ANALOG DEVICES ADP1882 Service Manual

Synchronous Current-Mode with
V
V
V
Constant On-Time, PWM Buck Controller

FEATURES

Power input voltage as low as 2.75 V to 20 V Bias supply voltage range: 2.75 V to 5.5 V Minimum output voltage: 0.8 V
0.8 V reference voltage with ±1.0% accuracy Supports all N-channel MOSFET power stages Available in 300 kHz, 600 kHz, and 1.0 MHz options No current-sense resistor required Power saving mode (PSM) for light loads (ADP1883 only) Resistor-programmable current-sense gain Thermal overload protection Short-circuit protection Precision enable input Integrated bootstrap diode for high-side drive 140 μA shutdown supply current Starts into a precharged load Small, 10-lead MSOP package

APPLICATIONS

Telecom and networking systems Mid to high end servers Set-top boxes DSP core power supplies
R
TOP
OUT
VDD= 2.75V TO 5.5V
100
95 90 85 80 75 70 65 60 55
EFFICIENCY (%)
50 45 40 35 30 25
100 1k 10k 100k
Figure 2. ADP1882/ADP1883 Efficiency vs. Load Current
ADP1882/ADP1883

TYPICAL APPLICATIONS CIRCUIT

= 2.75V TO 2 0
IN
C
C
C
C2
R
C
R
BOT
C
VDD2
C
VDD
VIN
ADP1882/
ADP1883
COMP/EN BST
FB DRVH
GND SW
VDD DRVL
PGND
C
BST
R
RES
Figure 1.
VDD = 5.5V, VIN = 13.0V V
= 5.5V, VIN = 16.5V
DD
VDD = 5.5V, VIN = 5.5V (PSM) V
= 5.5V, VIN = 5.5V
DD
V
= 3.6V, VIN = 5.5V
DD
TA = 25°C V
= 1.8V
OUT
f
= 300kHz
SW
WURTH INDUCTO R: 744325120, L = 1. 2µH, DCR = 1.8m
INFINEON MOSFETs: BSC042N03MS G (UPPER/LOWER)
LOAD CURRENT (mA)
= 1.8 V, 300 kHz)
(V
OUT
C
IN
Q1
L
C
OUT
Q2
V
LOAD
OUT
08901-001
08901-002

GENERAL DESCRIPTION

The ADP1882/ADP1883 are versatile current-mode, synchronous step-down controllers that provide superior transient response, optimal stability, and current-limit protection by using a constant on-time, pseudo-fixed frequency with a programmable current­limit, current-control scheme. In addition, these devices offer optimum performance at low duty cycles by using valley current­mode control architecture. This allows the ADP1882/ADP1883 to drive all N-channel power stages to regulate output voltages as low as 0.8 V.
The ADP1883 is the power saving mode (PSM) version of the device and is capable of pulse skipping to maintain output regulation while achieving improved system efficiency at light loads (see the Power Saving Mode (PSM) Version (ADP1883) section for more information).
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Available in three frequency options (300 kHz, 600 kHz, and
1.0 MHz, plus the PSM option), the ADP1882/ADP1883 are well suited for a wide range of applications. These ICs not only operate from a 2.75 V to 5.5 V bias supply, but they also can accept a power input as high as 20 V.
In addition, an internally fixed soft start period is included to limit input in-rush current from the input supply during startup and to provide reverse current protection during soft start for a pre­charged output. The low-side current-sense, current-gain scheme and integration of a boost diode, along with the PSM/forced pulse-width modulation (PWM) option, reduce the external part count and improve efficiency.
The ADP1882/ADP1883 operate over the −40°C to +125°C junction temperature range and are available in a 10-lead MSOP.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.
ADP1882/ADP1883

