Datasheet ADR440, ADR441, ADR443, ADR444, ADR445 Datasheet (ANALOG DEVICES)

Ultralow Noise, LDO XFET Voltage
www.BDTIC.com/ADI
References with Current Sink and Source

FEATURES

Ultralow noise (0.1 Hz to 10 Hz)
ADR440: 1 μV p-p ADR441: 1.2 μV p-p ADR443: 1.4 μV p-p ADR444: 1.8 μV p-p ADR445: 2.25 μV p-p
Superb temperature coefficient
A grade: 10 ppm/°C
B grade: 3 ppm/°C Low dropout operation: 500 mV Input range: (V High output source and sink current
+10 mA and −5 mA, respectively Wide temperature range: −40°C to +125°C

APPLICATIONS

Precision data acquisition systems High resolution data converters Battery-powered instrumentation Portable medical instruments Industrial process control systems Precision instruments Optical control circuits
+ 500 mV) to 18 V
OUT
ADR440/ADR441/ADR443/ADR444/ADR445

PIN CONFIGURATIONS

ADR440/
TP
1
ADR441/ ADR443/
V
2
IN
ADR444/
NC
3
ADR445
TOP VIEW
4
GND
(Not to Scale)
NOTES
1. NC = NO CONNECT
2. TP = TEST PIN (DO NOT CONNECT)
Figure 1. 8-Lead SOIC_N (R-Suffix)
ADR440/
1
TP
ADR441/ ADR443/
2
V
IN
ADR444/
NC
3
ADR445
GND
NOTES
1. NC = NO CONNECT
2. TP = TEST PIN (DO NOT CONNECT)
Figure 2. 8-Lead MSOP (RM-Suffix)
TOP VIEW
4
(Not to Scale)
TP
8
NC
7
6
V
OUT
5
TRIM
05428-001
8
TP
7
NC
V
6
OUT
TRIM
5
05428-002

GENERAL DESCRIPTION

The ADR44x series is a family of XFET® voltage references featuring ultralow noise, high accuracy, and low temperature drift performance. Using Analog Devices, Inc., patented temperature drift curvature correction and XFET (eXtra implanted junction FET) technology, voltage change vs. temperature nonlinearity in the ADR44x is greatly minimized.
The XFET references offer better noise performance than
ried Zener references, and XFET references operate off
bu low supply voltage headroom (0.5 V). This combination of features makes the ADR44x family ideally suited for precision signal conversion applications in high-end data acquisition systems, optical networks, and medical applications.
The ADR44x family has the capability to source up to 10 mA of o
utput current and sink up to −5 mA. It also comes with a trim terminal to adjust the output voltage over a 0.5% range without compromising performance.
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Offered in two electrical grades, the ADR44x family is avail­able in 8-lead MSOP and narrow SOIC packages. All versions are specified over the extended industrial temperature range of
−40°C to +125°C.
Table 1. Selection Guide
Model
Output
oltage
V (V)
Initial Accuracy (mV)
Temperature Coefficient (ppm/°C)
ADR440A 2.048 ±3 10 ADR440B 2.048 ±1 3 ADR441A 2.500 ±3 10 ADR441B 2.500 ±1 3 ADR443A 3.000 ±4 10 ADR443B 3.000 ±1.2 3 ADR444A 4.096 ±5 10 ADR444B 4.096 ±1.6 3 ADR445A 5.000 ±6 10 ADR445B 5.000 ±2 3
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005–2008 Analog Devices, Inc. All rights reserved.
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications....................................................................................... 1
Pin Configurations ........................................................................... 1
General Description......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
ADR440 Electrical Characteristics............................................. 3
ADR441 Electrical Characteristics............................................. 4
ADR443 Electrical Characteristics............................................. 5
ADR444 Electrical Characteristics............................................. 6
ADR445 Electrical Characteristics............................................. 7
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Typical Performance Characteristics ............................................. 9
Theory of Operation ...................................................................... 14
Power Dissipation Considerations ........................................... 14
Basic Voltage Reference Connections ..................................... 14
Noise Performance ..................................................................... 14
Tur n -O n Tim e ............................................................................ 14
Applications Information.............................................................. 15
Output Adjustment.................................................................... 15
Bipolar Outputs .......................................................................... 15
Negative Reference ..................................................................... 15
Programmable Voltage Source ................................................. 16
Programmable Current Source ................................................ 16
High Voltage Floating Current Source.................................... 16
Precision Output Regulator (Boosted Reference).................. 17
Outline Dimensions ....................................................................... 18
Ordering Guide .......................................................................... 19

