ANALOG DEVICES ADR 441 BRZ Datasheet

Page 1
Ultralow Noise, LDO XFET Voltage
References with Current Sink and Source

FEATURES

Ultralow noise (0.1 Hz to 10 Hz)
ADR440: 1 μV p-p ADR441: 1.2 μV p-p ADR443: 1.4 μV p-p ADR444: 1.8 μV p-p ADR445: 2.25 μV p-p
Superb temperature coefficient
A grade: 10 ppm/°C
B grade: 3 ppm/°C Low dropout operation: 500 mV Input range: (V High output source and sink current
+10 mA and −5 mA, respectively Wide temperature range: −40°C to +125°C

APPLICATIONS

Precision data acquisition systems High resolution data converters Battery-powered instrumentation Portable medical instruments Industrial process control systems Precision instruments Optical control circuits
+ 500 mV) to 18 V
OUT
ADR440/ADR441/ADR443/ADR444/ADR445

PIN CONFIGURATIONS

ADR440/
TP
1
ADR441/
2
ADR443/
V
IN
ADR444/
NC
3
ADR445
TOP VIEW
4
GND
(Not to Scale)
NOTES
1. NC = NO CONNECT
2. TP = TEST P IN (DO NOT CO NNECT)
Figure 1. 8-Lead SOIC_N (R-Suffix)
ADR440/
1
TP
ADR441/ ADR443/
V
2
IN
ADR444/
3
NC
ADR445
GND
NOTES
1. NC = NO CONNECT
2. TP = TEST P IN (DO NOT CONNECT)
Figure 2. 8-Lead MSOP (RM-Suffix)
TOP VIEW
4
(Not to S cal e)
TP
8
7
NC V
6
OUT
5
TRIM
05428-001
8
TP NC
7
6
V
OUT
TRIM
5
05428-002

GENERAL DESCRIPTION

The ADR44x series is a family of XFET® voltage references featuring ultralow noise, high accuracy, and low temperature drift performance. Using Analog Devices, Inc., patented temperature drift curvature correction and XFET (eXtra implanted junction FET) technology, voltage change vs. temperature nonlinearity in the ADR44x is greatly minimized.
The XFET references offer better noise performance than buried Zener references, and XFET references operate off low supply voltage headroom (0.5 V). This combination of features makes the ADR44x family ideally suited for precision signal conversion applications in high-end data acquisition systems, optical networks, and medical applications.
The ADR44x family has the capability to source up to 10 mA of output current and sink up to −5 mA. It also comes with a trim terminal to adjust the output voltage over a 0.5% range without compromising performance.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Offered in two electrical grades, the ADR44x family is avail­able in 8-lead MSOP and narrow SOIC packages. All versions are specified over the extended industrial temperature range of
−40°C to +125°C.
Table 1. Selection Guide
Model
Output Voltage (V)
Initial Accuracy (mV)
Temperature Coefficient (ppm/°C)
ADR440A 2.048 ±3 10 ADR440B 2.048 ±1 3 ADR441A 2.500 ±3 10 ADR441B 2.500 ±1 3 ADR443A 3.000 ±4 10 ADR443B 3.000 ±1.2 3 ADR444A 4.096 ±5 10 ADR444B 4.096 ±1.6 3 ADR445A 5.000 ±6 10 ADR445B 5.000 ±2 3
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005–2010 Analog Devices, Inc. All rights reserved.
Page 2
ADR440/ADR441/ADR443/ADR444/ADR445

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
Pin Configurations ........................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
ADR440 Electrical Characteristics............................................. 3
ADR441 Electrical Characteristics............................................. 4
ADR443 Electrical Characteristics............................................. 5
ADR444 Electrical Characteristics............................................. 6
ADR445 Electrical Characteristics............................................. 7
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Typical Performance Characteristics ............................................. 9
Theory of Operation ...................................................................... 14
Power Dissipation Considerations........................................... 14
Basic Voltage Reference Connections ..................................... 14
Noise Performance..................................................................... 14
Turn-On Time ............................................................................ 14
Applications Information.............................................................. 15
Output Adjustment.................................................................... 15
Bipolar Outputs.......................................................................... 15
Programmable Voltage Source ................................................. 15
Programmable Current Source ................................................ 16
High Voltage Floating Current Source.................................... 16
Precision Output Regulator (Boosted Reference)................. 16
Outline Dimensions....................................................................... 17
Ordering Guide .......................................................................... 18

