ANALOG DEVICES ADP2120 Service Manual

2 A/1.25 A, 1.2 MHz, Synchronous,
V

FEATURES

Continuous output current
ADP2119: 2 A
ADP2120: 1.25 A 145 mΩ and 70 mΩ integrated MOSFETs Input voltage range from 2.3 V to 5.5 V Output voltage from 0.6 V to V ±1.5% output accuracy
1.2 MHz fixed switching frequency Synchronizable between 1 MHz and 2 MHz Selectable PWM or PFM mode operation Current mode architecture Precision threshold enable input Power-good flag Voltage tracking Integrated soft start Internal compensation Startup with precharged output UVLO, OVP, OCP, and thermal shutdown 10-lead, 3 mm × 3 mm LFCSP_WD package

APPLICATIONS

Point of load conversion Communications and networking equipment Industrial and instrumentation Consumer electronics Medical applications

GENERAL DESCRIPTION

The ADP2119/ADP2120 are low quiescent current, synchronous, step-down dc-to-dc regulators in a compact 3 mm × 3 mm LFCSP_WD package. Both devices use a current mode, constant frequency pulse-width modulation (PWM) control scheme for excellent stability and transient response. Under light load conditions, they can be configured to operate in a pulse frequency modulation (PFM) mode, which reduces switching frequency to save power.
The ADP2119/ADP2120 support input voltages from 2.3 V to
5.5 V. The output voltage can be adjusted from 0.6 V up to the input voltage (V output version is available in preset output voltage options of 3.3 V,
2.5 V, 1.8 V, 1.5 V, 1.2 V, and 1.0 V. The ADP2119/ADP2120 require minimal external parts and provide a high efficiency solution with their integrated power switches, synchronous rectifiers, and internal compensation. Each IC draws less than 2 μA current from the input source when it is disabled. Other key features include undervoltage lockout (UVLO), integrated soft start to limit inrush current at startup, overvoltage protection (OVP), overcurrent protection (OCP), and thermal shutdown (TSD).
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
) for the adjustable version, whereas the fixed
IN
IN
Step-Down DC-to-DC Regulators
ADP2119/ADP2120

TYPICAL APPLICATION CIRCUIT

C1
0.1µF
V
IN
5V
C
IN
22µF
X5R
6.3V
OUT
3.3V
C
OUT
22µF
X5R
6.3V
R
BOT
2.21k
100
= 5V
V
IN
V
= 1.8V
OUT
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
0
0.01 0.1 1
Figure 2. ADP2119 Efficiency vs. Output Current
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.
R1
10
L
1.5µH
R
TOP
10k
PFM
FPWM
OUTPUT CURRENT (A)
ADP2119/ADP2120
1
VIN
2
SYNC/MODE
PVIN
3
SW
4
PGND
5
GND
Figure 1.
EN
PGOOD
TRK
FB
10
9
R2
10k
8
7
6
08716-001
08716-002
ADP2119/ADP2120

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
Typical Application Circuit ............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
Boundary Condition .................................................................... 5
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
Typical Performance Characteristics ............................................. 7
Functional Block Diagram ............................................................ 15
Theory of Operation ...................................................................... 16
Control Scheme .......................................................................... 16
PWM Mode Operation .............................................................. 16
PFM Mode Operation ................................................................ 16
Slope Compensation .................................................................. 16
Enable/Shutdown ....................................................................... 16
Integrated Soft Start ................................................................... 16
Tracking ....................................................................................... 17
Oscillator and Synchronization ................................................ 17
Current Limit and Short-Circuit Protection .............................. 17
Overvoltage Protection (OVP) ................................................. 17
Undervoltage Lockout (UVLO) ............................................... 17
Thermal Shutdown .................................................................... 17
Power Good (PGOOD) ............................................................. 17
Applications Information .............................................................. 18
Output Voltage Selection ........................................................... 18
Inductor Selection ...................................................................... 18
Output Capacitor Selection ....................................................... 18
Input Capacitor Selection .......................................................... 19
Voltage Tracking ......................................................................... 19
Typical Application Circuits ......................................................... 20
Outline Dimensions ....................................................................... 22
Ordering Guide .......................................................................... 22