REVISION HISTORY

3/08—Rev. B to Rev. C
Changes to Table 8............................................................................ 8
Change to Figure 11 ....................................................................... 10
Changes to Figure 36...................................................................... 15
Changes to Figure 39...................................................................... 16
Changes to Figure 41...................................................................... 17
Updated Outline Dimensions....................................................... 18
8/07—Rev. A to Rev. B
Change to Table 2, Ripple Rejection Ratio Specification ............ 3
Change to Table 3, Ripple Rejection Ratio Specification ............ 4
Change to Table 4, Ripple Rejection Ratio Specification ............ 5
Change to Table 5, Ripple Rejection Ratio Specification ............ 6
Change to Table 6, Ripple Rejection Ratio Specification ............ 7
9/06—Rev. 0 to Rev. A
Updated Format.................................................................. Universal
Changes to Features ..........................................................................1
Changes to Pin Configurations .......................................................1
Changes to Specifications Section...................................................3
Changes to Figure 4 and Figure 5....................................................9
Inserted Figure 6 and Figure 7.........................................................9
Changes to Figure 15...................................................................... 11
Changes to Power Dissipation Considerations Section ............ 14
Changes to Figure 35 and Figure 36............................................. 15
Changes to Figure 38 and Table 9................................................. 16
Updated Outline Dimensions....................................................... 18
Changes to Ordering Guide.......................................................... 19
10/05—Revision 0: Initial Version
Rev. C | Page 2 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

SPECIFICATIONS

ADR440 ELECTRICAL CHARACTERISTICS

VIN = 3 V to 18 V, TA = 25°C, CIN = C
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE V
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.15 % B Grade 1 mV
0.05 % TEMPERATURE DRIFT TCV
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔV LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT I VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 1 μV p-p VOLTAGE NOISE DENSITY e TURN-ON SETTLING TIME t LONG-TERM STABILITY
1
OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz −80 dB SHORT CIRCUIT TO GND I SUPPLY VOLTAGE OPERATING RANGE V SUPPLY VOLTAGE HEADROOM VIN − V
1
The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
O
OERR
O
LOAD
2.045 2.048 2.051 V
2.047 2.048 2.049 V
3 mV
−40°C < TA < +125°C −20 +10 +20 ppm/V
IN
I
= 0 mA to 10 mA, VIN = 3.5 V,
LOAD
−40°C < T I
LOAD
= 0 mA to −5 mA, VIN = 3.5 V,
LOAD
−40°C < T
IN
V
SC
N
R
O
O_HYS
IN
O
No load, −40°C < TA < +125°C 3 3.75 mA
1 kHz 45 nV/√Hz 10 μs 1000 hours 50 ppm 70 ppm
27 mA 3 18 V 500 mV
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. C | Page 3 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

ADR441 ELECTRICAL CHARACTERISTICS

VIN = 3 V to 18 V, TA = 25°C, CIN = C
Table 3.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE V
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.12 % B Grade 1 mV
0.04 % TEMPERATURE DRIFT TCV
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔV LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT I VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 1.2 μV p-p VOLTAGE NOISE DENSITY e TURN-ON SETTLING TIME t LONG-TERM STABILITY
1
OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz −80 dB SHORT CIRCUIT TO GND I SUPPLY VOLTAGE OPERATING RANGE V SUPPLY VOLTAGE HEADROOM VIN − V
1
The long-term stability specification is noncumulative. The drift in subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
O
OERR
O
LOAD
2.497 2.500 2.503 V
2.499 2.500 2.501 V
3 mV
−40°C < TA < +125°C 10 20 ppm/V
IN
I
= 0 mA to 10 mA, VIN = 4 V,
LOAD
−40°C < T I
LOAD
= 0 mA to −5 mA, VIN = 4 V,
LOAD
−40°C < T
IN
V
SC
N
R
O
O_HYS
IN
O
No load, −40°C < TA < +125°C 3 3.75 mA
1 kHz 48 nV/√Hz 10 μs 1000 hours 50 ppm 70 ppm
27 mA 3 18 V 500 mV
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. C | Page 4 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