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
Typical Applications Circuit ............................................................ 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
Boundary Condition .................................................................... 5
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
Typical Performance Characteristics ............................................. 7
ADP1882/ADP1883 Block Diagram ............................................ 18
Theory of Operation ...................................................................... 19
Startup .......................................................................................... 19
Soft Start ...................................................................................... 19
Precision Enable Circuitry ........................................................ 19
Undervoltage Lockout ............................................................... 19
Thermal Shutdown ..................................................................... 19
Programming Resistor (RES) Detect Circuit .......................... 20
Valley Current-Limit Setting .................................................... 20
Hiccup Mode During Short Circuit ......................................... 21
Synchronous Rectifier ................................................................ 22
Power Saving Mode (PSM) Version (ADP1883) .................... 22
Timer Operation ........................................................................ 22
Pseudo-Fixed Frequency ........................................................... 23
Applications Information .............................................................. 24
Feedback Resistor Divider ........................................................ 24
Inductor Selection ...................................................................... 24
Output Ripple Voltage (ΔVRR) .................................................. 24
Output Capacitor Selection ....................................................... 24
Compensation Network ............................................................ 25
Efficiency Considerations ......................................................... 26
Input Capacitor Selection .......................................................... 27
Thermal Considerations ............................................................ 28
Design Example .......................................................................... 28
External Component Recommendations .................................... 31
Layout Considerations ................................................................... 33
IC Section (Left Side of Evaluation Board) ............................. 36
Power Section ............................................................................. 36
Differential Sensing .................................................................... 36
Typical Applications Circuits ........................................................ 37
Dual-Input, 300 kHz High Current Applications Circuit ..... 37
Single-Input, 600 kHz Applications Circuit ........................... 37
Dual-Input, 300 kHz High Current Applications Circuit ..... 38
Outline Dimensions ....................................................................... 39
Ordering Guide .......................................................................... 39