REVISION HISTORY

6/10—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
ADP2119/ADP2120

SPECIFICATIONS

VIN = V
Table 1.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
VIN and PVIN
VIN Voltage Range VIN 2.3 5.5 V
PVIN Voltage Range V
Quiescent Current I
Switching, no load, SYNC/MODE = VIN 680 900 μA
Shutdown Current I
VIN Undervoltage Lockout Threshold UVLO VIN rising 2.2 2.3 V
V OUTPUT CHARACTERISTICS
Load Regulation1 ADP2119, IO = 0 A to 2 A 0.08 %/A
Load Regulation2 ADP2120, IO = 0 A to 1.25 A 0.08 %/A
Line Regulation1 ADP2119, IO = 1 A 0.05 %/V
Line Regulation2 ADP2120, IO = 1 A 0.05 %/V
FB
FB Regulation Voltage VFB V
FB Bias Current IFB V
SW
High-Side On Resistance3 V
Low-Side On Resistance3 V
SW Peak Current Limit High-side switch, VIN = V
High-side switch, VIN = V
SW Maximum Duty Cycle VIN = V
SW Minimum On Time4 V
TRK
TRK Input Voltage Range 0 600 mV
TRK-to-FB Offset Voltage TRK = 0 mV to 500 mV −15 +15 mV
TRK Input Bias Current 100 nA
FREQUENCY
Oscillator Frequency fS 1.02 1.2 1.38 MHz
SYNC/MODE
Synchronization Range 1 2 MHz
SYNC Minimum Pulse Width 100 ns
SYNC Minimum Off Time 100 ns
SYNC Input High Voltage 1.3 V
SYNC Input Low Voltage 0.4 V
INTEGRATED SOFT START
Soft Start Time All switching frequencies 1024
f
PGOOD
Power-Good Range FB rising threshold 105 110 115 %
FB rising hysteresis 2.5 %
FB falling threshold 85 90 95 %
FB falling hysteresis 2.5 %
Power-Good Deglitch Time From FB to PGOOD 16
PGOOD Leakage Current V
PGOOD Output Low Voltage I
PGOOD Output Low Resistor I
= 3.3 V, EN = VIN, SYNC/MODE = VIN at TJ = −40°C to +125°C, unless otherwise noted.
PVIN
2.3 5.5 V
PVIN
No switching, SYNC/MODE = GND 150 200 μA
VIN
V
SHDN
= V
= 5.5 V, EN = GND 0.3 2 μA
IN
PVIN
falling 2 2.1 V
IN
= 2.3 V to 5.5 V 0.591 0.6 0.609 V
IN
= 2.3 V to 5.5 V 0.01 0.1 μA
IN
= V
= 3.3 V, ISW = 200 mA 145 190
IN
PVIN
= V
= 3.3 V, ISW = 200 mA 70 100
IN
PVIN
= 3.3 V (ADP2119) 2.5 3 3.5 A
PVIN
= 3.3 V (ADP2120) 1.6 2 2.4 A
PVIN
= 5.5 V, full frequency 100 %
PVIN
= V
= 5.5 V, full frequency 100 ns
IN
PVIN
= 1.2 MHz 853 μs
S
= 5 V 0.1 1 μA
PGOOD
= 1 mA 150 200 mV
PGOOD
= 1 mA 150 200 Ω
PGOOD
Rev. 0 | Page 3 of 24
Clock cycles
Clock cycles
ADP2119/ADP2120
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
EN
EN Input Rising Threshold VIN = 2.3 V to 5.5 V 1.12 1.2 1.28 V EN Input Hysteresis VIN = 2.3 V to 5.5 V 100 mV EN Pull-Down Resistor 1
THERMAL
Thermal Shutdown Threshold 150 °C Thermal Shutdown Hysteresis 25 °C
1
Specified by the circuit in . Figure 54
2
Specified by the circuit in . Figure 58
3
Pin-to-pin measurements.
4
Guaranteed by design.
Rev. 0 | Page 4 of 24
ADP2119/ADP2120