REVISION HISTORY

11/10—Rev. D to Rev. E
Deleted Negative Reference Section............................................. 15
Deleted Figure 37; Renumbered Sequentially ............................ 15
3/10—Rev. C to Rev. D
Changes to Figure 37...................................................................... 15
Updated Outline Dimensions....................................................... 18
3/08—Rev. B to Rev. C
Changes to Table 8............................................................................ 8
Change to Figure 11 ....................................................................... 10
Changes to Figure 36...................................................................... 15
Changes to Figure 39...................................................................... 16
Changes to Figure 41...................................................................... 17
Updated Outline Dimensions....................................................... 18
8/07—Rev. A to Rev. B
Change to Table 2, Ripple Rejection Ratio Specification ............ 3
Change to Table 3, Ripple Rejection Ratio Specification ............ 4
Change to Table 4, Ripple Rejection Ratio Specification ............ 5
Change to Table 5, Ripple Rejection Ratio Specification ............ 6
Change to Table 6, Ripple Rejection Ratio Specification ............ 7
9/06—Rev. 0 to Rev. A
Updated Format.................................................................. Universal
Changes to Features ..........................................................................1
Changes to Pin Configurations .......................................................1
Changes to Specifications Section...................................................3
Changes to Figure 4 and Figure 5....................................................9
Inserted Figure 6 and Figure 7.........................................................9
Changes to Figure 15...................................................................... 11
Changes to Power Dissipation Considerations Section ............ 14
Changes to Figure 35 and Figure 36............................................. 15
Changes to Figure 38 and Table 9................................................. 16
Updated Outline Dimensions....................................................... 18
Changes to Ordering Guide.......................................................... 19
10/05—Revision 0: Initial Version
Rev. E | Page 2 of 20
Page 3
ADR440/ADR441/ADR443/ADR444/ADR445

SPECIFICATIONS

ADR440 ELECTRICAL CHARACTERISTICS

VIN = 3 V to 18 V, TA = 25°C, CIN = C
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO
A Grade
B Grade
INITIAL ACCURACY V
A Grade
0.15 %
B Grade 1 mV
0.05 % TEMPERATURE DRIFT TCVO
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C
LINE REGULATION ΔVO/ΔVIN −40°C < TA < +125°C −20 +10 +20 ppm/V LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT IIN No load, −40°C < TA < +125°C 3 3.75 mA VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 1 μV p-p VOLTAGE NOISE DENSITY eN 1 kHz 45 nV/√Hz TURN-ON SETTLING TIME tR 10 μs LONG-TERM STABILITY1 V OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz −80 dB SHORT CIRCUIT TO GND ISC 27 mA SUPPLY VOLTAGE OPERATING RANGE VIN 3 18 V SUPPLY VOLTAGE HEADROOM VIN − VO 500 mV
1
The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
OERR
LOAD
2.045 2.048 2.051 V
2.047 2.048 2.049 V
3 mV
= 0 mA to 10 mA, VIN = 3.5 V,
I
LOAD
−40°C < T
LOAD
= 0 mA to −5 mA, VIN = 3.5 V,
I
LOAD
−40°C < T
1000 hours 50 ppm
O
70 ppm
O_HYS
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. E | Page 3 of 20
Page 4
ADR440/ADR441/ADR443/ADR444/ADR445

ADR441 ELECTRICAL CHARACTERISTICS

VIN = 3 V to 18 V, TA = 25°C, CIN = C
Table 3.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.12 % B Grade 1 mV
0.04 % TEMPERATURE DRIFT TCVO
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔVIN −40°C < TA < +125°C 10 20 ppm/V LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT IIN No load, −40°C < TA < +125°C 3 3.75 mA VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 1.2 μV p-p VOLTAGE NOISE DENSITY eN 1 kHz 48 nV/√Hz TURN-ON SETTLING TIME tR 10 μs LONG-TERM STABILITY1 V OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz −80 dB SHORT CIRCUIT TO GND ISC 27 mA SUPPLY VOLTAGE OPERATING RANGE VIN 3 18 V SUPPLY VOLTAGE HEADROOM VIN − VO 500 mV
1
The long-term stability specification is noncumulative. The drift in subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
OERR
LOAD
2.497 2.500 2.503 V
2.499 2.500 2.501 V
3 mV
= 0 mA to 10 mA, VIN = 4 V,
I
LOAD
−40°C < T
LOAD
= 0 mA to −5 mA, VIN = 4 V,
I
LOAD
−40°C < T
1000 hours 50 ppm
O
70 ppm
O_HYS
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. E | Page 4 of 20
Page 5
ADR440/ADR441/ADR443/ADR444/ADR445