REVISION HISTORY

4/10—Revision 0: Initial Version
Rev. 0 | Page 2 of 40
ADP1882/ADP1883

SPECIFICATIONS

All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). VDD = 5 V, BST − SW = 5 V, V
= 13 V. The specifications are valid for TJ = −40°C to +125°C, unless otherwise specified.
IN
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
POWER SUPPLY CHARACTERISTICS
High Input Voltage Range VIN ADP1882ARMZ-0.3/ADP1883ARMZ-0.3 (300 kHz) 2.75 12 20 V ADP1882ARMZ-0.6/ADP1883ARMZ-0.6 (600 kHz) 2.75 12 20 V ADP1882ARMZ-1.0/ADP1883ARMZ-1.0 (1.0 MHz) 3.0 12 20 V Low Input Voltage Range VDD C ADP1882ARMZ-0.3/ADP1883ARMZ-0.3 (300 kHz) 2.75 5 5.5 V ADP1882ARMZ-0.6/ADP1883ARMZ-0.6 (600 kHz) 2.75 5 5.5 V ADP1882ARMZ-1.0/ADP1883ARMZ-1.0 (1.0 MHz) 3.0 5 5.5 V Quiescent Current I Shutdown Current I
Q_DD
DD, SD
+ I
+ I
Q_BST
BST, SD
Undervoltage Lockout UVLO Rising VDD (see Figure 35 for temperature variation) 2.65 V UVLO Hysteresis Falling VDD from operational state 190 mV
SOFT START
Soft Start Period See Figure 58 3.0 ms
ERROR AMPLIFIER
FB Regulation Voltage VFB T T T Transconductance GM 300 520 730 μs FB Input Leakage Current I
FB = 0.8 V, COMP/EN = released 1 50 nA
FB, LEAK
CURRENT-SENSE AMPLIFIER GAIN
Programming Resistor (RES)
RES = 47 kΩ ± 1% 2.98 3.4 3.7 V/V
Value from DRVL to PGND RES = 22 kΩ ± 1% 6 6.6 7.4 V/V RES = none 24.1 26.7 29.3 V/V RES = 100 kΩ ± 1% 12.1 13.4 14.7 V/V
SWITCHING FREQUENCY
ADP1882ARMZ-0.3/
300 kHz
ADP1883ARMZ-0.3 (300 kHz)
On Time VIN = 5 V, V
Minimum On Time VIN = 20 V 145 190 ns
Minimum Off Time 84% duty cycle (maximum) 340 400 ns ADP1882ARMZ-0.6/
600 kHz
ADP1883ARMZ-0.6 (600 kHz)
On Time VIN = 5 V, V Minimum On Time VIN = 20 V, V Minimum Off Time 65% duty cycle (maximum) 340 400 ns
ADP1882ARMZ-1.0/
1.0 MHz
ADP1883ARMZ-1.0 (1.0 MHz)
On Time VIN = 5 V, V Minimum On Time VIN = 20 V 60 85 ns Minimum Off Time 45% duty cycle (maximum) 340 400 ns
= 1 μF to PGND, CIN = 0.22 μF to GND
IN
FB = 1.5 V, no switching 1.1 mA
COMP/EN < 285 mV 140 215 μA
= 25°C 800 mV
J
= −40°C to +85°C 795.3 800 805.5 mV
J
= −40°C to +125°C 792.8 800 808.0 mV
J
Typical values measured at 50% time points with 0 nF at DRVH and DRVL; maximum values are guaranteed by bench evaluation
= 2 V, TJ = 25°C 1115 1200 1285 ns
OUT
= 2 V, TJ = 25°C 490 540 585 ns
OUT
= 0.8 V 82 110 ns
OUT
= 2 V, TJ = 25°C 280 312 340 ns
OUT
1
Rev. 0 | Page 3 of 40
ADP1882/ADP1883
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT DRIVER CHARACTERISTICS
High-Side Driver
Output Source Resistance I Output Sink Resistance I Rise Time Fall Time
2
t
2
t
BST − SW = 4.4 V, CIN = 4.3 nF (see Figure 60) 25 ns
R, DRVH
BST − SW = 4.4 V, CIN = 4.3 nF (see Figure 61) 11 ns
F, D RV H
Low-Side Driver
Output Source Resistance I Output Sink Resistance I
2
Rise Time Fall Time
2
t
t
V
R, DRVL
V
F, D RV L
Propagation Delays
DRVL Fall to DRVH Rise DRVH Fall to DRVL Rise
SW Leakage Current I
2
2
t t
BST − SW = 4.4 V (see Figure 60) 22 ns
TPDH, DRVH
BST − SW = 4.4 V (see Figure 61) 24 ns
TPDH, DRVL
BST = 25 V, SW = 20 V, VDD = 5.5 V 110 μA
SW, LEAK
Integrated Rectifier
Channel Impedance I
PRECISION ENABLE THRESHOLD
Logic High Level VIN = 2.75 V to 20 V, VDD = 2.75 V to 5.5 V 235 285 330 mV Enable Hysteresis VIN = 2.75 V to 20 V, VDD = 2.75 V to 5.5 V 35 mV
COMP VOLTAGE
COMP Clamp Low Voltage V
COMP Clamp High Voltage V COMP Zero Current Threshold V
THERMAL SHUTDOWN T
COMP(LOW )
2.75 V VDD ≤ 5.5 V 2.55 V
COMP(H IGH)
2.75 V VDD ≤ 5.5 V 0.95 V
COMP_ZC T
TMSD
Thermal Shutdown Threshold Rising temperature 155 °C Thermal Shutdown Hysteresis 15 °C Hiccup Current Limit Timing 6 ms
1
The maximum specified values are with the closed loop measured at 10% to 90% time points (see and , C
MOSFETs specified as Infineon BSC042N030MSG.
2
Not automatic test equipment (ATE) tested.
= 1.5 A, 100 ns, positive pulse (0 V to 5 V) 2 3.5 Ω
SOURCE
= 1.5 A, 100 ns, negative pulse (5 V to 0 V) 0.8 2 Ω
SINK
= 1.5 A, 100 ns, positive pulse (0 V to 5 V) 1.7 3 Ω
SOURCE
= 1.5 A, 100 ns, negative pulse (5 V to 0 V) 0.75 2 Ω
SINK
= 5.0 V, CIN = 4.3 nF (see Figure 61) 18 ns
DD
= 5.0 V, CIN = 4.3 nF (see Figure 60) 16 ns
DD
= 10 mA 22 Ω
SINK
From disable state, release COMP/EN pin to enable device; 2.75 V ≤ V
≤ 5.5 V
DD
Figure 60 Figure 61)
0.47 V
= 4.3 nF, and the upper-side and lower-si
GATE
de
Rev. 0 | Page 4 of 40
ADP1882/ADP1883

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
VDD to GND −0.3 V to +6 V VIN to PGND −0.3 V to +28 V FB, COMP/EN to GND −0.3 V to (VDD + 0.3 V) DRVL to PGND −0.3 V to (VDD + 0.3 V) SW to PGND −2.0 V to +28 V BST to SW −0.8 V to (VDD + 0.3 V) BST to PGND −0.3 V to 28 V DRVH to SW −0.3 V to VDD PGND to GND
θJA (10-Lead MSOP)
2-Layer Board 213.1°C/W
4-Layer Board 171.7°C/W Operating Junction Temperature Range −40°C to +125°C Storage Temperature Range −65°C to +150°C Soldering Conditions JEDEC J-STD-020 Maximum Soldering Lead Temperature
(10 sec)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute maximum ratings apply individually only, not in combination. Unless otherwise specified, all other voltages are referenced to PGND.
±0.3 V
300°C

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type θ
θJA (10-Lead MSOP)
2-Layer Board 213.1 °C/W 4-Layer Board 171.7 °C/W
1
θJA is specified for the worst-case conditions; that is, θJA is specified for device
soldered in a circuit board for surface-mount packages.
1
Unit
JA

BOUNDARY CONDITION

In determining the values given in Ta b le 2 and Tabl e 3, natural convection was used to transfer heat to a 4-layer evaluation board.

