset −142 dBc/Hz
10 MHz offset −148 dBc/Hz
20 MHz offset −150 dBc/Hz
Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.69
PFD Frequency 20 40 MHz RE T pins FERENCE CHARACTERISTICS REF_IN, MUXOU
REF_IN Input Frequency 12 160 MH z
REF_IN Input Capacitance 4 pF
MUXOUT Output Level
V
MUXOUT Duty Cycle 50 % CH ARGE PUMP
Pump Current Programmable to 250 μA, 500 μA, 750 μA, 1 mA 500 μA
Output Compliance Range 1 2.8 V
1
T ) is computed as pha as m sured across LO ran with f
he figure of merit (FOM
a
nd f power = 10 dBm
REF
CIFICATIONS
e (TA) = 25°C, f
turVS = 5 V, ambient tempera
zed using CDAC = 0xC and IP3SET = 3.3 V, unless otherwise noted.
(500 V/μs slew rate) w
se noise (dBc/Hz) – 10 log 10(f
= 153.6 MHz, f
REF
= 0 dBm −221.4 dBc/Hz/Hz
REF_IN
= 38.4 MHz
PFD
/4 −107 dBc
PFD
PFD
−80 dBc
PFD
(lock detect output selected) 0.25 V V
OL
(lock detect output selected) 2.7 V
OH
ith a 40 MHz f
. The FOM was computed at 50 kHz offset.
PFD
power = 4 dBm, f
REF
= 38.4 MHz
PFD
) – 20 log 10(fLO/f
PFD
). The FOM w
PFD
= 38.4 MHz, high-side LO injection,
PFD
ea the full ge, 0 MHz,
°rms
= 8
REF
LOGIC INPU ER SPECIFIC
V = 2 -side LO injection, fIF = 140 MHz, IIP3 optimize
= 5 V, ambient temperature (TA) 5°C, f
S
us xC and IP3SET = 3.3
ing CDAC = 0 V, unless otherwise noted.
T
able 4.
Pa Test Cond T p Max Unit
rameter itions/Comments Min y
T AND POW ATIONS
= 153.6 MHz, f
REF
= 38.4 MHz, high d
PFD
LOGIC INPUTS CLK, DATA , LE
Input High Voltage, V
Input Low Voltage, V
Input Current, I
Input Capacitance, C
1.4 3.3 V
INH
0 0.7 V
INL
0.1 μA
INH/IINL
IN
5 pF
POWER SUPPLIES VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins
Voltage Range 4.75 5 5.25 V
Supply Current PLL only 96 mA External LO mode (internal PLL disabled, IP3SET pin = 3.3 V, LO output buffer off) 164 mA Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer on) 274 mA Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer off) 260 mA Power-down mode 30 mA
Rev. A | Page 4 of 32
ADRF6604

TIMING CHARACTERISTICS

VCC2 = 5 V ± 5%.
Table 5.
Paramete
t1 20 e ns min LE setup tim t2 10 ns min DATA-to-CLK setup time t3 -CLK hold time 10 ns min DATA-to t4 25 CLK high duration ns min t5 CLK low duration 25 ns min t6 10 CLK-to-LE setup time ns min t7 20 in LE pulse width ns m

Timing Diagram

r Limit Unit Description
CLK
t
4
t
5
DATA
t
2
DB23 (MSB)
t
1
LE
DB22
t
3
DB2 DB1
(CONTROL BIT C(CONTROL BIT C3)
2)
(CO BIT C1)
DB0 (L
NTROL
SB)
t
t
7
6
08553-002
Figure 2. Timing Diagram
Rev. A | Page 5 of 32
ADRF6604
ABSOLUTE MAXIMUM R
Table 6.
Paramete
Supply Voltage, VC 2, VCC_LO,
Digital I/O, CLK, DA E, LODRV_EN,
VTUNE 3.3 V 0 V to IFP, IFN to VCC_V2I −0.3 V + 0.3 V RFIN 16 dBm LOP, LON, REF_IN 13 dBm θJA (Exposed Paddle Soldered Down) 35°C/W Maximum Junction Temperature 150°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C
r Rating
C1, VCC
VCC_MIX, VCC_V
PLL_EN
2I
TA, L
ATINGS
V to +5.5 V
−0.5
to +3.6 V
−0.3 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section o maximu de
f this specification is not implied. Exposure to absolute
m rating conditions for extended periods may affect
vice reliability.