ADR443 ELECTRICAL CHARACTERISTICS

VIN = 3.5 V to 18 V, TA = 25°C, CIN = C
Table 4.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.13 % B Grade 1.2 mV
0.04 % TEMPERATURE DRIFT TCVO
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔVIN −40°C < TA < +125°C 10 20 ppm/V LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT IIN No load, −40°C < TA < +125°C 3 3.75 mA VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 1.4 μV p-p VOLTAGE NOISE DENSITY eN 1 kHz 57.6 nV/√Hz TURN-ON SETTLING TIME tR 10 μs LONG-TERM STABILITY1 V OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz −80 dB SHORT CIRCUIT TO GND ISC 27 mA SUPPLY VOLTAGE OPERATING RANGE VIN 3.5 18 V SUPPLY VOLTAGE HEADROOM VIN − VO 500 mV
1
The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
OERR
LOAD
2.996 3.000 3.004 V
2.9988 3.000 3.0012 V
4 mV
= 0 mA to 10 mA, VIN = 5 V,
I
LOAD
−40°C < T
LOAD
= 0 mA to −5 mA, VIN = 5 V,
I
LOAD
−40°C < T
1000 hours 50 ppm
O
70 ppm
O_HYS
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. E | Page 5 of 20
Page 6
ADR440/ADR441/ADR443/ADR444/ADR445

ADR444 ELECTRICAL CHARACTERISTICS

VIN = 4.6 V to 18 V, TA = 25°C, CIN = C
Table 5.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.13 % B Grade 1.6 mV
0.04 % TEMPERATURE DRIFT TCVO
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔVIN −40°C < TA < +125°C 10 20 ppm/V LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT IIN No load, −40°C < TA < +125°C 3 3.75 mA VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 1.8 μV p-p VOLTAGE NOISE DENSITY eN 1 kHz 78.6 nV/√Hz TURN-ON SETTLING TIME tR 10 μs LONG-TERM STABILITY1 V OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz −80 dB SHORT CIRCUIT TO GND ISC 27 mA SUPPLY VOLTAGE OPERATING RANGE VIN 4.6 18 V SUPPLY VOLTAGE HEADROOM VIN − VO 500 mV
1
The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
OERR
1000 hours 50 ppm
O
70 ppm
O_HYS
4.091 4.096 4.101 V
4.0944 4.096 4.0976 V
5 mV
LOAD
LOAD
= 0 mA to 10 mA, VIN = 5.5 V,
I
LOAD
−40°C < T I
LOAD
−40°C < T
< +125°C
A
= 0 mA to −5 mA, VIN = 5.5 V,
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. E | Page 6 of 20
Page 7
ADR440/ADR441/ADR443/ADR444/ADR445

ADR445 ELECTRICAL CHARACTERISTICS

VIN = 5.5 V to 18 V, TA = 25°C, CIN = C
Table 6.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.12 % B Grade 2 mV
0.04 % TEMPERATURE DRIFT TCVO
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔVIN −40°C < TA < +125°C 10 20 ppm/V LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT IIN No load, −40°C < TA < +125°C 3 3.75 mA VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 2.25 μV p-p VOLTAGE NOISE DENSITY eN 1 kHz 90 nV/√Hz TURN-ON SETTLING TIME tR 10 μs LONG-TERM STABILITY1 V OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz –80 dB SHORT CIRCUIT TO GND ISC 27 mA SUPPLY VOLTAGE OPERATING RANGE VIN 5.5 18 V SUPPLY VOLTAGE HEADROOM VIN − VO 500 mV
1
The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
OERR
LOAD
4.994 5.000 5.006 V
4.998 5.000 5.002 V
6 mV
= 0 mA to 10 mA, VIN = 6.5 V,
I
LOAD
−40°C < T
LOAD
= 0 mA to −5 mA, VIN = 6.5 V,
I
LOAD
−40°C < T
1000 hours 50 ppm
O
70 ppm
O_HYS
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. E | Page 7 of 20
Page 8
ADR440/ADR441/ADR443/ADR444/ADR445