ESD CAUTION

Rev. 0 | Page 5 of 40
ADP1882/ADP1883

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

VIN
1
ADP1882/
FB GND VDD
2
ADP1883
3
TOP VIEW
4
(Not to S cale)
5
COMP/EN
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 VIN High Input Voltage. Connect VIN to the drain of the upper-side MOSFET. 2 COMP/EN Output of the Internal Error Amplifier/IC Enable. When this pin functions as EN, applying 0 V to this pin disables the IC. 3 FB Noninverting Input of the Internal Error Amplifier. This is the node where the feedback resistor is connected. 4 GND
Analog Ground Reference Pin of the IC. All sensitive analog components should be connected to this ground plane (see the Layout Considerations section).
5 VDD
Bias Voltage Supply for the ADP1882/ADP1883 Controller, Including the Output Gate Drivers. A bypass capacitor of 1 μF directly from this pin to PGND and a 0.1 μF across VDD and GND are recommended.
6 DRVL
Drive Output for the External Lower-Side N-Channel MOSFET. This pin also serves as the current-sense gain
setting pin (see Figure 69). 7 PGND Power GND. Ground for the lower-side gate driver and lower-side N-channel MOSFET. 8 DRVH Drive Output for the External Upper-Side, N-Channel MOSFET. 9 SW Switch Node Connection. 10 BST
Bootstrap for the Upper-Side MOSFET Gate Drive Circuitry. An internal boot rectifier (diode) is connected
between VDD and BST. A capacitor from BST to SW is required. An external Schottky diode can also be
connected between VDD and BST for increased gate drive capability.
BST
10
9
SW
8
DRVH PGND
7
DRVL
6
08901-003
Rev. 0 | Page 6 of 40
ADP1882/ADP1883