ESD CAUTION

Rev. A | Page 6 of 32
ADRF6604
TION DESCRIPTIONS PIN CONFIGURATION AND FUNC
NC
VCC_LO
GND
LODRV_EN
LON
LOP
VTUNE
DECLVCO
38
39
40
PIN 1
11
VCC
GND
R
SET
RE
F_IN GND
XOUT
MU
2P5
DECL
VCC2
NOTES
1. NC = NO CONNECT . DO NOT CONNECT TO T HIS PIN.
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A LOW IMPEDANCE GROUND PL AN
INDICATO R
2DECL3P3 3CP 4
ADRF6604
5 6 7 8 9
10
TOP VIEW
(Not to Scale)
11
12
13
ND
CLK
G
DATA
Figure 3. Pin Configuration
NC
GND
32
31
33
34
35
36
37
30 GND 29 IP3SET 28 GND 27 VCC_V2I
RF
26
IN
25
GND 24 GND 23 GND 22 VCC_MIX 21
GND
15
17
16
18
19
14
LE
20
O
IFP
IFN
GND
GND
PLL_EN
VCC_L
E.
8553-003
Table 7. Pin Function Descriptions
Pin No. Mnemonic Description
1 VCC1
Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 2 DECL3P3 Decoupling Node for 3.3 V LDO. Connect a 0.1 μF capacitor between this pin and ground. 3 CP Charge Pump Output Pin. Connect to VTUNE through the loop filter. 4, 7, 11, 15, 20,
GND Ground. Connect these pins to a low impedance ground plane. 21, 23, 24, 25, 28, 30, 31, 35
5 R
SET
Charge Pump Current. The nominal charge pump current can be set to 250 μA, 500 μA, 750 μA, or 1 mA using Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In this mode, no external R
is required. If Bit DB18 is set to 1, the four nominal charge pump currents (I
SET
can be externally adjusted according to the following equation:
4.217
I
×
R
=
SET
6 REF_IN
Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz. This pin is internally dc-
⎛ ⎜ ⎜ ⎝
I
NOMINAL
CP
⎟ ⎟ ⎠
37.8
biased and should be ac-coupled.
8 MUXOUT
Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect
signal. The output is selected by programming the appropriate register. 9 DECL2P5 Decoupling Node for 2.5 V LDO. Connect a 0.1 μF capacitor between this pin and ground. 10 VCC2
Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 12 DATA Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits. 13 CLK
Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched
into the 24-bit shift register on the CLK rising edge. The maximum clock frequency is 20 MHz. 14 LE
Load Enable. When the LE input pin goes high, the data stored in the shift register is loaded into one of the
eight registers. The relevant latch is selected by the three control bits of the 24-bit word. 16 PLL_EN
PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is
automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the
internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be
used to switch modes. 17, 34 VCC_LO
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 18, 19 IFP, IFN Mixer IF Outputs. These outputs should be pulled to VCC_MIX with RF chokes.
NOMINAL
)
Rev. A | Page 7 of 32
ADRF6604
Pin No. Mnemonic Description
22 VCC_MIX
26 RFIN RF Input. Single-ended, 50 Ω. 27 VCC_V2I
29 IP3SET Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open. 32, 33 NC NC = No Connect. Do not connect to this pin. 36 LODRV_EN
37, 38 LON, LOP
39 VTUNE
40 DECLVCO Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 μF capacitor between this pin and ground. EPAD Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. The external LO drive frequency must be 1× LO. This pin has an internal 100 kΩ pull-down resistor.
Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO generation is disabled, an external 1× LO can be applied to these pins.
VCO Control Voltage Input. This pin is driven by the output of the loop filter. The nominal input voltage range on this pin is 1.5 V to 2.5 V.
Rev. A | Page 8 of 32
ADRF6604
TYPIC ERFORM
RF FREQUE
CDA terna ted high-side LO, RFIN = −5 d
AL P ANCE CHARACTERISTICS
NCY SWEEP
C = 0xC, in lly genera Bm, fIF = 140 MHz, unless otherwise noted.
5
IP3SET = OPEN
4
IP3SET = 3.3V
3
2
1
0
GAIN (dB)
–1
–2
–3
–4
–5
2360 2410 2510
2460 2560 2610 2660 2710 2760
RF FREQUENCY ( MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
Figure 4. Gain vs. RF Frequency
90
IP3SET = OPEN IP3SET = 3.3V
80
70
60
INPUT IP2 (dBm)
50
40
30
2360 2410 2460 2510 2560 2610 2660 2710 2760
RF FREQUENCY (M Hz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
Figure 5. Input IP2 vs. RF Frequency
553-104 08
08553-105
35
IP3SET = OPEN
34
IP3SET = 3.3V
33
32
31
30
29
28
27
UT IP3 (dBm)
26
INP
25
24
23
22
21 20
2360 2410 2460 2510 2560 2610 2660
Figure 7. Input IP3 vs. RF Frequency
18
IP3SET = OPEN
17
IP3SET = 3.3V
16
15
14
13
12
INPUT P1dB (dBm)
11
10
9
8
2360 2410 2460 2510 2560 2610 2660 2710 2760
Figure 8. Input P1dB vs. RF Frequency
RF FREQUENCY ( MHz)
RF FREQUENCY ( MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
2710 2760
TA = +85°C T
= +25°C
A
T
= –40°C
A
7
08553-10
08553-108
20
18
16
14
12
10
8
NOISE FI GURE (dB)
6
4
IP3SET = OPEN
2
IP3SET = 3.3V
0
2360 2410 2460 2510 2560 2610 2660 2710 2760
RF FREQUENCY ( MHz)
Figure 6. Noise Figure vs. RF Frequency
TA = +85°C T
= +25°C
A
T
= –40°C
A
08553-106
Rev. A | Page 9 of 32
ADRF6604

