Analog Devices ADP3402 Datasheet

a
DIGITAL
LDO
VCC
VRTC
VTCXO
PWRONKEY
ROWX
PWRONIN
RESET
ANALOGON
POWER-UP
SEQUENCING
AND
PROTECTION
LOGIC
ADP3402
VBAT
REFOUT
AGND
VCCA
RESCAP
CHRON
SIMBAT
CAP+
CAP2
SIMPROG
SIMON
SIMGND
RESETIN
CLKIN
DATAIO
CHARGE
PUMP
LOGIC LEVEL
TRANSLATION
BUFFER
REF
+
I/O
RSTCLK
VSIM
RTC LDO
XTAL OSC
LDO
ANALOG
LDO
DGND
GSM Power Management System
ADP3402
FEATURES Handles all GSM Baseband Power Management
Functions Four LDOs Optimized for Specific GSM Subsystems Charges Back-Up Capacitor for Real-Time Clock Charge Pump and Logic Level Translators for 3 V and 5 V
GSM SIM Modules Thermally Enhanced 6.1 mm 28-Lead TSSOP Package
APPLICATIONS GSM/DCS/PCS Handsets TeleMatic Systems ICO/Iridium Terminals
GENERAL DESCRIPTION
The ADP3402 is a multifunction power management system IC optimized for GSM cell phones. The wide input voltage range of
3.0 V to 7.0 V makes the ADP3402 ideal for both single cell Li-Ion and three cell NiMH designs. The current consumption of the ADP3402 has been optimized for maximum battery life, featuring a ground current of only 230 µA when the phone is in standby (digital LDO, analog LDO, and SIM card supply active). An undervoltage lockout (UVLO) prevents the startup when there is not enough energy in the battery. All four integrated LDOs are optimized to power one of the critical sub-blocks of the phone. Their novel anyCAP™ architecture requires only very small output capacitors for stability, and the LDOs are insensitive to the capacitors’ equivalent series resistance (ESR). This makes them stable with any capacitor, including ceramic (MLCC) types for space-restricted applications.
A step-up converter is implemented to supply both the SIM module and the level translation circuitry to adapt logic signals for 3 V and 5 V SIM modules. Sophisticated controls are avail­able for power-up during battery charging, keypad interface and charging of an auxiliary back-up capacitor for the real-time clock. These allow an easy interface between ADP3402, GSM proces­sor, charger, and keypad. The 28-lead TSSOP package has been thermally enhanced to maximize power dissipation capability. Furthermore, a reset circuit and a thermal shutdown function have been implemented to support reliable system design.
FUNCTIONAL BLOCK DIAGRAM
anyCAP is a trademark of Analog Devices, Inc.
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2000
ADP3402–SPECIFICATIONS
(–20°C ≤ TA +85°C, VBAT = 3 V to 7 V, C
C
= C
VCC
= 2.2 F, C
VCCA
= 0.1 F, C
VRTC
= C
VBAT
= 0.22 F, C
VTCXO
SIMBAT
= C
= 10 F,
VSIM
= 0.1 F, minimum loads
VCAP