ADR443 ELECTRICAL CHARACTERISTICS

VIN = 3.5 V to 18 V, TA = 25°C, CIN = C
Table 4.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE V
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.13 % B Grade 1.2 mV
0.04 % TEMPERATURE DRIFT TCV
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔV LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT I VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 1.4 μV p-p VOLTAGE NOISE DENSITY e TURN-ON SETTLING TIME t LONG-TERM STABILITY
1
OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz −80 dB SHORT CIRCUIT TO GND I SUPPLY VOLTAGE OPERATING RANGE V SUPPLY VOLTAGE HEADROOM VIN − V
1
The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
O
OERR
O
LOAD
2.996 3.000 3.004 V
2.9988 3.000 3.0012 V
4 mV
−40°C < TA < +125°C 10 20 ppm/V
IN
I
= 0 mA to 10 mA, VIN = 5 V,
LOAD
−40°C < T I
LOAD
= 0 mA to −5 mA, VIN = 5 V,
LOAD
−40°C < T
IN
V
SC
N
R
O
O_HYS
IN
O
No load, −40°C < TA < +125°C 3 3.75 mA
1 kHz 57.6 nV/√Hz 10 μs 1000 hours 50 ppm 70 ppm
27 mA
3.5 18 V 500 mV
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. C | Page 5 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

ADR444 ELECTRICAL CHARACTERISTICS

VIN = 4.6 V to 18 V, TA = 25°C, CIN = C
Table 5.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE V
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.13 % B Grade 1.6 mV
0.04 % TEMPERATURE DRIFT TCV
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔV LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT I VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 1.8 μV p-p VOLTAGE NOISE DENSITY e TURN-ON SETTLING TIME t LONG-TERM STABILITY
1
OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz −80 dB SHORT CIRCUIT TO GND I SUPPLY VOLTAGE OPERATING RANGE V SUPPLY VOLTAGE HEADROOM VIN − V
1
The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
O
OERR
O
4.091 4.096 4.101 V
4.0944 4.096 4.0976 V
5 mV
−40°C < TA < +125°C 10 20 ppm/V
IN
I
LOAD
= 0 mA to 10 mA, VIN = 5.5 V,
LOAD
−40°C < T I
LOAD
= 0 mA to −5 mA, VIN = 5.5 V,
LOAD
−40°C < T
IN
V
SC
N
R
O
O_HYS
IN
O
No load, −40°C < TA < +125°C 3 3.75 mA
1 kHz 78.6 nV/√Hz 10 μs 1000 hours 50 ppm 70 ppm
27 mA
4.6 18 V 500 mV
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. C | Page 6 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

ADR445 ELECTRICAL CHARACTERISTICS

VIN = 5.5 V to 18 V, TA = 25°C, CIN = C
Table 6.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE V
A Grade B Grade
INITIAL ACCURACY V
A Grade
0.12 % B Grade 2 mV
0.04 % TEMPERATURE DRIFT TCV
A Grade −40°C < TA < +125°C 2 10 ppm/°C
B Grade −40°C < TA < +125°C 1 3 ppm/°C LINE REGULATION ΔVO/ΔV LOAD REGULATION ΔVO/ΔI
ΔVO/ΔI
QUIESCENT CURRENT I VOLTAGE NOISE eN p-p 0.1 Hz to 10 Hz 2.25 μV p-p VOLTAGE NOISE DENSITY e TURN-ON SETTLING TIME t LONG-TERM STABILITY
1
OUTPUT VOLTAGE HYSTERESIS V RIPPLE REJECTION RATIO RRR fIN = 1 kHz –80 dB SHORT CIRCUIT TO GND I SUPPLY VOLTAGE OPERATING RANGE V SUPPLY VOLTAGE HEADROOM VIN − V
1
The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.
= 0.1 µF, unless otherwise noted.
OUT
O
OERR
O
LOAD
4.994 5.000 5.006 V
4.998 5.000 5.002 V
6 mV
−40°C < TA < +125°C 10 20 ppm/V
IN
I
= 0 mA to 10 mA, VIN = 6.5 V,
LOAD
−40°C < T I
LOAD
= 0 mA to −5 mA, VIN = 6.5 V,
LOAD
−40°C < T
IN
V
SC
N
R
O
O_HYS
IN
O
No load, −40°C < TA < +125°C 3 3.75 mA
1 kHz 90 nV/√Hz 10 μs 1000 hours 50 ppm 70 ppm
27 mA
5.5 18 V 500 mV
< +125°C
A
< +125°C
A
−50 +50 ppm/mA
−50 +50 ppm/mA
Rev. C | Page 7 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 7.
Parameter Rating
Supply Voltage 20 V Output Short-Circuit Duration to GND Indefinite Storage Temperature Range −65°C to +125°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Temperature, Soldering (60 sec) 300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 8. Thermal Resistance
Package Type θ
8-Lead SOIC (R-Suffix) 130 43 °C/W 8-Lead MSOP (RM-Suffix) 132.5 43.9 °C/W
θ
JA
Unit
JC

ESD CAUTION

Rev. C | Page 8 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
T
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