IF FREQUENCY SWEEP

ted swept low-side LO, f = 2490 MHz, CDAC = 0xC, internally genera
5
IP3SET = OPEN
4
IP3SET = 3.3V
3
2
1
0
GAIN (dB)
–1
–2
–3
–4
–5
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
Figure 9. Gain vs. IF Frequency
TA = +85°C T
= +25°C
A
T
= –40°C
A
RF
08553-109
RFIN = −5 dBm, unless otherwise noted.
45
IP3SET = OPEN
40
IP3SET = 3.3V
35
30
25
20
INPUT IP3 (dBm)
15
10
5
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Figure 12. Input IP3 vs. IF Frequency, RF
IF FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
= −5 dBm
IN
08553-112
90
IP3SET = OPEN IP3SET = 3.3V
80
70
60
INPUT IP2 (dBm)
50
40
30
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
Figure 10. Input IP2 vs. IF Frequency, RF
20
18
16
14
12
10
8
NOISE FI GURE (dB)
6
4
IP3SET = OPEN
2
IP3SET = 3.3V
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
= −5 dBm
IN
TA = +85°C T
= +25°C
A
T
= –40°C
A
Figure 11. Noise Figure vs. IF Frequency
20
18
16
14
12
10
8
INPUT P1dB (dBm)
6
4
IP3SET = OPEN
2
IP3SET = 3.3V
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
08553-110
IF FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
08553-113
Figure 13. Input P1dB vs. IF Frequency
08553-111
Rev. A | Page 10 of 32
ADRF6604
0
IP3SET = OPEN
–5
IP3SET = 3.3V
–10
–15
–20
–25
–30
–35
–40
–45
LO-TO -IF FEE DTHROUGH (dBm)
–50
–55
–60
2500 2550 2600 2650 2700 2750 2800 2850 2900
LO FREQUENCY (MHz)
T = +85° C
A
= +25°C
T
A
T
= –40°C
A
Figure 14. LO-to-IF Feedthrough vs. LO Frequency,
LO Output Turned Off, CDAC = 0xC
20
IP3SET = OPEN IP3SET = 3.3V
2500 2550 2600 2650 2700 2750 2800 2850 2900
LO FREQUENCY (MHz)
LO-TO- RF LEAKAGE (dBm)
–25
–30
–35
–40
–45
–50
–55
–60
–65
–70
–75
–80
–85
–90
TA = +85°C T
= +25°C
A
T
= –40°C
A
Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off
0
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
RETURN LOSS (d B)
–11
–12
–13
–14
–15
2300 2400 2500 2600 2700 2800 2900 3000 3100
08553-114
LO FREQUENCY (MHz)
08553-117
Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun)
350
300
250
200
150
RESISTANCE (Ω)
100
50
0
50 100 150 200 250 300 350 400 450 500
08553-115
RESISTANCE
CAPACITANCE
IF FREQUENCY (MHz)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
CAPACITANCE (pF )
08553-118
Figure 18. IF Differential Output Impedance (R Parallel, C Equivalent)
0
–5
–10
–15
–20
–25
–30
RETURN LOSS (d B)
–35
–40
–45
–50
2300 2400 2500 2600 2700 2800 2900 3000 3100
RF FREQUENCY ( MHz)
Figu cy re 16. RF Input Return Loss vs. RF Frequen
08553-116
35
IP3SET = OPEN IP3SET = 3.3V
30
25
20
NOISE FI GURE (dB)
15
10
–60 –50 –40 –30 –20 –10 0
Figure 19. SSB Noise Figure vs. z Offset CW Blocker Level,
CW BLOCKER LEVEL (dBm)
5 MH
08553-119
LO Frequency = 2500 MHz, RF Frequency = 2358 MHz
Rev. A | Page 11 of 32
ADRF6604
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
RF-TO-IF ISOLATION (dBc)
IP3SET = OPEN
–50
IP3SET = 3.3V
–55
–60
2160 2260 2360 2460 2560 2660 2760 2860 2960
RF FREQUENCY ( MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
Figure 20. R 140 MHz, F-to-IF Isolation vs. RF Frequency, High-Side LO, IF =
LO Output Turned Off
0
IP3SET = OPEN
–1
IP3SET = 3.3V
–2
–3
–4
–5
–6
–7
–8
–9
–10
–11
–12
LO OUTPUT AMPLITUDE (dBm)
–13
–14
–15
2500 2550 2600 2650 2700 2750 2800 2850 2900
LO FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
Figure 21. LO Output Amplitude vs. LO Frequency
5.0
4.5
4.0
3.5
3.0
2.5
VOLTAGE (V)
2.0
TUNE
V
1.5
1.0
0.5
0
2500 2550 2600 2650 2700 2750 2800 2850 2900
08553-120
LO FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
08553-123
Figure 23. VTUNE vs. LO Frequency
350
IP3SET = OPEN IP3SET = 3.3V
300
250
200
SUPPLY CURRENT (mA)
150
100
2500 2550 2600 2650 2700 2750 2800 2850 2900
08553-121
LO FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
08553-124
Figure 24. Supply Current vs. LO Frequency
25
20
15
10
5
0
–5
–10
–15
–20
FREQUENCY DEVI ATION F ROM 2500MHz (M Hz)
–25
0 50 100 150 200 250
TIME (µs)
Figure 22. Frequency Deviation from 2500 MHz vs. Time
(Demonstrat 2500 MHz) es LO Frequency Settling Time from 2490 MHz to
08553-122
Rev. A | Page 12 of 32
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
VPTAT VOLTAGE (V)
1.4
1.3
1.2
1.1
1.0
IP3SET = OPEN IP3SET = 3.3V
–55 –35 –15 5 25 45 65 85 105
TEMPERATURE (°C)
Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Ope )
08553-125
n
ADRF6604
Complementary cumulative distribution function (CCDF), fRF = 2360 MHz, fIF = 140 MHz.
100
DISTRIBUTI ON PERCENTAG E (%)
IP3SET = OPEN
90
IP3SET =
3.3V
80
TA = +85°C
70
T
= +25°C
A
T
= –40°C
60
50
40
30
20
10
A
0 –0.5 0 0.5 1.0 1.5 2.0
GAIN (dB)
Figure 26. Gain
26
08553-1
100
DISTRIBUTI ON PERCENTAG E (%)
90
80
70
60
50
40
30
20
10
0
22 23
IP3SET = OPEN IP3SET =
3.3V
TA = +85°C T
= +25°C
A
T
= –40°C
A
24 25 26 27 28
INPUT IP3 (dBm)
Figure 29. Input IP3
29 30
08553-129
100
DISTRIBUTI ON PERCENTAG E (%)
IP3SET = OPEN
90
IP3SET =
3.3V
80
70
60
50
40
30
20
10
0
45 50 55 60 65 70
INPUT IP2 (dBm)
TA = +85°C T
A
T
A
Figure 27. Input IP2
100
IP3SET = OPEN
90
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAG E (%)
10
0
10 11 12 13 14 15 16 17 18 19 20
NOISE FI GURE (dB)
TA = +85°C T
A
T
A
Figure 28. Noise Figure
= +25°C = –40°C
= +25°C = –40°C
100
DISTRIBUTION PERCENTAGE (%)
75
08553-127
IP3SET =
90
OPEN IP3SET =
3.3V
80
70
60
50
40
30
20
10
0
10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0
TA = +85°C T
= +25°C
A
T
= –40°C
A
INPUT P1dB (dBm)
15.5 16.0
08553-130
Figure 30. Input P1dB
100
DISTRIBUTI ON PERCENTAG E (%)
128
08553-
IP3SET = OPEN IP3SET = 3.3V
90
80
TA = +85°C T
= +25°C
70
60
50
40
30
20
10
A
T
= –40°C
A
0
–50 –48 –46 –44 –42 –40 –38 –36
LO FEEDT HROUGH TO I F (dBm)
3-131 0855
Figure 31. LO Feedthrough to IF, LO Output Turned Off
Rev. A | Page 13 of 32
ADRF6604
Measured at IF output, CDAC = 0xC, IP3SET = open, internally generated high-side LO, f RF
= −5 dBm, fIF = 140 MHz, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted.
IN
70
LO FREQ UENCY = 2883.2MHz
–80
–90
–100
–110
LO FREQ UENCY = 2537.6MHz
–120
–130
PHASE NOISE (dBc/Hz)
–140
–150
–160
1k 1M 10M 100M 1G
FFSET FREQUENC
O Y (Hz)
Figure 32. Phase Noise vs. Offset Frequency
TA = +85°C T
= +25°C
A
T
= –40°C
A
08553-132
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
INTEGRATED PHASE NOISE (° rms)
0.1
0 2500 2550 2600 2650 2700 2750 2800 2850 2900
= 153.6 MHz, f
REF
TA = +85°C T
= +25°C
A
T
= –40°C
A
LO FREQUENCY (MHz)
Figure 35. Integrated Phase Noise vs. LO Frequency
= 38.4 MHz,
PFD
08553-135
70
–75
–80
–85
–90
–95
SPURS LEVEL (dBc)
–100
–105
–110
TA = +85°C T
= +25°C
A
T
= –40°C
A
2500 2550 2600 2650 2700 2750 2800 2850 2900
LO FREQUENCY (MHz
OFFSET AT 2× PFD OFFSET AT 4× PFD
)
08553-133
Figure 33. PLL Reference Spurs vs. LO Frequency (2× PFD and 4× PFD)
70
OFFSET AT 3× PFD OFFSET AT 1× PFD
–75
–80
–85
–90
–95
SPURS LEVEL (dBc)
–100
–105
–110
2500 2550 2600 2650 2700 2750 2800 2850 2900
OFFSE T AT 0.25× PFD
LO FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
08 34553-1
Figure 34. PLL Reference Spurs vs. LO Frequency (0.25× PFD, 1× PFD, and 3× PFD)
80
–90
–100
–110
–120
–130
PHASE NOISE (d Bc/Hz)
–140
–150
2500 2550 2600 2650 2700 2750 2800 2850 2900
OFFSET = 1kHz
OFFSET = 100kHz
OFFSET = 5MHz
LO FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
08553-136
Figure 36. Phase Noise vs. LO Frequency (1 kHz, 100 kHz, and 5 MHz Steps)
80
–85
–90
–95
–100
–105
–110
–115
PHASE NOISE (d Bc/Hz)
–120
–125
–130
2500 2550 2600 2650 2700 2750 2800 2850 2900
OFFSE T = 10kHz
OFFSET = 1MHz
LO FREQUENCY (MHz)
TA = +85°C T
= +25°C
A
T
= –40°C
A
08553-137
Figure 37. Phase Noise vs. LO Frequency (10 kHz, 1 MHz Steps)
Rev. A | Page 14 of 32
ADRF6604