applied on all outputs, unless otherwise noted)
ELECTRICAL CHARACTERISTICS
1
Parameter Symbol Conditions Min Typ Max Unit
SHUTDOWN SUPPLY CURRENT I
BAT
VBAT = Low (UVLO Low) VBAT = 2.7 V 3 20 µA VBAT = High (UVLO High) VBAT
OPERATING GROUND CURRENT I
GND
VCC, VRTC, VCCA, REFOUT On Minimum Loads, VBAT
= 3.6 V, VRTC On 12 30 µA
= 3.6 V 175 240 µA
VCC, VRTC, VCCA, REFOUT and VSIM On Minimum Loads, VBAT All LDOs and VSIM On Minimum Loads, VBAT
= 3.6 V 230 340 µA = 3.6 V 260 400 µA
All LDOs and VSIM On Maximum Loads, VBAT = 3.6 V 15 mA
UVLO CHARACTERISTICS
UVLO On Threshold VBAT
UVLO
3.2 3.3 V
UVLO Hysteresis 200 mV
INPUT CHARACTERISTICS
Input High Voltage V
IH
PWRONIN and ANALOGON 2 V PWRONKEY 0.7 VBAT V Input Low Voltage V
IL
PWRONIN and ANALOGON 0.4 V PWRONKEY 0.3 VBAT V
PWRONKEY INPUT PULLUP
RESISTANCE TO VBAT 15 20 25 k
CHRON CHARACTERISTICS
CHRON Threshold V CHRON Hysteresis Resistance R CHRON Input Bias Current I
T IN
B
2.38 < CHRON < V CHRON > V
T
T
2.38 2.48 2.58 V 108 125 138 k
0.5 µA
ROWX CHARACTERISTICS
ROWX Output Low Voltage V
ROWX Output High Leakage I
OL
IH
PWRONKEY = Low 0.4 V
= 200 µA
I
OL
PWRONKEY = High 1 µA
Current V(ROWX) = 5 V
SHUTDOWN
Thermal Shutdown Threshold
2
Junction Temperature 160 ºC
Thermal Shutdown Hysteresis Junction Temperature 35 ºC
DIGITAL LDO (VCC)
Output Voltage VCC Line, Load, Temp 2.400 2.450 2.500 V Line Regulation VCC 3 V < VBAT < 7 V, Min Load 2 mV Load Regulation ∆VCC 50 µA < I
VBAT = 3.6 V
Output Capacitor
3
C
O
< 100 mA, 15 mV
LOAD
2.2 µF
ANALOG LDO (VCCA)
Output Voltage VCCA Line, Load, Temp 2.710 2.765 2.820 V Line Regulation VCCA 3 V < VBAT < 7 V, Min Load 2 mV Load Regulation ∆VCCA 200 µA < I
Output Capacitor
3
Dropout Voltage V
C
O DO
VBAT = 3.6 V
VO = V
INITIAL
= 130 mA
I
LOAD
< 130 mA, 15 mV
LOAD
2.2 µF
– 100 mV 215 mV
Ripple Rejection VBAT/ f = 217 Hz (t = 4.6 ms) 65 70 dB
VCCA VBAT = 3.6 V
Output Noise Voltage V
NOISE
f = 10 Hz to 100 kHz 75 µV rms I
= 130 mA, VBAT = 3.6 V
LOAD
–2– REV. 0
ADP3402
Parameter Symbol Conditions Min Typ Max Unit
CRYSTAL OSCILLATOR LDO (VTCXO)
Output Voltage VTCXO Line, Load, Temp 2.710 2.765 2.820 V Line Regulation VTCXO 3 V < VBAT < 7 V, Min Load 2 mV Load Regulation ∆VTCXO 100 µA < I
Output Capacitor
3
Dropout Voltage V
C
O DO
VBAT = 3.6 V
VO = V
INITIAL
= 5 mA
I
LOAD
Ripple Rejection VBAT/ f = 217 Hz (t = 4.6 ms) 65 72 dB
VTCXO VBAT = 3.6 V
Output Noise Voltage V
NOISE
f = 10 Hz to 100 kHz 80 µV rms I
= 5 mA, VBAT = 3.6 V
LOAD
VOLTAGE REFERENCE (REFOUT)
Output Voltage V Line Regulation ∆V Load Regulation ∆V
REFOUT
REFOUT REFOUT