VIN = 7 V, TA = 25°C, CIN = C
2.051
= 0.1 µF, unless otherwise noted.
OUT
4.0980
2.050
2.049
2.048
2.047
OUTPUT VOLTAGE (V)
2.046
2.045 –40 –20 0 20 100806040 120
TEMPERATURE (°C)
Figure 3. ADR440 Output Voltage vs. Temperature
2.5020
2.5015
2.5010
AGE (V)
2.5005
2.5000
OUTPUT VOL
2.4995
4.0975
4.0970
4.0965
4.0960
4.0955
OUTPUT VOLTAGE (V)
4.0950
4.0945
05428-042
4.0940 –40 5–10–25 503520 110958065 125
DEVICE 1
DEVICE 3
TEMPERATURE (°C)
DEVICE 2
05428-005
Figure 6. ADR444 Output Voltage vs. Temperature
5.006
5.004
5.002
5.000
4.998
OUTPUT VOLTAGE (V)
4.996
2.4990 –40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 4. ADR441 Output Voltage vs. Temperature
3.0020
3.0015
3.0010
3.0005
3.0000
2.9995
OUTPUT VOLTAGE (V)
2.9990
2.9985
2.9980 –40 5–10–25 503520 110958065 125
DEVICE 1
DEVICE 2
DEVICE 3
TEMPERATURE (°C)
Figure 5. ADR443 Output Voltage vs. Temperature
05428-003
05428-004
Rev. C | Page 9 of 20
4.994 –40 –20 0 20 100806040 120
TEMPERATURE (°C)
Figure 7. ADR445 Output Voltage vs. Temperature
4.0
3.5
3.0
SUPPLY CURRENT (mA)
2.5
2.0 46 10811412 18
INPUT VOLTAGE (V)
+25°C
–40°C
Figure 8. ADR441 Supply Current vs. Input Vo
05428-043
+125°C
6
05428-006
ltage
ADR440/ADR441/ADR443/ADR444/ADR445
A
A
www.BDTIC.com/ADI
4.0
10
3.5
3.0
SUPPLY CURRENT (mA)
2.5
2.0 –40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 9. ADR441 Supply Current vs. Temperature
3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8
SUPPLY CURRENT (mA)
2.7
2.6
2.5
5.3 9.37.3 13.311.3 17.315.3 19.3
INPUT VOLTAGE (V)
+125°C
+25°C
–40°C
Figure 10. ADR445 Supply Current vs. Input Voltage
8
6
TION (ppm/V)
4
LINE REGUL
2
05428-007
0
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
05428-010
Figure 12. ADR441 Line Regulation vs. Temperature
60
I
= 0mA TO 10mA
LOAD
55
VIN = 18V
50
TION (ppm/mA)
45
VIN = 6V
40
LOAD REGUL
35
05428-008
30
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
05428-011
Figure 13. ADR441 Load Regulation vs. Temperature
3.25
3.15
3.05
2.95
SUPPLY CURRENT (mA)
2.85
2.75 –40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 11. ADR445 Supply Current vs. Temperature
05428-009
Rev. C | Page 10 of 20
7
6
5
4
3
2
LINE REGULATION (ppm/V)
1
0
–40 5–10–25 503520 110958065 125
TEMPERATURE (° C)
Figure 14. ADR445 Line Regulation vs. Temperature
05428-012
ADR440/ADR441/ADR443/ADR444/ADR445
A
A
A
www.BDTIC.com/ADI
50
VIN = 6V
40
30
20
10
TION (ppm/mA)
–10
–20
LOAD REGUL
–30
–40
–50
I
= 0mA TO +10mA
LOAD
0
I
= 0mA TO –5mA
LOAD
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
Figure 15. ADR445 Load Regulation vs. Temperature
05428-013
1.0
0.9
0.8
0.7
0.6
L VOLTAGE (V)
0.5
0.4
0.3
DIFFERENTI
0.2
0.1
0
–5 0 5 10
LOAD CURRENT (mA)
+125°C
Figure 18. ADR445 Minimum Input/Output
ferential Voltage vs. Load Current
Dif
+25°C
–40°C
05428-016
0.7
0.6
0.5
0.4
L VOLTAGE (V)
0.3
0.2
DIFFERENTI
0.1
0
–10 –5 0 5 10
LOAD CURRENT (mA)
+125°C
+25°C
Figure 16. ADR441 Minimum Input/Output
ferential Voltage vs. Load Current
Dif
0.5
NO LOAD
0.4
0.3
0.2
–40°C
0.5
NO LOAD
0.4
0.3
0.2
MINIMUM HEADROOM (V)
0.1
05428-014
0
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
05428-017
Figure 19. ADR445 Minimum Headroom vs. Temperature
CIN = C
OUT
VIN = 5V/DIV
= 0.1µF
MINIMUM HEADROOM (V)
0.1
0
–40 5–10–25 503520 110958065 125
TEMPERATURE (°C)
05428-015
Figure 17. ADR441 Minimum Headroom vs. Temperature
Rev. C | Page 11 of 20
V
= 1V/DIV
OUT
Figure 20. ADR441 Turn-On Response
TIME = 10µs/DIV
05428-018
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI
CIN = C
= 0.1µF
OUT
TIME = 200µs/DIV
Figure 21. ADR441 Turn-Off Response
CIN = 0.1µF
= 10µF
C
OUT
VIN = 5V/DIV
V
= 1V/DIV
OUT
VIN = 5V/DIV
V
= 1V/DIV
OUT
CIN = 0.1µF
= 10µF
C
OUT
LOAD OFF
05428-019
TIME = 200µ s/DIV
LOAD ON
5mV/DIV
05428-023
Figure 24. ADR441 Load Transient Response
CIN = C
= 0.1µF
OUT
LOAD OFF LOAD ON
5mV/DIV
Figure 22. ADR441 Turn-On Response
CIN = 0.1µF C
= 10µF
OUT
4V
Figure 23. ADR441 Line Tr
TIME = 200µ s/DIV
2V/DIV
2mV/DIV
TIME = 100µs/DIV
ansient Response
05428-020
TIME = 200µs/DIV
05428-022
Figure 25. ADR441 Load Transient Response
1µV/DIV
CH 1 p-p
1.18µV
TIME = 1s/DIV
05428-021
05428-024
Figure 26. ADR441 0.1 Hz to 10.0 Hz Voltage Noise
Rev. C | Page 12 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
A
www.BDTIC.com/ADI
16
14
12
50µV/DIV
CH 1 p-p 49µV
10
8
6
NUMBER OF PARTS
4
TIME = 1s/ DIV
Figure 27. ADR441 10 Hz to 10 kHz Voltage Noise
1µV/DIV
TIME = 1s/ DIV
Figure 28. ADR445 0.1 Hz to 10.0 Hz Voltage Noise
50µV/DIV
TIME = 1s/ DIV
Figure 29. ADR445 10 Hz to 10 kHz Voltage Noise
05428-025
CH 1 p-p
2.24µV
05428-026
CH 1 p-p 66µV
05428-027
2
0
–150
–130
–110
–90
–30
–70
–50
DEVIATIO N (ppm)
Figure 30. ADR441 Typical Output V
10
9
8
7
6
5
4
3
OUTPUT IMPEDANCE (Ω)
2
1
0
FREQUENCY ( Hz)
Figure 31. Output Imped
0
–10
–20
–30
TIO (dB)
–40
–50
–60
–70
–80
RIPPLE REJECTION R
–90
–100
FREQUENCY ( Hz)
103050
–10
oltage Hysteresis
ADR443
ance vs. Frequency
90
70
ADR445
100k 1M10k1k100
110
130
ADR441
100k10k1k10010
05428-028
150
05428-029
05428-030
Figure 32. Ripple Rejection Ratio vs. Frequency
Rev. C | Page 13 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
V
www.BDTIC.com/ADI