SPURIOUS PERFORMANCE

(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spu products were measured in decibels relative to the carrier (dBc) from the IF output power level. All spurious components greater than
−125 dBc are shown.
LO = 2500 MHz, RF = 2360 MHz (horizontal axis is M, vertical axis is N), and RF
0 1 2
N
3 4 5 6 7
0 1 2 3 4
-115.19 −43.0184 −33.3455
−23.6708 0.0 −67.1671 −47.1921
−63.4281 −65.1191 −61.1065 −79.8957 −80.0324
−83.6746 −86.8944 −58.5001 −105.514
−108.708 −104.041 −108.518
−110.825 −113.19
−108.548
M
power = 0 dBm.
IN
LO = 2700 MHz, RF = 2560 MHz (horizontal axis is M, vertical axis is N), and RF
0 −114.804 −42.7987 −31.9174 1 −22.6289 0.0 −65.0063 −48.5279 2 −61.2522 −66.5602 −57.5224 −77.0905 −76.8305
N
3 −84.4436 −82.5056 −56.9437 −98.8811 4 5 6 7
0 1 2 3 4
−108.087 −98.5103 −99.2295
M
−110.572 −113.601
power = 0 dBm.
IN
−109.829
LO al axis is N),
= 2900 MHz, RF = 2760 MHz (horizontal axis is M, vertic and RF
0 −114.956 −44.0336 −31.2423 1 −22.092 0.0 −62.6978 −48.9358 2 −60.2824 −69.8043 −56.7826 −73.218
N
3 −85.957 −80.7407 −56.7503 −105.061 4 5 6 7
0 1 2 3 4
−108.949 −100.938 −100.159
−110.193 −111.146
M
power = 0 dBm.
IN
−111.428
rious
Rev. A | Page 15 of 32
ADRF6604

REGISTER STRUCTURE

This section provides the register maps for the ADRF6604. The three LSBs determine the register that is programmed.
REGISTER 0—INT
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0000 0 4 C3(
EGER DIVIDE CONTROL (DEFAULT: 0x0001C0)
RESERVED
00000000 DMID6ID5IDID3ID2ID1ID0 0)C2(0)C1(0)
DM
0
1
ID6 ID5 ID4 ID3 ID2 ID1 ID0
0010101
0010110
0010111
0011000
... ... ... ... ... ... ...
... . ... ... ... ... ...
01110 0
... ... ... .. ...
... ... ...
11 01
11 10
1 10
1 10
11110
igure 38. Register 0—Integ r Divide Control Register Ma
F e p
DIVIDE MODE
DIVIDE MODE
FRACTIONAL
INTEGER
..
... ... .
... ... ... ...
11
11 10
(DEFAULT)
1 11
1
INTEGER DI VIDE
0
00
01
11
RATIO CO NTROL BIT S
INTEGER DIVI
21 (INTEG ER M DE ONLY)
22 (INTEG ER M DE ONLY)
23 (INTEG ER MODE ONL Y)
24
...
...
56 (DEFAULT)
...
...
119
120 (INTEGE R M
121 (INTEGE R
122 (INTEGE R
123 (INTEGE R
DE RATIO
O
O
ODE ONLY)
MODE ONLY)
MODE ONLY)
MODE ONLY)
08553-004

REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)

DB23 DB22 DB21 DB20 DB19 DB18 DB17 6 DB15 DB14 DB13 DB1 DB10 DB9 DB8 D DB6 DB5 DB4 DB3 2 DB1 DB0
0 0 0 0 0 MD10 MD MD6 MD5 M 4 MD3 MD2 MD1 MD0 3(0) C2(0) C1(1)
0 0 0 0 0 9 MD8 MD7 D C
RESERVED
DB1 2 DB11 B7 DB
MD10MD9M D6MD5MD4 2MD1MD0
0 0000000001
0 0000000010
... ... ... . .. ... ... ...
... ... ... ... ... ... ... ... ...
1 1000000000
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
1 1111111111
D8MD7M MD3MD
... ... ... ...
Figure 39. Register 1—Modulus Divide Control Register Map
Rev. A | Page 16 of 32
MODULUS VALUE
... ...
CONTROL BI TS
ODULUS VALUE
M
1
2
...
...
1536 (DEFAUL
.....
.
2047
T)
08553-005
ADRF6604
IVIDE CONTROL (DEFAULT: 0x001802) REGISTER 2—FRACTIONAL D
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
FRACTIONAL VALUERESERVED
FD5FD4FD3FD2FD1FD0C3(0)C2(1)C1(0)0000000000FD10FD9FD8FD7FD6
CONTROL BI TS
FD10FD9FD8FD7FD6FD5FD4FD3FD2FD1FD0
0 0000000000
0 0000000001
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
0 1100000000
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
FRACTIONAL VALUE MUST BE LESS THAN MO DULUS
Figure 40. Register 2—Fractional Divide Control Register Map

REGISTER 3—Σ-Δ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 DITH1 DIT H0 DE N DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0 C3(0) C2(1) C1(1)
DITH1 DI TH0 00 01
10
11
DITHER
MAGNITUDE
DITHER MAGNITUDE 15 (DEFAULT ) 7
3
1 (RECOMMENDED)
DITHER
ENABLE
DEN 0 1
DITHER RESTART VALUE CONTROL BI TS
DITHER ENABLE DISABLE ENABLE (DEFAULT, RECOMME NDED)
FRACTIONAL VALUE
0
1
...
...
768 (DEFAULT )
...
...
<MDR
08553-006
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0
00000000000000001
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
11111111111111111
Figure 41. Register 3—Σ-Δ Modulator Dither Contro
l Register Map
DITHER RESTART VALUE
0x00001 (DEFAULT )
... ... 0x1FFFF
8553-007
Rev. A | Page 17 of 32
ADRF6604
ROL (DEFAULT: 0x0AA7E4) REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONT
REF OUTPUT MUX SELECT
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
RMS2 RMS1 RMS0 RS1 RS0 CPM CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPC1 CPC0 PE1 PE0 PAB1 PAB0 C3(1) C2(0) C1(0)
INPUT REF
PATH
CP
CURRENT
REF
SOURCE
PFD POL
PFD PHASE OFFSET
MULTIPLIER
CP
CURRENT
CP
SRC
CP
CONTROL
PFD EDG E CONT ROL BITS
PFD ANTI-
BACKLASH
DELAY
CPB4 CPB3 CPB2 CPB1 CPB0
0000 0 0000 1 0011 0 0101 0 1000 0 1111 1
CPC1 CP C0
00 01 10 11
CHARGE PUMP CONTROL SOURCE
CPS
CONTROL BASE D ON STATE OF DB7 AND DB8 (CP CONT ROL)
0
CONTROL FRO M PFD (DEFAUL T)
1
CPP1 CPP0
00 01 10 11
PFD PHASE OFFSET MULTIPLIER
0 × 22.5°/I 1 × 22.5°/I 6 × 22.5°/I 10 × 22.5°/I 16 × 22.5°/I 31 × 22.5°/I
CHARGE PUMP CURRENT
250µA 500µA (DEFAUL T) 750µA 1000µA
CPMULT CPMULT
(RECOMMENDED)
CPMULT
(DEFAULT)
CPMULT CPMULT CPMULT
PAB1 PAB0
00 01 10 11
REFERENCE PATH EDGE
PE0
SENSITIVITY
0
FALLING EDGE RISING EDGE (DEFAULT)
1
DIVIDER PATH EDG E
PE1
SENSITIVITY
0
FALLING EDGE RISING EDG E (DEFAULT )
1
CHARGE PUMP CONTROL
BOTH ON PUMP DOWN PUMP UP TRISTATE (DEFAULT)
PFD ANTIBACKLASH DELAY
0ns (DEFAULT )
0.5ns
0.75ns
0.9ns
RMS2 RMS1 RMS0
000 001 010 011 100 101 110 111
CP
0 1
CHARGE PUMP CURRENT
CPM
REFERENCE SOURCE INTERNAL (DEF AULT)
0
EXTERNAL
1
RS1 RS0
00 01 10 11
REF OUTPUT MUX SELECT
LOCK DETECT (DEFAULT) VPTAT REF_IN (BUFFERED)
0.5 × REFIN ( BUFFERED) 2 × REFIN (BUFFERED) TRISTATE RESERVED RESERVED
INPUT REFERENCE PATH SOURCE
2 × REFIN REFIN ( DEFAUL T)
0.5 × REFI N
0.25 × REFIN
Figure 42. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map
BD
PFD PHASE OFFSET POLARITY
NEGATIVE POSITIVE (DEFAULT)
Rev. A | Page 18 of 32
08553-008
ADRF6604

REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)

LO
RESERVED
DB23 DB22 DB21 DB20 DB 19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB 11 DB10 DB9 DB8 DB7
000 0 0000000 0
CAP DAC CONTRO L BITS
CD3 CD2 CD1 CD0 PLEN L DV1 LXL LDRV C3(1) C2(0) C1(1)
PLLENLO
DIV1
LDV2
DIV1LOEXTLODRV
DB6 DB5 DB4 DB3 DB2 DB1 DB0
CAPACITOR DAC
CD3 CD2 CD1 CD0
0000
... ... ... ...
1111
CONTROL F OR IIP3 OPTIMIZATION
MIN ... MAX
LDV2
DIVIDE-BY- 2 OR 1
DIVIDE BY 1
0
DIVIDE BY 2 (DE FAULT)
1
Figure 43. Register 5—PLL Enable and LO Path Control Register Map

REGISTER 6—VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)

DB23
000
CPEN
0 1
CHARGE
PUMP
DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
CHARGE PUMP ENABLE
DISABLE ENABLE (DEFAULT)
ENABLE
L3EN 3.3V LDO ENABLE
DISABLE
0
ENABLE (DEFAULT)
1
LVEN VCO LDO ENABLE
0 1
3.3V VCO LDO
LDO
ENABLE
ENABLE
CPEN L3EN VCO EN VCO SW VC5
DISABLE ENABLE (DEFAULT)
LVEN
VCO
ENABLE
VCO EN
0 1
VCO
SWITCH
VCO SW
0 1
VCO SWIT CH CONTROL FROM SPI
REGULAR (DEFAUL T) BAND CAL
VCO ENABLE
DISABLE ENABLE (DEFAULT)
Figure 44. Register 6—VCO Control and VCO Enable Register Map
VCO
VCO AMPLITUDERESERVED
VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0 C3(1) C2(1) C1(0)
VC[5:0] VCO AMPLITUDE
0x00 0 …. ….
0x18 24 (DEFAULT) …. ….
0x2B 43 …. ….
0x3F 63 ( RECOMMENDED)
BW SW
CTRL
VBSRC
0 1
LO OUTPUT DRIVER
LDRV
ENABLE
DRIVER OFF (DEFAULT)
0
DRIVER ON
1
EXTERNAL LO DRIVE
LXL
ENABLE (PIN 37, PIN 38)
INTERNAL LO OUTPUT (DEFAULT)
0
EXTERNAL LO INPUT
1
DIVIDE-BY-2 I N LO CHAIN E NABLE
LDV1
DIVIDE BY 1
0
DIVIDE BY 2 (DEFAULT)
1
PLEN
PLL ENABLE
DISABLE
0
ENABLE (DEFAULT)
1
VCO BAND SELECT FROM SPI
VBS[5:0] VCO BAND SELECT FROM SPI
0x00 0x01
…. 0x20
…. 0x3F
VCO BW CAL AND SW SOURCE CONTRO L
BAND CAL (DEFAULT ) SPI
DEFAULT
CONTROL BI TS
08553-009
08553-010

REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)

MIXER
XVCORES
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0XVCO
B_EN
MBE0 0 0000000000000000C3(1)C2(1)C1(1)
MIXER BIAS ENABL E
MBE
ENABLE (DEFAULT)
0
DISABLE
1
EXTERNAL VCO
XVCO
INTERNAL VCO (DEFAULT)
0 1
EXTERNAL V
CO
Figure 45. Register 7—Mixer Bias Enable and External VCO Enable Register Map
RESERVED CONTROL BITS
Rev. A | Page 19 of 32
8553-011
ADRF6604

THEORY OF OPERATION

The ADRF6604 integrates a high performance downconverting mixer with a state-of-the-art fractional-N PLL. The PLL also integrates a low noise VCO. The SPI port allows the user to control the fractional-N PLL functions and the mixer optimization functions, as well as allowing for an externally applied LO or VCO.
The mixer core within the ADRF6604 is the next generation of an industry-leading family of mixers from Analog Devices, Inc. The RF input is converted to a current and then mixed down to IF using high performance NPN transistors. The mixer output currents are transformed to a differential output. The high performance active mixer core results in an exceptional IIP3 and IP1dB with a very low output noise floor for excellent dynamic range. Over the specified frequency range, the ADRF6604 typically provides IF input P1dB of 14.5 dBm and IIP3 of 27.5 dBm.
Improved performance at specific frequencies can be achieved with the use of the internal capacitor DAC (CDAC), which is programmable via the SPI port, and by us supply from the IP3SET pin (Pin 29). Adju
AC allows increments in phase shift at internal nodes in the
D ADRF6604, thus allowing cancellation of third-order distortion with no change in supply current. Connecting a resistor to a 5 V supply from the IP3SET pin increases the internal mixer core current, thereby improving overall IIP2 and IIP3, as well as IP1dB. Using the IP3SET pin for this purpose increases the overall supply current.
The fractional divide function of the PLL allows the frequency multiplication value from REF_IN to LO output to be a fractional value rather than to be restricted to an integer value as in tradi­tional PLLs. In operation, this multiplication value is
INT + (FRAC/MOD)
where:
INT is the integer value. FRAC is the fractional value. MOD is the modulus value.
The INT, FRAC, and MOD values are all programmable via the SPI port. In other fractional-N PLL designs, fractional multi­plication is achieved by periodically changin
a deterministic way. The disadvantage of this approach is that
in there are often spurious components close to the fundamental signal. In the ADRF6604, a Σ- modulator is used to distribute the fractional value randomly, thus significantly reducing the spurious content due to the fractional function.
ing a resistor to a 5 V stment of the capacitor
g the fractional value