Line, Load, Temp 1.192 1.210 1.228 V 3 V < VBAT < 7 V, Min Load 2 mV 0 µA < I VBAT = 3.6 V
Ripple Rejection VBAT/ f = 217 Hz (t = 4.6 ms), 65 75 dB
VBAT = 3.6 V f = 10 Hz to 100 kHz 40 µV rms
Maximum Capacitive Load C Output Noise Voltage V
V
O NOISE
REFOUT
VBAT = 3.6 V
REAL-TIME CLOCK LDO/BATTERY CHARGER (VRTC)
Maximum Output Voltage VRTC I Current Limit I Off Reverse Leakage
Current
MAX
I
L
10 µA 2.400 2.450 2.500 V
LOAD
2.0 V < VBAT < UVLO 1 µA
SIM CHARGE PUMP (VSIM)
Output Voltage for 5 V SIM Modules VSIM 0 mA ≤ I
SIMPROG = High
Output Voltage for 3 V SIM Modules VSIM 0 mA ≤ I
SIMPROG = Low
GSM/SIM LOGIC TRANSLATION (GSM INTERFACE)
Input High Voltage (SIMPROG, SIMON, V
IH
RESETIN, CLKIN) Input Low Voltage (SIMPROG, SIMON, V
IL
RESETIN, CLKIN) DATAIO V
DATAIO Pull-Up Resistance to VCC R
IL
, V
V
IH
OH
I
IL
V
OL IN
VOL(I/O) = 0.4 V, 0.230 V
(I/O) = 1 mA
I
OL
(I/O) = 0.4 V, 0.335 V
V
OL
(I/O ) = 0 mA
I
OL
IIH, I
= ±10 µA VCC
OH
VIL = 0 V –0.9 mA VIL (I/O) = 0.4 V 0.420 V
< 5 mA, 1 mV
LOAD
0.22 µF
– 100 mV 150 mV
< 50 µA, 0.5 mV
LOAD
100 pF
175 µA
10 mA 4.70 5.00 5.30 V
LOAD
6 mA 2.82 3.00 3.18 V
LOAD
VCC – 0.6 V
0.6 V
– 0.4 V
16 20 24 k
–3–REV. 0
ADP3402–SPECIFICATIONS
Parameter Symbol Conditions Min Typ Max Unit
SIM INTERFACE
VSIM = 5 V RST V RST V CLK V CLK V I/O V I/O V I/O I I/O V
OL OH OL OH IL
, V
IH
OH
IL
OL
VSIM = 3 V RST V RST V CLK V CLK V I/O V I/O V I/O I I/O V
I/O Pull-Up Resistance to VSIM R Max Frequency (CLK) f Prop Delay (CLK) t Output Rise/Fall Times (CLK) t Output Rise/Fall Times (I/O, RST) t
OL OH OL OH IL IH
IL
OL
IN MAX D
, t
R
, t
R
, V
F
F
OH
Duty Cycle (CLK) D D CLKIN = 50% 47 53 %
RESET GENERATOR (RESET)
Output High Voltage V Output Low Voltage V Delay Time per Unit Capacitance t
OH
OL D
Applied to RESCAP Pin
NOTES
1
All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods .
2
This feature is intended to protect against catastrophic failure of the device. Maximum allowed operating junction temperature is 125ºC. Operation beyond 125ºC could cause permanent damage to the device.
3
Required for stability.
Specifications subject to change without notice.
I = +200 µA 0.6 V I = –20 µA VSIM
– 0.7 V
I = +200 µA 0.5 V I = –20 µA 0.7 VSIM V
0.4 V
IIH, I
= ±20 µA VSIM – 0.4 V
OH
VIL = 0 V –0.9 mA IOL = 1 mA 0.4 V DATAIO 0.23 V
I = +200 µA 0.2 VSIM V I = –20 µA 0.8 VSIM V I = +20 µA 0.2 VSIM V I = –20 µA 0.7 VSIM V
0.4 V
IIH, I
= ±20 µA VSIM – 0.4 V
OH
VIL= 0 V –0.9 mA IOL = 1 mA 0.4 V DATAIO 0.23 V
81012k
CL = 30 pF 5 MHz
30 50 ns CL = 30 pF 9 18 ns C
= 30 pF 1 µs
L
f = 5 MHz
I
= –15 µA VCC – 0.3 V
OH
I
= –15 µA 0.3 V
OL
1.0 ms/nF
–4– REV. 0
Loading...
+ 8 hidden pages