THEORY OF OPERATION

The ADR44x series of references uses a new reference generation technique known as XFET (eXtra implanted junction FET). This technique yields a reference with low dropout, good thermal hysteresis, and exceptionally low noise. The core of the XFET reference consists of two junction field-effect transistors (JFETs), one of which has an extra channel implant to raise its pinch-off voltage. By running the two JFETs at the same drain current, the difference in pinch-off voltage can be amplified and used to form a highly stable voltage reference.
The intrinsic reference voltage is around 0.5 V with a negative t
emperature coefficient of about –120 ppm/°C. This slope is essentially constant to the dielectric constant of silicon, and it can be closely compensated for by adding a correction term generated in the same fashion as the proportional-to-absolute temperature (PTAT) term used to compensate band gap references. The advantage of an XFET reference is its correction term, which is approximately 20 times lower and requires less correction than that of a band gap reference. Because most of the noise of a band gap reference comes from the temperature compensation circuitry, the XFET results in much lower noise.
Figure 33 shows the basic topology of the ADR44x series. The
emperature correction term is provided by a current source with
t a value designed to be proportional to the absolute temperature. The general equation is
= G (VP − R1 × I
V
OUT
) (1)
PTAT
where: G i
s the gain of the reciprocal of the divider ratio.
V
is the difference in pinch-off voltage between the two JFETs.
P
I
is the positive temperature coefficient correction current.
PTAT
ADR44x devices are created by on-chip adjustment of R2 and R3 t
o achieve the different voltage options at the
reference output.
IN
I
PTAT
I
I
1
1