TYPICAL PERFORMANCE CHARACTERISTICS

100
VDD = 5.5V, VIN = 5.5V (PSM)
95
V
= 5.5V, VIN = 13V (PSM )
DD
90
VDD = 5.5V, VIN = 5.5V
85 80 75 70 65 60 55
EFFICIENCY (%)
50 45 40 35 30
100 1k 10k 100k
V
V
DD
VDD = 3.6V, VIN = 5.5V (PSM)
WURTH IND: 744355147, L = 0.47 µH, DCR: 0.80M INFENION FETs: BSC042N03MS G ( UPPER/LOWER) TA = 25°C
= 5.5V,
V
DD
V
= 13V
IN
(PSM)
= 5.5V, VIN = 16.5V ( PSM)
DD
= 3.6V, VIN = 16.5V (PSM)
VDD = 3.6V, V
= 13V
IN
(PSM)
LOAD CURRENT (mA)
Figure 4. Efficiency—300 kHz, V
OUT
= 0.8 V
08901-004
100
95
VDD = 5.5V, V
= 13V (PSM)
90
IN
85 80 75 70 65 60 55 50
EFFICIE NCY ( %)
45 40 35
VDD = 3.6V, VIN = 5.5V
30 25 20 15
100 100k10k1k
Figure 7. Efficiency—600 kHz, V
VDD = 5.5V, VIN = 5.5V (PSM)
VDD = 5.5V, VIN = 13V
VDD = 5.5V, VIN = 16.5V
WURTH INDUCTOR: 744355072, L = 0.72µH, DCR: 1.65m INFINEON FETS: BSC042N03MS G (UPPER/LOWER) R
: 5.4m
ON
T
= 25°C
A
VDD = 5.5V, VIN = 5.5V
= 5.5V, VIN = 16.5V ( PSM)
V
DD
LOAD CURRENT (mA)
= 0.8 V
OUT
08901-007
100
95
VDD = 5.5V, VIN = 5.5V
VDD = 5.5V, VIN = 5.5V (PSM)
90 85 80 75
VDD = 5.5V, V
= 13V
IN
VDD = 5.5V, VIN = 16.5V
VDD = 5.5V, VIN = 13V (PSM)
VDD = 5.5V, VIN = 16.5V (PSM)
70 65
VDD = 3.6V, VIN = 5.5V
60 55
EFFICIENCY (%)
50 45 40 35 30 25
100 1k 10k 100k
WURTH INDUCTOR: 7443252100, L = 1.0µH, DCR: 3.3m INFINEON M OSFETS: BSC042N03MS G (UPPER/ LOWER) R
: 5.4m
ON
T
= 25°C
A
LOAD CURRENT (mA)
Figure 5. Efficiency—300 kHz, V
100
VDD = 5.5V, VIN = 16.5V (PSM)
95
OUT
= 1.8 V
90 85
VDD = 2.7V, VIN = 16.5V (PSM)
80 75 70 65 60 55
EFFICIENCY (%)
50 45 40 35 30
100 1k 10k 100k
VDD = 2.7V, VIN = 13V
VDD = 5.5V, VIN = 13V
VDD = 3.6V, VIN = 13V
VDD = 5.5V, VIN = 16.5V VDD = 3.6V, VIN = 16.5V
TA = 25°C V
OUT
F
SW
WURTH INDUCTOR: 744355200, L = 2µH, DCR: 2.5m INFINEON M OSFETS: BSC042N03MS G (UPPER/LOWER)
= 1.8V
= 300kHz
LOAD CURRENT (mA)
Figure 6. Efficiency—300 kHz, V
OUT
= 7 V
100
VDD = 5.5V, VIN = 5.5V
95 90 85 80 75 70 65 60 55
EFFICIENCY (%)
50 45 40 35 30 25
100 1k 10k 100k
8901-005
VDD = 5.5V, VIN = 13V
WURTH INDUCTOR: 744325072, L = 0.72µH, DCR: 1.65m INFINEON FETS: BSC042N03MS G ( UPPER/LO W ER) R T
VDD = 5.5V, VIN = 16.5V (PSM)
VDD = 5.5V, VIN = 13V (PSM)
VDD = 5.5V, VIN = 16.5V
: 5.4m
ON
= 25°C
A
LOAD CURRENT (mA)
Figure 8. Efficiency—600 kHz, V
100
VDD = 5.5V/VIN = 13V (PSM)
VDD = 3.6V, VIN = 5.5V
VDD = 5.5V, VIN = 5.5V (PSM)
= 1.8 V
OUT
8901-008
95
90
VDD = 3.6V/VIN = 13V
85
80
VDD = 5.5V/VIN = 16.5V
75
= 5.5V/VIN = 13V
V
70
EFFICIENCY (%)
65
60
55
50
100 1k 10k 100k
8901-006
DD
TA = 25°C V
= 5V, VIN = 13V
OUT
F
= 600kHz
SW
WURTH INDUCT OR: 7443552100, L = 1.0µH, DCR: 3.3m INFINEON MOSFETS: BSC042N03MS G (UPPER/LOWER)
LOAD CURRENT (mA)
Figure 9. Efficiency—600 kHz, V
OUT
= 5 V
901-009 08
Rev. 0 | Page 7 of 40
ADP1882/ADP1883
T
100
VDD = 5.5V/VIN = 5.5V (PSM)
95 90
VDD = 3.6V/VIN = 3.6V
V
= 5.5V/VIN = 5.5V
DD
85 80 75 70 65 60 55 50
EFFICIENCY (%)
45 40 35 30 25 20
100 1k 10k 100k
VDD = 5.5V/VIN = 16.5V
VDD = 5.5V/VIN = 13V
TA = 25°C V
OUT
F
SW