PROGRAMMING THE ADRF6604

The ADRF6604 is programmed via a 3-pin SPI port. The timing requirements for the SPI port are shown in Figure 2. Eight pro­grammable registers, each with 24 bits, control the operation of the device. The register functions are listed in Tabl e 8 .
Table 8. ADRF6604 Register Functions
Register Function
Register 0 Integer divide control for the PLL Register 1 Modulus divide control for the PLL Register 2 Fractional divide control for the PLL Register 3 Σ-Δ modulator dither control Register 4 PLL charge pump, PFD, reference path control Register 5 PLL enable and LO path control Register 6 VCO control and VCO enable Register 7 Mixer bias enable and external VCO enable
Note that internal calibration for the PLL must be run when the ADRF6604 is initialized at a given frequency. This calibration is run automatically whenever Register 0, Register 1, or Register 2 is programmed. Because the other registers affect PLL performance, Register 0, Register 1, and Register 2 should always be programmed last and in the following order: Register 0, Register 1, Register 2.
To program the frequenc programs only Register 0, Register 1, and Register 2. However, if registers other t should be insert ensures that the VCO band calibration has sufficient time to complete before the final band calibration for Register 0 is initiated.
Software is available on the ADRF6604 product page under the Evaluation Boards & Kits section that allows easy programming from a PC running Windows® XP or Vista.
ed before programming Register 0. This delay
y of the ADRF6604, the user typically
han these are programmed first, a short delay

INITIALIZATION SEQUENCE

To ensure proper power-up of the ADRF6604, it is important to reset the PLL circuitry after the VCC supply rail settles to 5 V ±
0.25 V. Resetting the PLL ensures that the internal bias cells are properly configured, even under poor supply start-up conditions.
To ensure that the PLL is reset after power-up, use the following procedure:
1. Disable the PLL by setting the PLEN bit to 0 (Register 5,
Bit DB6).
2. After a delay of >10
Bit DB6).
After this procedure is completed, the o be programmed in the following order: Register 7, Register 6, Register 4, Register 3, Register 2, Register 1. Then, after a delay of >100 ms, Register 0 should be programmed.
0 ms, set the PLEN bit to 1 (Register 5,
ther registers should
Rev. A | Page 20 of 32
ADRF6604

LO SELECTION LOGIC

The downconverting mixer in the ADRF6604 can be used without the internal PLL by applying an external differential LO to Pin 37 (LON) and Pin 38 (LOP). In addition, when using an LO generated by the internal PLL, the LO signal can be acc directly at these pins. This function can be used for debugging purposes, or the internally generated LO can be used as the LO for a separate mixer.
Table 9. LO Selection Logic
Pins1 Reg
Pin 16 (PLL_EN) Pin 36 (LODRV_EN) Bit DB6 (PLEN) Bit DB3 (LDRV) Output Buffer LO
0 X 0 X Disabled External 0 X 1 X Disabled External 1 X 0 X Disabled External 1 0 1 0 Disabled Internal 1 X 1 1 Enabled Internal 1 1 1 X Enabled Internal
1
X = don’t care.
essed
ister 5 B
The operation of the LO generation and whether LOP and LON are inputs or outputs are determined by the logic levels applied at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN (LDRV) a DB6 (PLEN externally a d logic and internal bits required f LO functio given in Tab l e 9 .
nd Bit ) in Register 5. The combination of
pplie or particular
ns is
), as well as Bit DB3
its1 Outputs
Rev. A | Page 21 of 32
ADRF6604
O
APPLICATIONS INF
ORMATION

BASIC CONNECTIONS FOR OPERATION

Figure 46 shows the basic connections for the ADRF6604 evalu­ation board. The six power supply pins should be individually decoupled using 100 pF and 0.1 µF capacitors located as close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should be decoupled
th the capacitor valwi
The RF input is internally ac­bias. The IF outputs are open required from thes ts to VCC.
A peak-to-peak d tial swing on RF of V (0.353 V rms fo su w
r a sine wave input) re lts in an IF output po er of 4.7 dBm.
Th y fo fro
e reference frequenc r the PLL should be m 12 MHz to
16 ap in,
0 MHz and should be plied to the REF_IN p which should
VCC1
RED
R55 OPEN (0402)
S1
PEN
R56
0
(0402)
LO IN/OUT
TC1-1-13+
REF_IN
49.9 (0402)
REFOUT
ues shown in Figure 46.
e outpu
ifferen
4
3
51
T8
C31 1nF
(0402)
R70
R16
0
(0402)
LODRV_EN
C5 1nF
(0402)
C6 1nF
(0402)
MUXOUT
LON
LOP
REF_IN
36
37
38
6
8
coupled and needs no external
collector, and a bias inductor is
1
IN
VCC RED
+5V
C7
C25
C23
0.1µF
0.1µF
(0402)
(0402)
R6
R26
0 (0402)
C8 100pF (0402)
27
34 22 17 10 1
ADRF6604
×2
MUX
÷2
÷4
R25
0
0
(0402)
(0402) C24 100pF (0402)
VCC_MIXVCC_V2IVCC_LO
FRACTION
TEMP
SENSOR
1174 2015 2321 2524 3028 3531
VCC_LO VCC2 VCC1
MODULUS
REG
THIRD-O RDER
FRACTIO NAL
INTERPO LATOR
(ORANG E)
Figure 46. Basic Connections for Operation of the ADRF6604
0.1µF (0402)
C22 100pF (0402)
N COUNTER
PHASE
+
FREQUENCY
DETECTOR
CP
TEST
POINT
C20
0.1µF (0402)
R24 0 (0402)
C21 100pF (0402)
INTEGER
REG
21 TO 123
R38 0
(0402)
C14
22pF
(0603)
C43
10µF
(0603)
S2
C19
0.1µF (0402)
R17 0 (0402)
C18 100pF (0402)
PRESCALER
CHARGE PUMP 250µA, 500µA (DEFAULT), 750µA, 1000µA
R
SET
R2
OPEN
R37
(0402)
0
(0402)
R9 10k
(0402)
R10 3k (0603)
C15
2.7nF (1206)
R11 OPEN (0402)
C2
OPEN
(0402)
be ac-coupled and terminated with a 50 Ω resistor as shown in Figure 46. The reference signal, or a divided-down version of the reference signal, can be brought back off chip at the multiplexer output pin (MUXOUT). A lock detect signal and a voltage
ortional to the ambient tempprop
o
n the multiplexer output pin.
erature can also be selected
The loop filter is connected between the CP and VTUNE pins. When connected in this way, the internal VCO is operational. For information about the loop filter components, see the Eval ons section
uation Board Configuration Opti .
Operation wit xternal VCO is a ssible the loop filter comp ld be referr nd. The output of the loop f ected to the i age pin of the external VCO. T of the VCO i ack into the device on the LO N pins, using f necessary.
h an e lso po . In this case,
onents shou ed to grou
ilter is conn nput volt
he output s brought b
P and LO a balun i
P1
89
R57 0 (0402)
CLK
DATA
13 12
SPI
INTERFACE
1840393
VCC
+5V
9-PIN DSUB
R36 0 (0402)
C34
R52
OPEN
OPEN
(0402)
(0402)
C33
R51
OPEN
OPEN
(0402)
(0402)
C32
R50
OPEN
OPEN
(0402)
(0402)
LE
14
DECL2P5
9
C16 100pF (0402)
DECL3P3
2
C12 100pF (0402)
RF
IN
26
R28
0
(0402)
IP3SET
29
195
IFNIFP
R59
0
(0402)
C29
0.1µF (0402)
R27
0
(0402)
14
2
5
3
R18
0
(0402)
R8 0
(0402)
R43
0
(0402)
RFIN
C27
0.1µF (0402)
C17
0.1µF (0402)
C11
0.1µF (0402)
RFOUT
VCC
÷2
(0402)
R54 10k (0402)
R7 0 (0402)
BUFFER
R65 10k
(0402)
C13
6.8pF (0603)
R1
0
C1 100pF (0402)
R53
10k
(0402)
C9
0.1µF (0402)
C10 100pF (0402)
BUFFER
R20
0
(0402)
C40 22pF (0603)
R12 0 (0402)
2 4 61357
R19
0
(0402)
DIVIDER
÷2
DIV
2:1
BY
MUX
2, 1
VCO
CORE
VTUNE
CP
R62 0 (0402)
R35 0 (0402)
DECLVCO
R63 OPEN (0402)
R30 0 (0402)
PLL_EN
16
VTUNE
C42 10µF (0603)
C41 OPEN (0603)
8553-024
Rev. A | Page 22 of 32
ADRF6604
A

