Analog Devices ADP3405ARU Datasheet

a
GSM Power Management System
ADP3405
FEATURES Handles all GSM Baseband Power Management
Functions Four LDOs Optimized for Specific GSM Subsystems Charges Li-Mn Coin Cell for Real-Time Clock Charge Pump and Logic Level Translators for 3 V and 5 V
GSM SIM Modules Narrow Body 4.4 mm 28-Lead TSSOP Package
APPLICATIONS GSM/DCS/PCS Handsets TeleMatic Systems ICO/Iridium Terminals
GENERAL DESCRIPTION
The ADP3405 is a multifunction power management system IC optimized for GSM cell phones. The wide input voltage range of
3.0 V to 7.0 V makes the ADP3405 ideal for both single cell Li-Ion and three cell NiMH designs. The current consumption of the ADP3405 has been optimized for maximum battery life, featuring a ground current of only 150 µA when the phone is in standby (digital LDO, and SIM card supply active). An undervoltage lock­out (UVLO) prevents the startup when there is not enough energy in the battery. All four integrated LDOs are optimized to power one of the critical sub-blocks of the phone. Their novel anyCAP
®
architecture requires only very small output capacitors for stability, and the LDOs are insensitive to the capacitors’ equivalent series resistance (ESR). This makes them stable with any capacitor, including ceramic (MLCC) types for space-restricted applications.
A step-up converter is implemented to supply both the SIM module and the level translation circuitry to adapt logic signals for 3 V and 5 V SIM modules. Sophisticated controls are avail­able for power-up during battery charging, keypad interface, and charging of an auxiliary backup battery for the real-time clock. These allow an easy interface between ADP3405, GSM proces­sor, charger, and keypad. Furthermore, a reset circuit and a thermal shutdown function have been implemented to support reliable system design.
PWRONKEY
ROWX
PWRONIN
ANALOGON
RESCAP
CHRON
SIMBAT
CAP+
CAP
SIMPROG
SIMON
SIMGND
RESETIN
CLKIN
DATAIO
FUNCTIONAL BLOCK DIAGRAM
VBAT
ADP3405
DIGITAL
LDO
RTC LDO
POWER-UP
SEQUENCING
AND
PROTECTION
LOGIC
CHARGE
PUMP
LOGIC LEVEL
TRANSLATION
I/O
REF
RSTCLK
+
XTAL OSC
LDO
ANALOG
LDO
BUFFER
VCC
RESET
VRTC
VTCXO
VCCA
VSIM
REFOUT
DGND
AGND
anyCAP is a registered trademark of Analog Devices, Inc.
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site:www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2001
ADP3405–SPECIFICATIONS
(–20C ≤ TA ≤ +85C, VBAT = 3 V to 7 V, C C
VRTC
= 0.1 F, C
= 0.22 F, C
VTCXO
= C
= C
VBAT
SIMBAT
= 0.1 F, min. loads applied on all outputs, unless
VCAP
= 10 F, C
VSIM
VCC
= C
VCCA
= 2.2 F,
otherwise noted.)