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 7.
Parameter Rating
Supply Voltage 20 V Output Short-Circuit Duration to GND Indefinite Storage Temperature Range −65°C to +125°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Temperature, Soldering (60 sec) 300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 8. Thermal Resistance
Package Type θJA θJC Unit
8-Lead SOIC (R-Suffix) 130 43 °C/W 8-Lead MSOP (RM-Suffix) 132.5 43.9 °C/W

ESD CAUTION

Rev. E | Page 8 of 20
Page 9
ADR440/ADR441/ADR443/ADR444/ADR445

TYPICAL PERFORMANCE CHARACTERISTICS

VIN = 7 V, TA = 25°C, CIN = C
2.051
= 0.1 µF, unless otherwise noted.
OUT
4.0980
2.050
2.049
2.048
2.047
OUTPUT VOLTAGE (V)
2.046
2.045 –40 –20 0 20 100806040 120
TEMPERATURE (°C)
Figure 3. ADR440 Output Voltage vs. Temperature
2.5020
2.5015
2.5010
2.5005
2.5000
OUTPUT VOLTAGE (V)
4.0975
4.0970
4.0965
4.0960
4.0955
OUTPUT VOLTAGE (V)
4.0950
4.0945
05428-042
4.0940 –40 5–10–25 503520 110958065 125
DEVICE 1
DEVICE 3
TEMPERATURE (°C)
DEVICE 2
05428-005
Figure 6. ADR444 Output Voltage vs. Temperature
5.006
5.004
5.002
5.000
4.998
OUTPUT VOLTAGE (V)
2.4995
2.4990 –40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 4. ADR441 Output Voltage vs. Temperature
3.0020
3.0015
3.0010
3.0005
3.0000
2.9995
OUTPUT VOLTAGE (V)
2.9990
2.9985
2.9980 –40 5–10–25 503520 110958065 125
DEVICE 1
DEVICE 2
DEVICE 3
TEMPERATURE (°C)
Figure 5. ADR443 Output Voltage vs. Temperature
4.996
05428-003
4.994 –40 –20 0 20 100806040 120
TEMPERATURE (°C)
05428-043
Figure 7. ADR445 Output Voltage vs. Temperature
4.0
3.5 +125°C
–40°C
+25°C
6
05428-006
3.0
SUPPLY CURRENT (mA)
2.5
05428-004
2.0
46 10811412 18
INPUT VOLTAGE (V)
Figure 8. ADR441 Supply Current vs. Input Voltage
Rev. E | Page 9 of 20
Page 10
ADR440/ADR441/ADR443/ADR444/ADR445
A
A
4.0
10
3.5
3.0
SUPPLY CURRENT (mA)
2.5
2.0 –40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 9. ADR441 Supply Current vs. Temperature
3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8
SUPPLY CURRENT (mA)
2.7
2.6
2.5
5.3 9.37.3 13.311.3 17.315.3 19.3
INPUT VOLTAGE (V)
+125°C
+25°C
–40°C
Figure 10. ADR445 Supply Current vs. Input Voltage
8
6
TION (ppm/V)
4
LINE REGUL
2
05428-007
0
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
05428-010
Figure 12. ADR441 Line Regulation vs. Temperature
60
I
= 0mA TO 10mA
LOAD
55
VIN = 18V
50
TION (ppm/mA)
45
VIN = 6V
40
LOAD REGUL
35
05428-008
30
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
05428-011
Figure 13. ADR441 Load Regulation vs. Temperature
3.25
3.15
3.05
2.95
SUPPLY CURRENT (mA)
2.85
2.75 –40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 11. ADR445 Supply Current vs. Temperature
05428-009
Rev. E | Page 10 of 20
7
6
5
4
3
2
LINE REGUL ATION (ppm/V)
1
0
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 14. ADR445 Line Regulation vs. Temperature