AC TEST FIXTURE

Characterization data for the ADRF6604 was taken u
nder very strict test conditions. All possible techniques were used to achieve optimum accuracy and to remove degrading effects of
RF1 AGILENT N5181A
HP 11636A
POWER DIVI DER
RF2 AGILENT N5181A
REF_IN AGILENT N5181A
REF_IN
IF_OUT
DRF6604 CH LL INSTRUM
A
OMPUTER V AISY
C
AINED TO
CH EACH INDIVIDUAL INSTRUMENT.
the signal generation and measurement equipment. Figure 47 shows the typical AC test setup used in the characterization of the ADRF6604.
ARACTERIZATION RACK DIAGRAM. ENTS ARE CONTROLLED BY A LAB
IA A USB TO GPIB CONTROLLER, D
RF
IN
ADRF6604
EVALUATION BOARD
ROHDE & SCHWARZ
FSEA30
10-PIN DC HEADER
AGILENT 34401A SET TO IDC
(SET FOR SUPPLY CURRENT)
5V dc VIA
10-PIN DC HEADER
AGILENT 34980A WITH THREE 34921 MODUL ES
AND ONE 34950 MODULE
5V dc MEASURED FOR SUPPLY CURRENT
9-PIN CONTRO LLER D-SUB AND
GND VIA 10-PIN DC HEADER
3.3V dc VI A 10-PIN DC HEADER
AGILENT E3631A 25V SET TO
3.3V, 6V SET TO 5V. RETURNS ARE
JUMPERED TOGETHER
08553-027
Figure 47. ADRF6604 AC Test Setup
Rev. A | Page 23 of 32
ADRF6604
EVALUATION BOAR
Figure 50 shows the schematic of the RoHS-compliant evaluation board for the ADRF6604. This board has four layers and w designed using Rogers 4350 hybrid material to minimize high
equency losses. FR4 material is also adequate if the design can
accept the slightly higher trace loss of this material.
The evaluation board is designed to operate using the internal VCO of the device (the default configuration) or using an external VCO. To use an external VCO, R62 and R12 should be removed. Place 0 Ω resistors in R63 and R11. The input of the external VCO should be connected to the VTUNE SMA connector, and the external VCO output should be connected to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must be changed to enable operation with an external VCO (see the Register 6—VCO Control and VCO Enable (Default: 0x1E2106) section).
Additional configuration options for the evaluation board are described in Ta bl e 10 .
D
as

EVALUATION BOARD CONTROL SOFTWARE

Software to program the ADRF6604 is available for download from the ADRF6604 product page under the Evaluation Boards & Kits section. To install the software
1. Download and extract the zip file:
ADRF6x0x_customer_6p0p0_install.zip file.
2. Follow the instructions in the read me file.
The evaluation board can be connected to the PC using a PC parallel port or a USB port. These options are selectable from the opening menu of the software interface (see Figure 48). The evaluation board is shipped with a 25-pin parallel port cable for connection to the PC parallel port.
To connect the evaluation board to a USB port, a USB adapter board (frEVAL-ADF4XXXZ-USB) must be purchased from Analog Devices This board conne a USB mini-connector at one end. An additional 25-pin male to 9-pin female adapter is required to mate the EVAL-ADF4XXXZ­USB board to the 9-pin D-Sub connector on the ADRF6604 evaluation board.
Figure 49 shows the main window of the control software with the default settings displayed.
cts to the PC using a standard USB cable with
Figure 48. Control Software Opening Menu
.
08553-028
Rev. A | Page 24 of 32
ADRF6604
08553-029
Figure 49. Main Window of the ADRF6604 Evaluation Board Software
Rev. A | Page 25 of 32
ADRF6604
C
C