WURTH INDUCTOR: 744303022, L = 0.22µH, DCR: 0.33m INFINEON M OSFETS: BSC042N03MS G ( UPPER/LOWER)
VDD = 3.6V/VIN = 13V
= 0.8V, VIN = 5.5V
= 1MHz
LOAD CURRENT (mA)
100
VDD = 5.5V/VIN = 5.5V (PSM)
95 90
Figure 10. Efficiency—1.0 MHz, V
VDD = 5.5V/VIN = 5.5V
= 0.8 V
OUT
VDD = 5.5V/VIN = 13V
85 80 75 70 65 60
VDD = 3.6V/VIN = 13V
VDD = 3.6V/VIN = 16.5V
VDD = 5.5V/VIN = 16.5V
55 50
EFFICIENCY (%)
45 40 35 30 25 20
100
1k 10k 100k
TA = 25°C V
= 1.8V, VIN = 5.5V
OUT
F
= 1MHz
SW
WURTH INDUCTOR: 744303022, L = 0.22µH, DCR: 0.33m INFINEON M OSFETS: BSC042N03MS G (UPPER/LOWER)
LOAD CURRENT (mA)
Figure 11. Efficiency—1.0 MHz, V
OUT
= 1.8 V
100
95
VDD = 5.5V/VIN = 16.5V (PSM)
90 85 80 75 70 65 60 55
EFFICIENCY (%)
50 45 40 35 30
100 1k 10k
VDD = 5.5V/VIN = 16.5V
VDD = 5.5V/VIN = 13V
= 25°C
T
A
V
= 4V, VIN = 16.5V
OUT
F
= 1MHz
SW
WURTH INDUCTOR: 744318180, L = 1.4µH, DCR: 3.2m INFINEON M OSFETS: BSC042N03MS G ( UPPER/LOWER)
LOAD CURRENT (mA)
Figure 12. Efficiency—1.0 MHz, V
OUT
= 4 V
08901-010
08901-011
08901-012
0.820
0.818
0.816
0.814
0.812
0.810
0.808
0.806
0.804
0.802
0.800
OUTPUT VOLTAGE (V)
0.798
0.796
0.794
0.792
0.790 0 2k 4k 6k 8k 10k 12k 14k 16k
V
= 5.5V VIN = 13V
IN
+125°C +25°C –40°C
+125°C +25°C –40°C
VIN = 16.5V
LOAD CURRENT (mA)
Figure 13. Output Voltage Accuracy—300 kHz, V
OUT
1.809
1.804
AGE (V)
1.799
1.794
OUTPUT VOL
= 5.5V VIN = 13V
1.789
1.784
0 1.5k 3.0k 4.5k 6.0k 7.5k 9.0k 10.5k 12.0k 13.5k 15.0k
V
IN
+125°C +25°C –40°C
+125°C +25°C –40°C
VIN = 16.5V
LOAD CURRENT (mA)
Figure 14. Output Voltage Accuracy—300 kHz, V
6.970
6.965
6.960
6.955
V
DD
V
IN
= 3.6V,
= 16.5V
+125°C +25°C –40°C
V V
DD
= 13V
IN
OUT
= 5.5V,
6.950
6.945
6.940
6.935
6.930
6.925
OUTPUT VOLTAGE (V)
6.920
V
= 5.5V,
DD
V
= 16.5V
6.915
6.910
6.905
IN
+125°C +25°C –40°C
0 1k2k3k4k5k6k7k8k9k10k
V V
DD IN
= 3.6V,
= 13V
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 15. Output Voltage Accuracy—300 kHz, V
+125°C +25°C –40°C
= 0.8 V
+125°C +25°C –40°C
= 1.8 V
+125°C +25°C –40°C
= 7 V
OUT
08901-013
08901-014
08901-015
Rev. 0 | Page 8 of 40
ADP1882/ADP1883
0.829
0.827
0.825
0.823
0.821
0.819
0.817
0.815
0.813
0.811
0.809
0.807
0.805
OUTPUT VOLTAGE (V)
0.803
0.801
0.799
0.797
0.795
0 2k 4k0 6k 8k 10k 12k 14k
+125°C +25°C –40°C
= 16.5V VIN = 13VVIN = 16.5V
V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
+125°C +25°C –40°C
Figure 16. Output Voltage Accuracy—600 kHz, V
= 0.8 V
OUT
115
08901-
0.820
0.818
0.816
0.814
0.812
0.810
0.808
0.806
0.804
0.802
0.800
OUTPUT VOLTAGE (V)
0.798
0.796
0.794
0.792
0.790 0 2k4k6k8k10k12k
Figure 19. Output Voltage Accuracy—1.0 MHz, V
V
= 5.5V VIN = 13V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
+125°C +25°C –40°C
VIN = 16.5V
+125°C +25°C –40°C
= 0.8 V
OUT
08901-018
1.806
1.804
1.802
1.800
1.798
1.796
1.794
1.792
OUTPUT VOLTAGE (V)
1.790
1.788
1.786 0 1.5k 3.0k 4.5k 6.0k 7.5k 9.0k 10.5k 12.0k 13.5k 15.0k
V
= 5.5V VIN = 13V VIN = 16V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
+125°C +25°C –40°C