POWER DISSIPATION CONSIDERATIONS

The ADR44x family of references is guaranteed to deliver load currents to 10 mA with an input voltage that ranges from 3 V to 18 V. When these devices are used in applications at higher currents, use the following equation to account for the temperature effects of increases in power dissipation:
= PD × θJA + TA (2)
T
J
where:
T
and TA are the junction and ambient temperatures,
J
respectively.
P
is the device power dissipation.
D
is the device package thermal resistance.
θ
JA

BASIC VOLTAGE REFERENCE CONNECTIONS

The ADR44x family requires a 0.1 µF capacitor on the input and the output for stability. Although not required for operation, a 10 µF capacitor at the input can help with line voltage transient performance.
ADR440/
TP
1
NC
GND
ADR441/ ADR443/
2
ADR444/
3
ADR445
TOP VIEW
4
(Not to Scale)
V
IN
+
10µF
0.1µF
NOTES
1. NC = NO CONNECT
2. TP = TEST PIN (DO NOT CONNECT)
Figure 34. Basic Voltage Reference Configuration
TP
8
7
NC
V
OUT
6
TRIM
5
0.1µF
05428-034

NOISE PERFORMANCE

The noise generated by the ADR44x family of references is typically less than 1.4 µV p-p over the 0.1 Hz to 10.0 Hz band for ADR440, ADR441, and ADR443. Figure 26 shows the 0.1 Hz
o 10 Hz noise of the ADR441, which is only 1.2 µV p-p. The
t noise measurement is made with a band-pass filter composed of a 2pole high-pass filter with a corner frequency at 0.1 Hz and a 2pole low-pass filter with a corner frequency at 10.0 Hz.
R2
R3
GND
V
OUT
05428-033
ADR44x
*
ΔV
P
R1
*EXTRA CHANNEL IMP LANT
V
= G (ΔVP – R1 × I
OUT
Figure 33. Simplified Schematic Device
PTAT
)
Rev. C | Page 14 of 20

TURN-ON TIME

Upon application of power (cold start), the time required for the output voltage to reach its final value within a specified error band is defined as the turn-on settling time. Two compo­nents normally associated with this are the time for the active circuits to settle and the time for the thermal gradients on the chip to stabilize. t
urn-off settling times for the ADR441.
Figure 20 and Figure 21 show the turn-on and
ADR440/ADR441/ADR443/ADR444/ADR445
V
V
www.BDTIC.com/ADI

APPLICATIONS INFORMATION

OUTPUT ADJUSTMENT

The ADR44x family features a TRIM pin that allows the user to adjust the output voltage of the part over a limited range. This allows errors from the reference and overall system errors to be trimmed out by connecting a potentiometer between the output and the ground, with the wiper connected to the TRIM pin. Figure 35 shows the optimal trim configuration. R1 allows fine ad
justment of the output and is not always required. R be sufficiently large so that the maximum output current from the ADR44x is not exceeded.
0.1µF
2
V
IN
V
OUT
ADR440/ ADR441/ ADR443/ ADR444/ ADR445
TRIM
GND
4
6
5
R1
100k
0.1µF
R
P
10k
R2 1k
VO = ±0.5%
Figure 35. ADR44x Trim Function
Using the trim function has a negligible effect on the temperature performance of the ADR44x. However, all resistors need to be low temperature coefficient resistors, or errors may occur.

BIPOLAR OUTPUTS

By connecting the output of the ADR44x to the inverting ter­minal of an operational amplifier, it is possible to obtain both positive and negative reference voltages. Care must be taken when choosing Resistors R1 and R2 (see Figure 36). These r
esistors must be matched as closely as possible to ensure mini­mal differences between the negative and positive outputs. In addition, care must be taken to ensure performance over temperature. Use low temperature coefficient resistors if the circuit is used over temperature; otherwise, differences exist between the two outputs.
should
P
05428-035
+
DD
2
V
IN
ADR440/ ADR441/ ADR443/
0.1µF
ADR444/
ADR445
V
OUT
GND
4
6
0.1µF
R3
5k
R1 10k
10k
+10V
–10V
+5V
R2
–5V
05428-036
Figure 36. ADR44x Bipolar Outputs