SCHEMATIC AND ARTWORK

V
T7
GND2
GND1
GND
VCC
1
VCC_BB
VCC_LO
VCC_RF
11A22A3
P1-T7
AGND
9J1
1
10J1
5J1
6J1
7J1
8J1
1
1
AGND
VCO_LDO
2P5V_LDO
3P3V_LDO
VCC_SENSE
LO_EXTERN
1J1
2J1
3J1
4J1
AGND
OUT
VCC
AGND
AGND
0
R43
461
T3
TC4-1W
3
2
VCC_SENSE
0
SNS1
SNS
C28
AGND
0
R32
0
R31
0
R29
AGNDAGND
6A
10UF
LO
AGND
VCC_LO
0
R69
AGND
P4-T7
P4-T7
44A55A6
T8
3A
1
C7
VCC_LO
P1-T7
4
2
NC
0
R6
C8
153
P3-T7
P3-T7
P1-T7
LO_EXTERN
P3-T7
P4-T7
R66
0
R67
R68
0DNI
IP3SET
OUTPUT_EN
0.1UF
AGND AGND
100PF
VCC_BB
C27
0.1UF
TBD
R27
R60
TBD
1
IP3SET
IP3SET
AGND
0
R33
1NF
C6 C5
1NF
R56
AGND
10K
2
VCC
1
VCC1
3
10K
R55
AGND
1
S1
VCC_RF
1
VCC_RF
C25
0.1UF
0
R26
C24
100PF
AGND AGND
27
282930
GND
GND
IP3SET
GND
31323334353637383940
NC
VCC_V2I
NC
VCC_LO
GND
LODRV_EN
LON
LOP
VTUNE
DECLVCO
P1-6
0
R63
R72
100K
AGND
VTUNE
0
R62
22PF
C40
10K
R65R9
C13
6.8PF
10K
3K
C15
2.7NF
R10
C14
22PF
0
R37
0
R38
1
CP
0
R12
VCO_LDO
DNI
AGND
R11
100PF
C10
0
R7
0.1UF
C9
1
VCC4
VCC
0PF
C1
10
0
R1
C2
0.1UF
1
R49
VCO_LDO
R8
AGND AGND
1
3P3V1
VCC1
123456789
AGND
AGND
10UF
C43
AGND
DNI
C12
100PF
AGND
0
AGND
C11
0.1UF
OSC_3P3V
C41
10UF
AGND
DECL3P3CPGND
0
R15
1
C4
OSC_3P3V
R59
0
VCC
R44
AGND
C29
0.1UF
AGND
RFIN
0
R28
AGND
AGND
VCC_BB
1
C23
VCC_BB1
0.1UF
0
R25
AGND AGND
C22
100PF
DNI
IFP
AGND
R47
C35
DNI
L1
TBD
VCC
IFN
AGND
0
0
R48
C36
DNI
L2
TBD
VCC
DNI
R58
VCC_LO
26
IN
GND
RF
21
PAD
GND
GND
GND
E-PAD
VCC_MIX
GND
AGND
IFN
AGND
222324
25
IFP
VCC_LO
PLL_EN
Z1
SET
R
REF_IN
GND
MUXOUT
R2
DNI
AGND
GND
LE
CLK
DATA
GND
DECL2P5
VCC2
10
AGND
P1-1
TBD
0
13 14 17 19
R35
11 12 15 16 18 20
R19
C32
100PFDNI
AGND
P1-1
1
R50
1K DNI
P1
123456789
CLK
C16
100PF
0
R18
C17
0.1UF
1
2P5V
10UF
C42
R71
0
R16
2P5V_LDO
AGND
REFOUT
DNI
R14
Y1
10PF
22000PF
C3
C31
1000PF
AGND
R70
49.9
AGND
AGND
REFIN
1
VCC_LO1
0
R34
0
R20
1
DATA
0
0
R57
R30
P1-6
AGNDAGND
C20
0.1UF
0
R24
C21
100PF
OUTPUT_EN
R54
3
1
2
S2
AGND
100PFDNI
C33
1
0
0
R51
DIG_GND
R36
1K DNI
VCC
AGND
R53
10K 10K
C34
100PFDNI
AGND
R52
1K DNI
AMP745781-4
AGND
AGND
AGND
100PF
C18
AGND
0
R17
0.1UF
C19
1
VCC2
AGND
VCC
08553-023
1
VCC5
1
LE
AGND
3P3V_LDO
Figure 50. Evaluation Board Schematic
Rev. A | Page 26 of 32
ADRF6604
08553-013
Figure 51. Evaluation Board Layout (Bottom)
Figure 52. Evaluation Board Layout (Top)
08553-012
Rev. A | Page 27 of 32
ADRF6604

EVALUATION BOARD CONFIGURATION OPTIONS

Table 10.
Default Condition/
Component Description
S1, R55, R56, R33
LO IN/OUT SMA Connector
REFIN SMA Connector
REFOUT SMA Connector
CP Test Point
R37, C14, R9, R10, C15, C13, R65, C40
R11, R12
RS62, R63, VTUNE
MA Connector
R2 R RFIN SMA Connector
T3
LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in combination with internal register settings, determines whether the LOP and LON pins function as inputs or outputs (see the LO Selection Logic section for more information).
LO input/output. An external 1× LO or 2× LO can be applied to this single-ended input connector.
Reference input. The input reference frequency for the PLL is applied to this connector. Input impedance is 50 Ω.
Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The on-board multiplexer can be programmed to bring out the following signals: REFIN, 2× REFIN, REFIN/2, and REFIN/4; temperature sensor output voltage; and lock detect indicator.
Charge pump test point. The unfiltered charge pump signal can be probed at this test point. Note that the CP pin should not be probed during critical measurements, such as phase noise.
Loop filter. Loop filter components.
Loop filter return. When the internal VCO is used, the loop filter components should be
VCO is used, the loop filter com resistor in R11.
Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62. To use an external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63, and the voltage input of the VCO should be connected to the VTUNE SMA connector. The output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector.
pin. This pin is unused and should be left open. R2 = open (0402)
SET
RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of the ADRF6604 is ac-coupled; therefore, no bias is necessary.
IF output. The differential IF output signals from the ADRF6604 (IFP and IFN) are converted to a single-ended signal by T3.
(Pin 40) by installing a 0 Ω resistor in
ponents can be returned to ground b
R12. When an external
y installing a 0 Ω
Option Settings
S1 = R55 = open (not installed), R56 = R33 = 0 Ω, LODRV_EN = 0 V
LO input
Lock detect
R12 = 0 Ω (0402),
R11 = op
R62 = 0 Ω (0402), R63 = open (0402)
R3 = R23 = open (0402)
en (0402) returned to the DECLVCO pin
Rev. A | Page 28 of 32
ADRF6604

OUTLINE DIMENSIONS

PIN 1
INDICATOR
1.00
0.85
0.80
12° MAX
SEATING PLANE
6.00
BSC SQ
TOP
VIEW
5.75
BSC SQ
0.80 MAX
0.65 TYP
0.30
0.23
0.18
COMPLIANT TO
0.20 REF
0.60 MAX
0.50
BSC
0.50
0.40
0.30
0.05 MAX
0.02 NOM
COPLANARITY
0.08
JEDEC STANDARDS MO-220-VJJD-2
0.60 MAX
4031
30
EXPOSED
(BOTTOM VIEW)
21
20
1
PAD
10
11
4.50 REF
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONF IGURATIO N AND FUNCTION DES CRIPTIONS SECTION O F THIS DAT A SHEET.
PIN 1 INDICATOR
4.25
4.10 SQ
3.95
0.25 MIN
Figure 53. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad
(CP-40-1)
Dimensions shown in millimeters
ORDERING GU
Model1
IDE
Temperature Range Package Description Package Option
ADRF6604ACPZ-R7 CP-40-1 −40°C to +85°C 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] ADRF6604-EVALZ Evaluation Board
1
Z = RoHS Compliant Part .
072108-A
Rev. A | Page 29 of 32
ADRF6604
NOTES
Rev. A | Page 30 of 32
ADRF6604
NOTES
Rev. A | Page 31 of 32
ADRF6604
NOTES
©2010–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08553-0-5/11(A)
Rev. A | Page 32 of 32
Loading...