05428-012
Page 11
ADR440/ADR441/ADR443/ADR444/ADR445
A
A
A
50
VIN = 6V
40
30
20 10
TION (ppm/mA)
–10
–20
LOAD REGUL
–30 –40 –50
I
= 0mA TO +10mA
LOAD
0
I
= 0mA TO –5mA
LOAD
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 15. ADR445 Load Regulation vs. Temperature
05428-013
1.0
0.9
0.8
0.7
0.6
L VOLTAGE (V)
0.5
0.4
0.3
DIFFERENTI
0.2
0.1 0
–5 0 5 10
LOAD CURRENT (mA)
+125°C
Figure 18. ADR445 Minimum Input/Output
Differential Voltage vs. Load Current
+25°C
–40°C
05428-016
0.7
0.6
0.5
0.4
L VOLTAGE (V)
0.3
0.2
DIFFERENTI
0.1
0
–10 –5 0 5 10
LOAD CURRENT (mA)
+125°C
+25°C
Figure 16. ADR441 Minimum Input/Output
Differential Voltage vs. Load Current
0.5 NO LOAD
0.4
0.3
0.2
–40°C
0.5 NO LOAD
0.4
0.3
0.2
MINIMUM HEADROOM (V)
0.1
05428-014
0
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
05428-017
Figure 19. ADR445 Minimum Headroom vs. Temperature
CIN = C
OUT
VIN = 5V/DIV
= 0.1µF
MINIMUM HEADROOM (V)
0.1
0
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
05428-015
Figure 17. ADR441 Minimum Headroom vs. Temperature
Rev. E | Page 11 of 20
V
= 1V/DIV
OUT
Figure 20. ADR441 Turn-On Response
TIME = 10µs/DIV
05428-018
Page 12
ADR440/ADR441/ADR443/ADR444/ADR445
CIN = C
= 0.1µF
OUT
TIME = 200µs/DIV
Figure 21. ADR441 Turn-Off Response
CIN = 0.1µF C
= 10µF
OUT
VIN = 5V/DIV
V
= 1V/DIV
OUT
VIN = 5V/DIV
V
= 1V/DIV
OUT
CIN = 0.1µF C
= 10µF
OUT
LOAD OFF
05428-019
TIME = 200µs/DIV
LOAD ON
5mV/DIV
05428-023
Figure 24. ADR441 Load Transient Response
CIN = C
= 0.1µF
OUT
LOAD OFF L OAD ON
5mV/DIV
TIME = 200µs/DIV
Figure 22. ADR441 Turn-On Response
CIN = 0.1µF C
= 10µF
OUT
4V
TIME = 100µs/DIV
Figure 23. ADR441 Line Transient Response
2V/DIV
2mV/DIV
05428-020
TIME = 2 00µs/DIV
05428-022
Figure 25. ADR441 Load Transient Response
1µV/DIV
CH 1 p-p
1.18µV
TIME = 1s/DIV
05428-021
05428-024
Figure 26. ADR441 0.1 Hz to 10.0 Hz Voltage Noise
Rev. E | Page 12 of 20
Page 13
ADR440/ADR441/ADR443/ADR444/ADR445
A
16
14
12
50µV/DIV
CH 1 p-p 49µV
10
8
6
NUMBER OF PARTS
4
TIME = 1s/DIV
Figure 27. ADR441 10 Hz to 10 kHz Voltage Noise
1µV/DIV
TIME = 1s/DIV
Figure 28. ADR445 0.1 Hz to 10.0 Hz Voltage Noise
50µV/DIV
TIME = 1s/DIV
Figure 29. ADR445 10 Hz to 10 kHz Voltage Noise
05428-025
CH 1 p-p
2.24µV
05428-026
CH 1 p-p 66µV
05428-027
2
0
–90
–70
–150
–130
–110
–50
103050
–10
–30
DEVIATIO N (ppm)
90
70
110
05428-028
150
130
Figure 30. ADR441 Typical Output Voltage Hysteresis
10
9
8
7
6 5
4
3
OUTPUT IMPEDANCE (Ω)
2 1 0
FREQUENCY (Hz)
ADR445
ADR443
ADR441
100k10k1k10010
05428-029
Figure 31. Output Impedance vs. Frequency
0
–10
–20
–30
TIO (dB)
–40
–50
–60
–70
–80
RIPPLE REJE CTION R
–90
–100
FREQUENCY (Hz)
100k 1M10k1k100
05428-030
Figure 32. Ripple Rejection Ratio vs. Frequency
Rev. E | Page 13 of 20
Page 14
ADR440/ADR441/ADR443/ADR444/ADR445
V