NEGATIVE REFERENCE

Figure 37 shows how to connect the ADR44x and a standard operational amplifier, such as the OP1177, to provide negative
oltage. This configuration provides two main advantages. First,
v it only requires two devices; therefore, it does not require excessive board space. Second, and more importantly, it does not require any external resistors. This means the performance of this circuit does not rely on choosing low temperature coefficient resistors to ensure accuracy.
+
DD
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/
ADR445
6
V
OUT
GND
4
–V
REF
–V
DD
Figure 37. ADR44x N
V
is at virtual ground, and the negative reference is taken
OUT
egative Reference
directly from the output of the operational amplifier. If the negative supply voltage is close to the reference output, the operational amplifier must be dual supply and have low offset and rail-to-rail capability.
05428-037
Rev. C | Page 15 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
V
V
V
www.BDTIC.com/ADI

PROGRAMMABLE VOLTAGE SOURCE

To obtain different voltages than those offered by the ADR44x, some extra components are needed. In Figure 38, two potenti-
meters are used to set the desired voltage and the buffering
o amplifier provides current drive. The potentiometer connected between V noninverting input of the operational amplifier, takes care of coarse trim. The second potentiometer, with its wiper connected to the trim terminal of the ADR44x, is used for fine adjustment. Resolution depends on the end-to-end resistance value and the resolution of the selected potentiometer.
For a completely programmable solution, replace the two potentiometers in Figure 38 with one Analog Devices dual dig
ital potentiometer, offered with either an SPI or an I interface. These interfaces set the position of the wiper on both potentiometers and allow the output voltage to be set.
ts compatible Analog Devices digital potentiometers.
lis
Table 9. Digital Potentiometer Parts
Part No.
AD5251 2.00 64.00 I2C 1, 10, 50, 100 5.5 AD5207 2.00 256.00 SPI 10, 50, 100 5.5 AD5242 2.00 256.00 I2C 10, 100, 1M 5.5 AD5262 2.00 256.00 SPI 20, 50, 200 15 AD5282 2.00 256.00 I2C 20, 50, 100 15 AD5252 2.00 256.00 I2C 1, 10, 50, 100 5.5 AD5232 2.00 256.00 SPI 10, 50, 100 5.5 AD5235 2.00 1024.00 SPI 25, 250 5.5 ADN2850 2.00 1024.00 SPI 25, 250 5.5
1
Can also use a negative supply.
Adding a negative supply to the operational amplifier allows the user to produce a negative programmable reference by connecting the reference output to the inverting terminal of the operational amplifier. Choose feedback resistors to minimize errors over temperature.
and GND, with its wiper connected to the
OUT
+
DD
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/
ADR445
GND
6
V
OUT
R2
R1
10k
4
10k
Figure 38. Programmable Voltage Source
No. of Channels
No. of P
ositions ITF R (kΩ)
ADJ V
REF
05428-038
2
Table 9
V
DD
(V)
1

PROGRAMMABLE CURRENT SOURCE

It is possible to build a programmable current source using a setup similar to the programmable voltage source, as shown in Figure 39. The constant voltage on the gate of the transistor sets t
he current through the load. Varying the voltage on the gate changes the current. This circuit does not require a dual digital potentiometer.
CC
0.1µF
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/ ADR445
V
OUT
6
GND
4
0.1µF
AD5259
Figure 39. Programmable Current Source
I
LOAD
R
SENSE

HIGH VOLTAGE FLOATING CURRENT SOURCE

Use the c ircu it in Figure 40 to generate a floating current source with minimal self heating. This particular configuration can operate on high supply voltages, determined by the breakdown voltage of the N-channel JFET.
+
S
SST 111
VISHAY
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/
ADR445
V
OUT
6
GND
4
OP90
Figure 40. Floating Current Source
2N3904
–V
S
05428-040
05428-039
Rev. C | Page 16 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
V
www.BDTIC.com/ADI

PRECISION OUTPUT REGULATOR (BOOSTED REFERENCE)

IN
C
IN
0.1µF
Higher current drive capability can be obtained without sacrificing accuracy by using the circuit in Figure 41. The o
perational amplifier regulates the MOSFET turn-on, forcing
V
to equal the V
O
increased current drive capability. The circuit allows a 50 mA load; if higher current drive is required, use a larger MOSFET. For fast transient response, add a buffer at V capacitive loading.
2
V
IN
ADR440/ ADR441/ ADR443/ ADR444/
ADR445
V
OUT
GND
4
6
C
0.1µF
15V
OUT
–V
Figure 41. Boosted Output Reference
. Current is then drawn from VIN, allowing
REF
O
2N7002
R
L
200
to aid with
C 1µF
V
L
O
5428-041
Rev. C | Page 17 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLL ING DIMENSI ONS ARE IN MILLIME TERS; INCH DIM ENSIONS (IN PARENTHESES) ARE ROUNDED-OF F MILLIMETER E QUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRI ATE FOR USE IN DESI GN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-A A
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
Figure 42. 8-Lead Standard Small Outline Package [SOIC_N]
Nar
row Body
(R-8)
Dimensions shown in millimeters and (inches)
3.20
3.00
2.80
8
5
4
SEATING PLANE
5.15
4.90
4.65
1.10 MAX
0.23
0.08
8° 0°
3.20
3.00
2.80
PIN 1
0.95
0.85
0.75
0.15
0.00
COPLANARITY
1
0.65 BSC
0.38
0.22
0.10
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
0.80
0.60
0.40
45°
012407-A
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 43. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dim
ensions show in millimeters
Rev. C | Page 18 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI

ORDERING GUIDE

Initial
Accuracy
±mV %
Model
ADR440ARZ
1
ADR440ARZ-REEL7 ADR440ARMZ
1
Output V
oltage (V)
2.048 3 0.15 10 8-Lead SOIC_N –40°C to +125°C R-8
1
2.048 3 0.15 10 8-Lead SOIC_N –40°C to +125°C R-8
2.048 3 0.15 10 8-Lead MSOP R01 –40°C to +125°C RM-8 ADR440ARMZ-REEL712.048 3 0.15 10 8-Lead MSOP R01 –40°C to +125°C RM-8 ADR440BRZ ADR440BRZ-REEL7 ADR441ARZ ADR441ARZ-REEL7 ADR441ARMZ
1
1
1
2.048 1 0.05 3 8-Lead SOIC_N –40°C to +125°C R-8
1
2.048 1 0.05 3 8-Lead SOIC_N –40°C to +125°C R-8
2.500 3 0.12 10 8-Lead SOIC_N –40°C to +125°C R-8
1
2.500 3 0.12 10 8-Lead SOIC_N –40°C to +125°C R-8
2.500 3 0.12 10 8-Lead MSOP R02 –40°C to +125°C RM-8 ADR441ARMZ-REEL712.500 3 0.12 10 8-Lead MSOP R02 –40°C to +125°C RM-8 ADR441BRZ ADR441BRZ-REEL7 ADR443ARZ ADR443ARZ-REEL7 ADR443ARMZ
1
1
1
2.500 1 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
1
2.500 1 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
3.000 4 0.13 10 8-Lead SOIC_N –40°C to +125°C R-8
1
3.000 4 0.13 10 8-Lead SOIC_N –40°C to +125°C R-8
3.000 4 0.13 10 8-Lead MSOP R03 –40°C to +125°C RM-8 ADR443ARMZ-REEL713.000 4 0.13 10 8-Lead MSOP R03 –40°C to +125°C RM-8 ADR443BRZ ADR443BRZ-REEL7 ADR444ARZ ADR444ARZ-REEL7 ADR444ARMZ
1
1
1
3.000 1.2 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
1
3.000 1.2 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
4.096 5 0.13 10 8-Lead SOIC_N –40°C to +125°C R-8
1
4.096 5 0.13 10 8-Lead SOIC_N –40°C to +125°C R-8
4.096 5 0.13 10 8-Lead MSOP R04 –40°C to +125°C RM-8 ADR444ARMZ-REEL714.096 5 0.13 10 8-Lead MSOP R04 –40°C to +125°C RM-8 ADR444BRZ ADR444BRZ-REEL7 ADR445ARZ ADR445ARZ-REEL7 ADR445ARMZ
1
1
1
4.096 1.6 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
1
4.096 1.6 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
5.000 6 0.12 10 8-Lead SOIC_N –40°C to +125°C R-8
1
5.000 6 0.12 10 8-Lead SOIC_N –40°C to +125°C R-8
5.000 6 0.12 10 8-Lead MSOP R05 –40°C to +125°C RM-8 ADR445ARMZ-REEL715.000 6 0.12 10 8-Lead MSOP R05 –40°C to +125°C RM-8 ADR445BRZ ADR445BRZ-REEL7
1
Z = RoHS Compliant Part.
1
5.000 2 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
1
5.000 2 0.04 3 8-Lead SOIC_N –40°C to +125°C R-8
Temperature C
oefficient
Package (ppm/°C)
Package Description Branding
Temperature Ra
nge
Package Option
Rev. C | Page 19 of 20
ADR440/ADR441/ADR443/ADR444/ADR445
www.BDTIC.com/ADI
NOTES
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent Rights to use these components in an I
©2005–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05428-0-3/08(C)
2
C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
Rev. C | Page 20 of 20
Loading...