ELECTRICAL CHARACTERISTICS
1
Parameter Symbol Conditions Min Typ Max Unit
SHUTDOWN SUPPLY CURRENT I
BAT
VBAT = Low (UVLO Low) VBAT = 2.7 V 3 20 µA VBAT = High (UVLO High) VBAT = 3.6 V, VRTC On 12 30 µA
OPERATING GROUND CURRENT I
GND
VCC and VRTC On Minimum Loads, VBAT = 3.6 V 100 140 µA VCC, VRTC and VSIM On Minimum Loads, VBAT All LDOs and VSIM On Minimum Loads, VBAT
= 3.6 V 150 240 µA = 3.6 V 260 400 µA
All LDOs and VSIM On Maximum Loads, VBAT = 3.6 V 15 mA
UVLO CHARACTERISTICS
UVLO On Threshold VBAT
UVLO
3.2 3.3 V
UVLO Hysteresis 200 mV
INPUT CHARACTERISTICS
Input High Voltage V
IH
PWRONIN and ANALOGON 2 V PWRONKEY 0.7 VBAT V Input Low Voltage V
IL
PWRONIN and ANALOGON 0.4 V PWRONKEY 0.3 VBAT V
PWRONKEY INPUT PULL-UP
RESISTANCE TO VBAT 15 20 25 k
CHRON CHARACTERISTICS
CHRON Threshold V CHRON Hysteresis Resistance R CHRON Input Bias Current I
T
IN
B
2.38 < CHRON < V CHRON > V
T
T
2.38 2.48 2.58 V 108 125 138 k
0.5 µA
ROWX CHARACTERISTICS
ROWX Output Low Voltage V
ROWX Output High Leakage I
OL
IH
PWRONKEY = Low 0.4 V I
= 200 µA
OL
PWRONKEY = High 1 µA
Current V(ROWX) = 5 V
SHUTDOWN
Thermal Shutdown Threshold
2
Junction Temperature 160 ºC
Thermal Shutdown Hysteresis Junction Temperature 35 ºC
DIGITAL LDO (VCC)
Output Voltage VCC Line, Load, Temp 2.710 2.765 2.820 V Line Regulation DVCC 3 V < VBAT < 7 V, Min Load 2 mV Load Regulation DVCC 50 µA < I
Output Capacitor
3
Dropout Voltage V
C
O
DO
VBAT = 3.6 V
VO = V I
= 100 mA
LOAD
< 100 mA, 15 mV
LOAD
2.2 µF
– 100 mV 215 mV
INITIAL
ANALOG LDO (VCCA)
Output Voltage VCCA Line, Load, Temp 2.710 2.765 2.820 V Line Regulation DVCCA 3 V < VBAT < 7 V, Min Load 2 mV Load Regulation DVCCA 200 µA < I
Output Capacitor
3
Dropout Voltage V
C
O
DO
VBAT = 3.6 V
VO = V
INITIAL
= 130 mA
I
LOAD
< 130 mA, 15 mV
LOAD
2.2 µF
– 100 mV 215 mV
Ripple Rejection DVBAT/ f = 217 Hz (t = 4.6 ms) 65 70 dB
DVCCA VBAT = 3.6 V
Output Noise Voltage V
NOISE
f = 10 Hz to 100 kHz 75 µV rms I
= 130 mA, VBAT = 3.6 V
LOAD
–2–
REV. 0
ADP3405
Parameter Symbol Conditions Min Typ Max Unit
CRYSTAL OSCILLATOR LDO (VTCXO)
Output Voltage VTCXO Line, Load, Temp 2.710 2.765 2.820 V Line Regulation VTCXO 3 V < VBAT < 7 V, Min Load 2 mV Load Regulation ∆VTCXO 100 µA < I
Output Capacitor
3
Dropout Voltage V
C
O
DO
VBAT = 3.6 V
VO = V
INITIAL
I
= 5 mA
LOAD
Ripple Rejection VBAT/ f = 217 Hz (t = 4.6 ms), 65 72 dB
VTCXO VBAT = 3.6 V
Output Noise Voltage V
NOISE
f = 10 Hz to 100 kHz 80 µV rms I
= 5 mA, VBAT = 3.6 V
LOAD
VOLTAGE REFERENCE (REFOUT)
Output Voltage V Line Regulation ∆V
REFOUT
REFOUT
Line, Load, Temp 1.192 1.210 1.228 V 3 V < VBAT < 7 V, Min Load 2 mV
< 5 mA, 1 mV
LOAD
0.22 µF