Figure 17. Output Voltage Accuracy—600 kHz, V
5.015
5.010
5.005
5.000
4.995
4.990
4.985
OUTPUT VOLTAGE (V)
4.980
4.975
4.970 01k2k3k4k5k6k7k
= 5.5V, VIN = 13V VDD = 5.5V, VIN = 16.5V
V
DD
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 18. Output Voltage Accuracy—600 kHz, V
+125°C +25°C –40°C
= 1.8 V
OUT
+125°C +25°C –40°C
8k 9k 10k
= 5 V
OUT
1.808
1.806
1.804
1.802
1.800
1.798
1.796
1.794
1.792
1.790
OUTPUT VOLTAGE (V)
1.788
1.786
1.784
1.782
1.780 0 1.5k 3.0k 4.5k 6.0k 7.5k 9.0k 10.5k 12.0k 13.5k 15.0k
8901-016
Figure 20. Output Voltage Accuracy—1.0 MHz, V
4.060
4.055
4.050
4.045
4.040
4.035
4.030
4.025
4.020
OUTPUT VOLTAGE (V)
4.015
4.010
4.005
4.000 0 8.0k1.6k2.4k3.2k4.0k4.8k5.6k6.4k7.2k8.0k
08901-017
Figure 21. Output Voltage Accuracy—1.0 MHz, V
V
= 5.5V VIN = 13V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
V
LOAD CURRENT (mA)
IN
= 13V
+125°C +25°C –40°C
+125°C +25°C –40°C
VIN = 16.5V
+125°C +25°C –40°C
= 1.8 V
OUT
VIN = 16.5V
+125°C +25°C –40°C
= 4 V
OUT
08901-019
08901-020
Rev. 0 | Page 9 of 4
0
ADP1882/ADP1883
T
0.804
0.803
0.802
0.801
AGE (V)
0.800
0.799
FEEDBACK VOL
0.798
0.797
0.796
VDD = 2.7V, VIN = 2.7/3.6V V
= 3.6V, VIN = 3.6V TO 16.5V
DD
V
= 5.5V, VIN = 5.5/13V/ 16. 5V
DD
–40.0 –7.5 25.0 57.5 90.0 122.5
TEMPERATURE (°C)
Figure 22. Feedback Voltage vs. Temperature
108901-02
1000
950
900
850
800
750
700
FREQUENCY (kHz )
650
V
= 3.6V
IN
600
550
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2
+125°C +25°C –40°C
VIN = 5.5V
+125°C +25°C –40°C
VIN (V)
08901-024
Figure 25. Switching Frequency vs. High Input Voltage, 1.0 MHz, ±10% of 12 V
335 325 315 305 295 285 275 265
FREQUENCY (kHz )
255
V
= 3.6V
245 235 225
DD
+125°C +25°C –40°C
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2
VDD = 5.5V
+125°C +25°C –40°C
VIN (V)
08901-022
Figure 23. Switching Frequency vs. High Input Voltage, 300 kHz, ±10% of 12 V
650
600
550
500
FREQUENCY ( kHz)
450
400
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2
= 1.8V
V
OUT
+125°C +125°C +25°C –40°C
Figure 24. Switching Frequency vs. High Input Voltage, 600 kHz, V
VDD = 5.5V
+25°C –40°C
V
IN
(V)
OUT
08901-023
= 1.8 V,
±10% of 12 V
355 340 325 310 295 280 265 250
FREQUENCY ( kHz)
235
V
220 205 190
0 2k 4k 6k 8k 10k 12k 14k 16k
= 5.5V VIN = 13V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
+125°C +25°C –40°C
VIN = 16.5V
Figure 26. Frequency vs. Load Current, 300 kHz, V
380
V
= 5.5V
IN
370 360 350 340 330 320 310 300
FREQUENCY (kHz)
290 280 270 260
0
+125°C +25°C –40°C
V
2k 4k 6k 8k
LOAD CURRENT (mA)
= 13V
IN
+125°C +25°C –40°C
10k 12k
V
IN
= 16.5V
+125°C +25°C –40°C
14k
16k 18k
Figure 27. Frequency vs. Load Current, 300 kHz, V
OUT
OUT
+125°C +25°C –40°C
= 0.8 V
= 1.8 V
8901-025
20k
08901-026
Rev. 0 | Page 10 of 40
ADP1882/ADP1883
C
C
C
358 354 350 346 342 338 334 330
Y (kHz)
326 322 318 314
FREQUEN
310 306 302 298 294 290
0 0.8k1.6k2.4k3.2k4.0k4.8k5.6k6.4k7.2k8.0k8.8k9.6k
Figure 28. Frequency vs. Load Current, 300 kHz, V
700 670 640 610 580 550 520 490