THEORY OF OPERATION

The ADR44x series of references uses a new reference generation technique known as XFET (eXtra implanted junction FET). This technique yields a reference with low dropout, good thermal hysteresis, and exceptionally low noise. The core of the XFET reference consists of two junction field-effect transistors (JFETs), one of which has an extra channel implant to raise its pinch-off voltage. By running the two JFETs at the same drain current, the difference in pinch-off voltage can be amplified and used to form a highly stable voltage reference.
The intrinsic reference voltage is around 0.5 V with a negative temperature coefficient of about –120 ppm/°C. This slope is essentially constant to the dielectric constant of silicon, and it can be closely compensated for by adding a correction term generated in the same fashion as the proportional-to-absolute temperature (PTAT) term used to compensate band gap references. The advantage of an XFET reference is its correction term, which is approximately 20 times lower and requires less correction than that of a band gap reference. Because most of the noise of a band gap reference comes from the temperature compensation circuitry, the XFET results in much lower noise.
Figure 33 shows the basic topology of the ADR44x series. The temperature correction term is provided by a current source with a value designed to be proportional to the absolute temperature. The general equation is
V
= G (VP − R1 × I
OUT
) (1)
PTAT
where: G is the gain of the reciprocal of the divider ratio. ∆V
is the difference in pinch-off voltage between the two JFETs.
P
I
is the positive temperature coefficient correction current.
PTAT
ADR44x devices are created by on-chip adjustment of R2 and R3 to achieve the different voltage options at the reference output.
IN
I
PTAT
I
I
1
1

POWER DISSIPATION CONSIDERATIONS

The ADR44x family of references is guaranteed to deliver load currents to 10 mA with an input voltage that ranges from 3 V to 18 V. When these devices are used in applications at higher currents, use the following equation to account for the temperature effects of increases in power dissipation:
T
= PD × θJA + TA (2)
J
where:
T
and TA are the junction and ambient temperatures,
J
respectively.
P
is the device power dissipation.
D
is the device package thermal resistance.
θ
JA

BASIC VOLTAGE REFERENCE CONNECTIONS

The ADR44x family requires a 0.1 µF capacitor on the input and the output for stability. Although not required for operation, a 10 µF capacitor at the input can help with line voltage transient performance.
ADR440/
TP
1
NC
GND
ADR441/ ADR443/
2
ADR444/
3
ADR445
TOP VIEW
4
(Not to Scale)
V
IN
+
10µF
0.1µF
NOTES
1. NC = NO CONNECT
2. TP = TEST PIN (DO NOT CONNECT)
Figure 34. Basic Voltage Reference Configuration
TP
8
7
NC V
OUT
6
TRIM
5
0.1µF
05428-034

NOISE PERFORMANCE

The noise generated by the ADR44x family of references is typically less than 1.4 µV p-p over the 0.1 Hz to 10.0 Hz band for ADR440, ADR441, and ADR443. Figure 26 shows the 0.1 Hz to 10 Hz noise of the ADR441, which is only 1.2 µV p-p. The noise measurement is made with a band-pass filter composed of a 2pole high-pass filter with a corner frequency at 0.1 Hz and a 2pole low-pass filter with a corner frequency at 10.0 Hz.
ADR44x
*
V
P
R1
V
OUT
R2
R3

TURN-ON TIME

Upon application of power (cold start), the time required for the output voltage to reach its final value within a specified error band is defined as the turn-on settling time. Two compo­nents normally associated with this are the time for the active circuits to settle and the time for the thermal gradients on the
*EXTRA CHANNEL IMPLANT
= G (∆VP – R1 × I
V
OUT
PTAT
)
Figure 33. Simplified Schematic Device
GND
05428-033
chip to stabilize. Figure 20 and Figure 21 show the turn-on and turn-off settling times for the ADR441.
Rev. E | Page 14 of 20
Page 15
ADR440/ADR441/ADR443/ADR444/ADR445
V
V

APPLICATIONS INFORMATION

OUTPUT ADJUSTMENT

The ADR44x family features a TRIM pin that allows the user to adjust the output voltage of the part over a limited range. This allows errors from the reference and overall system errors to be trimmed out by connecting a potentiometer between the output and the ground, with the wiper connected to the TRIM pin. Figure 35 shows the optimal trim configuration. R1 allows fine adjustment of the output and is not always required. R be sufficiently large so that the maximum output current from the ADR44x is not exceeded.
0.1µF
2
V
IN
V
OUT
ADR440/ ADR441/ ADR443/ ADR444/ ADR445
TRIM
GND
4
6
5
R1
100k
0.1µF
R
P
10k R2
1k
VO = ±0.5%
Figure 35. ADR44x Trim Function
Using the trim function has a negligible effect on the temperature performance of the ADR44x. However, all resistors need to be low temperature coefficient resistors, or errors may occur.