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
VIN, PVIN −0.3 V to +6 V SW −0.3 V to +6 V FB, SYNC/MODE, EN, TRK, PGOOD −0.3 V to +6 V PGND to GND −0.3 V to +0.3 V Operating Junction Temperature Range −40°C to +125°C Storage Temperature Range −65°C to +150°C Soldering Conditions JEDEC J-STD-020
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type θJA Unit
10-Lead LFCSP_WD 40 °C/W

BOUNDARY CONDITION

θJA is measured using natural convection on a JEDEC 4-layer board, and the exposed pad is soldered to the printed circuit board (PCB) with thermal vias.

ESD CAUTION

Rev. 0 | Page 5 of 24
ADP2119/ADP2120
A

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

DP2119/ADP2120
1
VIN
2
PVIN
3
SW
PGND
GND
NOTES
1. THE EXPOSED PAD SHOULD BE SO LDERED TO AN EXTERNAL GROUND PLANE UNDERNEAT H THE IC FOR THERMAL DISSIPATION.
EXPOSED
4
PAD
5
10
EN
9
SYNC/MODE
8
PGOOD
7
TRK
6
FB
08716-003
Figure 3. Pin Configuration (Top View)
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 VIN
Bias Voltage Input Pin. Connect a bypass capacitor (0.1 μF minimum) between this pin and GND and a
small (10 Ω) resistor between this pin and PVIN. 2 PVIN Power Input Pin. Connect this pin to the input power source. Connect a bypass capacitor between this pin and PGND. 3 SW Switch Node Output. Connect this pin to the output inductor. 4 PGND Power Ground. Connect this pin to the power ground plane and to the high current return for the power MOSFET. 5 GND Analog Ground. Connect this pin to the ground plane. 6 FB
7 TRK
Feedback Voltage Sense Input. Connect this pin to a resistor divider from V
connect to V
directly.
OUT
Tracking Input. To track a master voltage, drive TRK from a resistor divider from the master voltage. If the
. For the fixed output version,
OUT
tracking function is not used, connect TRK to VIN. 8 PGOOD Power-Good Output (Open Drain). Connect this pin to a resistor to any pull-up voltage < 5.5 V. 9 SYNC/MODE
Synchronization Input (SYNC). Connect this pin to an external clock between 1 MHz and 2 MHz to synchronize
the switching frequency to the external clock (see the Oscillator and Synchronization section for details).
FPWM/PFM Selection (MODE). When this pin is connected to VIN, the PFM mode is disabled and the part works
in continuous conduction mode (CCM) only. When this pin is connected to ground, the PFM mode is enabled
and becomes active at light loads. 10 EN
Precision Threshold Enable Input Pin. An external resistor divider can be used to set the turn-on threshold. To
enable the part automatically, connect the EN pin to VIN. This pin has a 1 MΩ pull-down resistor to GND. EPAD Exposed Pad The exposed pad should be soldered to an external ground plane underneath the IC for thermal dissipation.
Rev. 0 | Page 6 of 24
ADP2119/ADP2120