Y (kHz)
460 430 400 370
FREQUEN
340 310 280 250 220 190
0 2k4k6k8k10k12k14k
V
= 5.5V VIN = 13V
IN
+125°C +25°C –40°C
Figure 29. Frequency vs. Load Current, 600 kHz, V
V
= 13V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
+125°C +25°C –40°C
LOAD CURRENT (mA)
VIN = 16.5V
+125°C +25°C –40°C
= 7 V
OUT
VIN = 16.5V
+125°C +25°C –40°C
= 0.8 V
OUT
708901-02
08901-028
750 742 734 726 718 710 702 694 686 678 670
FREQUENCY (kHz )
662 654 646 638 630
0 0.8k 1.6k 2.4k 3.2k 4.0k 4.8k 5.6k 6.4k 7.2k 8.0k 8.8k 9.6k
V
= 13V VIN = 16.5V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 31. Frequency vs. Load Current, 600 kHz, V
1300 1225 1150 1075 1000
925 850 775 700
FREQUENCY ( kHz)
625 550 475 400
0 2k4k6k8k10k12k
Figure 32. Frequency vs. Load Current, V
V
= 5.5V VIN = 13V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
+125°C +25°C –40°C
= 1.0 MHz, 0.8 V
OUT
VIN = 16.5V
+125°C +25°C –40°C
OUT
=5 V
+125°C +25°C –40°C
08901-030
08901-031
835 815 795 775 755 735 715 695 675 655 635 615
FREQUENCY (kHz )
595 575 555 535 515 495
V
= 5.5V
IN
+125°C +25°C –40°C
= 13V
V
IN
+125°C +25°C –40°C
VIN = 16.5V
+125°C +25°C –40°C
0 2k 4k 6k 8k 10k 12k 14k 16k 18k
LOAD CURRENT (mA)
Figure 30. Frequency vs. Load Current, 600 kHz, V
= 1.8 V
OUT
8901-029
1450 1375 1300 1225 1150
Y (kHz)
1075 1000
925
FREQUEN
850 775 700 625 550
0 2k 4k 6k 8k 10k 12k 14k 16k
V
= 5.5V VIN = 13V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
+125°C +25°C –40°C
Figure 33. Frequency vs. Load Current, 1.0 MHz, V
VIN = 16.5V
+125°C +25°C –40°C
= 1.8 V
OUT
08901-032
Rev. 0 | Page 11 of 40
ADP1882/ADP1883
1350
1300
1250
1200
1150
1100
1050
FREQUENCY (kHz )
1000
950
900
0 0.8k 1.6k 2.4k 3.2k 4.0k 4.8k 5.6k 6.4k 7.2k 8.0k
V
= 13V
IN
+125°C +25°C –40°C
LOAD CURRENT (mA)
VIN = 16.5V
Figure 34. Frequency vs. Load Current, 1.0 MHz, V
+125°C +25°C –40°C
OUT
08901-033
= 4 V
84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52
MAXIMUM DUTY CY CLE (%)
50 48 46 44 42 40
3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0 13.2 14.4 15.6
= 3.6V +125°C
V
DD
VDD = 5.5V
+25°C –40°C
VIN (V)
Figure 37. Maximum Duty Cycle vs. High Voltage Input (V
08297-036
)
IN
2.658
2.657
2.656
2.655
2.654
2.653
UVLO (V)
2.652
2.651
2.650
2.649 –40 120100806040200–20
TEMPERATURE ( °C)
Figure 35. UVLO vs. Temperature
100
95 90 85 80 75 70 65 60 55
MAXIMUM DUTY CY CLE (%)
50 45 40
300 400 500 600 700 800 900 1000
FREQUENCY (kHz)
VDD=2.7V VDD=3.6V VDD=5.5V
Figure 36. Maximum Duty Cycle vs. Frequency
+125°C +25°C –40°C
680
630
580
530
480
430
380
330
MINUMUM OFF TIME (ns)
280
230
180
–40 120100806040200–20
08901-034
V
= 2.7V
REG
= 3.6V
V
REG
V
= 5.5V
REG
TEMPERATURE (°C)
08901-037
Figure 38. Minimum Off Time vs. Temperature
680
630
580
530
480
430
380
330
MINUMUM OFF TIME (ns)
280
230
180
2.7 5.55.14.74.33.93.53.1
08901-035
VREG (V)
+125°C +25°C –40°C
08901-038
Figure 39. Minimum Off Time vs. VDD (Low Input Voltage)
Rev. 0 | Page 12 of 40
Loading...
+ 28 hidden pages