BIPOLAR OUTPUTS

By connecting the output of the ADR44x to the inverting ter­minal of an operational amplifier, it is possible to obtain both positive and negative reference voltages. Care must be taken when choosing Resistors R1 and R2 (see Figure 36). These resistors must be matched as closely as possible to ensure mini­mal differences between the negative and positive outputs. In addition, care must be taken to ensure performance over temperature. Use low temperature coefficient resistors if the circuit is used over temperature; otherwise, differences exist between the two outputs.
should
P
05428-035
+
DD
2
V
IN
ADR440/ ADR441/ ADR443/
0.1µF
ADR444/
ADR445
V
OUT
GND
4
6
0.1µF
R3
5k
R1 10k
10k
+10V
–10V
+5V
R2
–5V
05428-036
Figure 36. ADR44x Bipolar Outputs

PROGRAMMABLE VOLTAGE SOURCE

To obtain different voltages than those offered by the ADR44x, some extra components are needed. In Figure 37, two potenti­ometers are used to set the desired voltage and the buffering amplifier provides current drive. The potentiometer connected between V noninverting input of the operational amplifier, takes care of coarse trim. The second potentiometer, with its wiper connected to the trim terminal of the ADR44x, is used for fine adjustment. Resolution depends on the end-to-end resistance value and the resolution of the selected potentiometer.
For a completely programmable solution, replace the two potentiometers in Figure 37 with one Analog Devices dual digital potentiometer, offered with either an SPI or an I interface. These interfaces set the position of the wiper on both potentiometers and allow the output voltage to be set. Ta ble 9 lists compatible Analog Devices digital potentiometers.
and GND, with its wiper connected to the
OUT
+
DD
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/
ADR445
GND
4
6
V
OUT
R1
R2
10k
10k
Figure 37. Programmable Voltage Source
ADJ V
REF
2
C
05428-038
Rev. E | Page 15 of 20
Page 16
ADR440/ADR441/ADR443/ADR444/ADR445
V
V
V
Table 9. Digital Potentiometer Parts
V (V)
1
DD
Part No.
No. of Channels
No. of Positions ITF R (kΩ)
AD5251 2.00 64.00 I2C 1, 10, 50, 100 5.5 AD5207 2.00 256.00 SPI 10, 50, 100 5.5 AD5242 2.00 256.00 I2C 10, 100, 1M 5.5 AD5262 2.00 256.00 SPI 20, 50, 200 15 AD5282 2.00 256.00 I2C 20, 50, 100 15 AD5252 2.00 256.00 I2C 1, 10, 50, 100 5.5 AD5232 2.00 256.00 SPI 10, 50, 100 5.5 AD5235 2.00 1024.00 SPI 25, 250 5.5 ADN2850 2.00 1024.00 SPI 25, 250 5.5
1
Can also use a negative supply.
Adding a negative supply to the operational amplifier allows the user to produce a negative programmable reference by connecting the reference output to the inverting terminal of the operational amplifier. Choose feedback resistors to minimize errors over temperature.

PROGRAMMABLE CURRENT SOURCE

It is possible to build a programmable current source using a setup similar to the programmable voltage source, as shown in Figure 38. The constant voltage on the gate of the transistor sets the current through the load. Varying the voltage on the gate changes the current. This circuit does not require a dual digital potentiometer.
CC
0.1µF
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/
ADR445
V
OUT
6
GND
4
0.1µF
AD5259
Figure 38. Programmable Current Source
I
LOAD
R
SENSE
05428-039

HIGH VOLTAGE FLOATING CURRENT SOURCE

Use the c ircu it in Figure 39 to generate a floating current source with minimal self heating. This particular configuration can operate on high supply voltages, determined by the breakdown voltage of the N-channel JFET.
+
S
SST111
VISHAY
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/
ADR445
V
OUT
6
GND
4
OP90
Figure 39. Floating Current Source
2N3904
–V
S
05428-040

PRECISION OUTPUT REGULATOR (BOOSTED REFERENCE)