TYPICAL PERFORMANCE CHARACTERISTICS

TA = 25°C, VIN = V
100
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
INDUCTOR SUMIDA CDRH5D18BHPNP-1R5M
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Figure 4. Efficiency (ADP2119, VIN = 3.3 V, FPWM) vs. Output Current
100
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
INDUCTOR SUMIDA CDRH5D18BHPNP-1R5M
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Figure 5. Efficiency (ADP2119, VIN = 5 V, FPWM) vs. Output Current
100
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
INDUCTOR SUMIDA CDRH5D18BHPNP-1R5M
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Figure 6. Efficiency (ADP2120, VIN = 3.3 V, FPWM) vs. Output Current
= 5 V, V
PVIN
OUTPUT CURRENT (A)
OUTPUT CURRENT (A)
OUTPUT CURRENT (A)
= 1.2 V, L = 1.5 μH, CIN = 22 μF, C
OUT
V
= 1.0V
OUT
V
= 1.2V
OUT
V
= 1.5V
OUT
V
= 1.8V
OUT
V
= 2.5V
OUT
V
= 1.0V
OUT
V
= 1.2V
OUT
V
= 1.5V
OUT
V
= 1.8V
OUT
V
= 2.5V
OUT
V
= 3.3V
OUT
V
= 1.0V
OUT
V
= 1.2V
OUT
V
= 1.5V
OUT
V
= 1.8V
OUT
V
= 2.5V
OUT
= 2 × 22 μF, unless otherwise noted.
OUT
100
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
INDUCTOR SUMIDA CDRH5D18BHPNP-1R5M
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
08716-004
OUTPUT CURRENT (A)
V
= 1.0V
OUT
V
= 1.2V
OUT
V
= 1.5V
OUT
V
= 1.8V
OUT
V
= 2.5V
OUT
08716-007
Figure 7. Efficiency (ADP2119, VIN = 3.3 V, PFM) vs. Output Current
100
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
INDUCTOR SUMIDA CDRH5D18BHPNP-1R5M
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
08716-005
OUTPUT CURRENT (A)
V
= 1.0V
OUT
V
= 1.2V
OUT
V
= 1.5V
OUT
V
= 1.8V
OUT
V
= 2.5V
OUT
V
= 3.3V
OUT
08716-008
Figure 8. Efficiency (ADP2119, VIN = 5 V, PFM) vs. Output Current
100
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
INDUCTOR SUMIDA CDRH5D18BHPNP-1R5M
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
08716-006
OUTPUT CURRENT (A)
V
= 1.0V
OUT
V
= 1.2V
OUT
V
= 1.5V
OUT
V
= 1.8V
OUT
V
= 2.5V
OUT
08716-009
Figure 9. Efficiency (ADP2120, VIN = 3.3 V, PFM) vs. Output Current
Rev. 0 | Page 7 of 24
ADP2119/ADP2120
100
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
INDUCTOR SUMIDA CDRH5D18BHPNP-1R5M
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
OUTPUT CURRENT (A)
V
= 1.0V
OUT
V
= 1.2V
OUT
V
= 1.5V
OUT
V
= 1.8V
OUT
V
= 2.5V
OUT
V
= 3.3V
OUT
Figure 10. Efficiency (ADP2120, VIN = 5 V, FPWM) vs. Output Current
900
850
800
750
700
650
600
550
QUIESCENT CURRENT (µ A)
500
450
400
2.3 5.55.14.74.33.93.53.12.7 VIN (V)
TJ = +125°C TJ = +25°C TJ = –40°C
Figure 11. Quiescent Current vs. VIN (Switching)
275
250
225
200
175
150
125
PFET RESISTO R ( mΩ)
100
75
50
2.3 5.55.14.74.33.93.53.12.7 VIN (V)
TJ = +125°C TJ = +25°C TJ = –40°C
Figure 12. PFET Resistor vs. VIN (Pin-to-Pin Measurements)
08716-010
08716-011
08716-012
100
90
80
70
60
50
40
EFFICIENCY (%)
30
20
10
INDUCTOR SUMIDA CDRH5D18BHPNP-1R5M
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
OUTPUT CURRENT (A)
V
= 1.0V
OUT
V
= 1.2V
OUT
V
= 1.5V
OUT
V
= 1.8V
OUT
V
= 2.5V
OUT
V
= 3.3V
OUT
Figure 13. Efficiency (ADP2120, VIN = 5 V, PFM) vs. Output Current
605 604 603 602 601 600 599 598 597
FEEDBACK VOLTAGE (mV)
596 595 594
–40 120100806040200–20
TEMPERATURE (°C)
Figure 14. Feedback Voltage vs. Temperature (VIN = 3.3 V)
120
110
100
90
80
70
60
NFET RESIS TOR (mΩ)
50
40
30
2.3 5.55.14.74.33.93.53.12.7 VIN (V)
TJ = +125°C TJ = +25°C TJ = –40°C
Figure 15. NFET Resistor vs. VIN (Pin-to-Pin Measurements)
08716-013
08716-014
08716-015
Rev. 0 | Page 8 of 24
Loading...
+ 16 hidden pages