– 100 mV 150 mV
Load Regulation ∆V
REFOUT
0 µA < I
< 50 µA, 0.5 mV
LOAD
VBAT = 3.6 V
Ripple Rejection VBAT/ f = 217 Hz (t = 4.6 ms), 65 75 dB
VBAT = 3.6 V
100 pF
f = 10 Hz to 100 kHz 40 µV rms
Maximum Capacitive Load C Output Noise Voltage V
V
O
NOISE
REFOUT
VBAT = 3.6 V
REAL-TIME CLOCK LDO/ BATTERY CHARGER (VRTC)
Maximum Output Voltage VRTC I Current Limit I Off Reverse Leakage
Current
Dropout Voltage V
MAX
I
L
DO
10 µA 2.810 2.850 2.890 V
LOAD
3.050 V < VBAT < 7 V 175 µA
2.0 V < VBAT < UVLO 1 µA VO = V I
LOAD
= 10 µA
– 10 mV 170 mV
INITIAL
SIM CHARGE PUMP (VSIM)
Output Voltage for 5 V SIM Modules VSIM 0 mA ≤ I
10 mA 4.70 5.00 5.30 V
LOAD
SIMPROG = High
Output Voltage for 3 V SIM Modules VSIM 0 mA ≤ I
6 mA 2.82 3.00 3.18 V
LOAD
SIMPROG = Low
GSM/SIM LOGIC TRANSLATION (GSM INTERFACE)
Input High Voltage (SIMPROG, SIMON, V
IH
VCC – 0.6 V RESETIN, CLKIN) Input Low Voltage (SIMPROG, SIMON, V
IL
0.6 V RESETIN, CLKIN) DATAIO V
DATAIO Pull-Up Resistance to VCC R
IL
V
, V
IH
OH
I
IL
V
OL
IN
VOL(I/O) = 0.4 V, 0.230 V I
(I/O) = 1 mA
OL
V
(I/O) = 0.4 V, 0.335 V
OL
(I/O ) = 0 mA
I
OL
IIH, IOH = ±10 µA VCC – 0.4 V VIL = 0 V –0.9 mA VIL (I/O) = 0.4 V 0.420 V
16 20 24 k
–3–REV. 0
ADP3405
Parameter Symbol Conditions Min Typ Max Unit
SIM INTERFACE
VSIM = 5 V RST V RST V CLK V CLK V I/O V I/O V I/O I I/O V
OL
OH
OL
OH
IL
, V
IH
OH
IL
OL
VSIM = 3 V RST V RST V CLK V CLK V I/O V I/O V I/O I I/O V
I/O Pull-Up Resistance to VSIM R Max Frequency (CLK) f Prop Delay (CLK) t Output Rise/Fall Times (CLK) t Output Rise/Fall Times (I/O, RST) t
OL
OH
OL
OH
IL
IH
IL
OL
IN
MAX
D
, t
R
, t
R
, V
F
F
OH
Duty Cycle (CLK) D D CLKIN = 50% 47 53 %
RESET GENERATOR (RESET)
Output High Voltage V Output Low Voltage V Delay Time Per Unit Capacitance t
OH
OL
D
Applied to RESCAP Pin
NOTES
1
All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods .
2
This feature is intended to protect against catastrophic failure of the device. Maximum allowed operating junction temperature is 125 °C. Operation beyond 125°C could cause permanent damage to the device.
3
Required for stability.
Specifications subject to change without notice.
I = +200 µA 0.6 V I = –20 µA VSIM – 0.7 V I = +200 µA 0.5 V I = –20 µA 0.7 VSIM V
0.4 V IIH, IOH = ±20 µA VSIM – 0.4 V VIL = 0 V –0.9 mA IOL = +1 mA 0.4 V DATAIO 0.23 V
I = +200 µA 0.2 VSIM V I = –20 µA 0.8 VSIM V I = +20 µA 0.2 VSIM V I = –20 µA 0.7 VSIM V
0.4 V IIH, IOH = ±20 µA VSIM – 0.4 V VIL= 0 V –0.9 mA IOL = 1 mA 0.4 V DATAIO 0.23 V
81012k
CL = 30 pF 5 MHz
30 50 ns CL = 30 pF 9 18 ns CL = 30 pF 1 µs
f = 5 MHz
IOH = –15 µA VCC – 0.3 V IOL = –15 µA 0.3 V
1.0 ms/nF
–4–
REV. 0
Loading...
+ 8 hidden pages