IN
C
IN
0.1µF
Higher current drive capability can be obtained without sacrificing accuracy by using the circuit in Figure 40. The operational amplifier regulates the MOSFET turn-on, forcing V
to equal the V
O
increased current drive capability. The circuit allows a 50 mA load; if higher current drive is required, use a larger MOSFET. For fast transient response, add a buffer at V capacitive loading.
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/ ADR445
V
OUT
GND
4
6
C
0.1µF
15V
OUT
–V
Figure 40. Boosted Output Reference
. Current is then drawn from VIN, allowing
REF
to aid with
O
200
2N7002
R
L
C 1µF
V
O
L
5428-041
Rev. E | Page 16 of 20
Page 17
ADR440/ADR441/ADR443/ADR444/ADR445

OUTLINE DIMENSIONS

5.00(0.1968)
4.80(0.1890)
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLYAND ARE NOT APPROPRIATE FOR USE IN DESIGN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-AA
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 41. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
3.20
3.00
2.80
8
5
3.20
3.00
2.80
PIN 1
IDENTIFIER
0.95
0.85
0.75
0.15
0.05
COPLANARITY
1
0.65 BSC
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 42. 8-Lead Mini Small Outline Package [MSOP]
5.15
4.90
4.65
4
15° MAX
6° 0°
0.23
0.09
0.40
0.25
1.10 MAX
(RM-8)
Dimensions show in millimeters
0.80
0.55
0.40
10-07-2009-B
Rev. E | Page 17 of 20
Page 18
ADR440/ADR441/ADR443/ADR444/ADR445

ORDERING GUIDE

Initial
Output
Model1
ADR440ARZ 2.048 3 0.15 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR440ARZ-REEL7 2.048 3 0.15 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR440ARMZ 2.048 3 0.15 10 8-Lead MSOP R01 –40°C to +125°C RM-8 ADR440ARMZ-REEL7 2.048 3 0.15 10 8-Lead MSOP R01 –40°C to +125°C RM-8 ADR440BRZ 2.048 1 0.05 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR440BRZ-REEL7 2.048 1 0.05 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR441ARZ 2.500 3 0.12 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR441ARZ-REEL7 2.500 3 0.12 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR441ARMZ 2.500 3 0.12 10 8-Lead MSOP R02 –40°C to +125°C RM-8 ADR441ARMZ-REEL7 2.500 3 0.12 10 8-Lead MSOP R02 –40°C to +125°C RM-8 ADR441BRZ 2.500 1 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR441BRZ-REEL7 2.500 1 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR443ARZ 3.000 4 0.13 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR443ARZ-REEL7 3.000 4 0.13 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR443ARMZ 3.000 4 0.13 10 8-Lead MSOP R03 –40°C to +125°C RM-8 ADR443ARMZ-REEL7 3.000 4 0.13 10 8-Lead MSOP R03 –40°C to +125°C RM-8 ADR443BRZ 3.000 1.2 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR443BRZ-REEL7 3.000 1.2 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR444ARZ 4.096 5 0.13 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR444ARZ-REEL7 4.096 5 0.13 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR444ARMZ 4.096 5 0.13 10 8-Lead MSOP R04 –40°C to +125°C RM-8 ADR444ARMZ-REEL7 4.096 5 0.13 10 8-Lead MSOP R04 –40°C to +125°C RM-8 ADR444BRZ 4.096 1.6 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR444BRZ-REEL7 4.096 1.6 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR445ARZ 5.000 6 0.12 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR445ARZ-REEL7 5.000 6 0.12 10 8-Lead SOIC_N –40°C to +125°C R-8 ADR445ARMZ 5.000 6 0.12 10 8-Lead MSOP R05 –40°C to +125°C RM-8 ADR445ARMZ-REEL7 5.000 6 0.12 10 8-Lead MSOP R05 –40°C to +125°C RM-8 ADR445BRZ 5.000 2 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8 ADR445BRZ-REEL7 5.000 2 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
1
Z = RoHS Compliant Part.
Voltage (V)
Accuracy
±mV %
Temperature Coefficient Package (ppm/°C)
Package Description Branding
Temperature Range
Package Option
Rev. E | Page 18 of 20
Page 19
ADR440/ADR441/ADR443/ADR444/ADR445
NOTES
Rev. E | Page 19 of 20
Page 20
ADR440/ADR441/ADR443/ADR444/ADR445
NOTES
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05428-0-11/10(E)
Rev. E | Page 20 of 20
Loading...