ANALOG DEVICES ADP1871 Service Manual

Synchronous Buck Controller with
V
V
V
Constant On-Time and Valley Current Mode

FEATURES

Power input voltage range: 2.95 V to 20 V On-board bias regulator Minimum output voltage: 0.6 V
0.6 V reference voltage with ±1.0% accuracy Supports all N-channel MOSFET power stages Available in 300 kHz, 600 kHz, and 1.0 MHz options No current-sense resistor required Power saving mode (PSM) for light loads (ADP1871 only) Resistor-programmable current-sense gain Thermal overload protection Short-circuit protection Precision enable input Integrated bootstrap diode for high-side drive Starts into a precharged load Small, 10-lead MSOP and LFCSP packages

APPLICATIONS

Telecom and networking systems Mid to high end servers Set-top boxes DSP core power supplies 12 V input POL supplies

GENERAL DESCRIPTION

The ADP1870/ADP1871 are versatile current-mode, synchronous step-down controllers that provide superior transient response, optimal stability, and current-limit protection by using a constant on-time, pseudo-fixed frequency with a programmable current­limit, current-control scheme. In addition, these devices offer optimum performance at low duty cycles by utilizing valley current-mode control architecture. This allows the ADP1870/ ADP1871 to drive all N-channel power stages to regulate output voltages as low as 0.6 V.
The ADP1871 is the power saving mode (PSM) version of the device and is capable of pulse skipping to maintain output regulation while achieving improved system efficiency at light loads (see the Power Saving Mode (PSM) Version (ADP1871) section for more information).
Available in three frequency options (300 kHz, 600 kHz, and
1.0 MHz, plus the PSM option), the ADP1870/ADP1871 are well suited for a wide range of applications that require a single-input power supply range from 2.95 V to 20 V. Low voltage biasing is supplied via a 5 V internal LDO.
ADP1870/ADP1871

TYPICAL APPLICATIONS CIRCUIT

= 2.95V TO 2 0
IN
C
C
C
C2
R
C
R
TOP
OUT
R
BOT
C
VREG2
C
VREG
100
VIN = 5V (PSM)
95 90 85 80 75 70 65 60
VIN = 13V (PSM)
55
EFFICIENCY (%)
50 45
VIN = 16.5V (PS M )
40 35 30 25
10 100 1k 10k 100k
Figure 2. Efficiency vs. Load Current (V
In addition, an internally fixed soft start period is included to limit input in-rush current from the input supply during startup and to provide reverse current protection during soft start for a pre­charged output. The low-side current-sense, current-gain scheme and integration of a boost diode, along with the PSM/forced pulse­width modulation (PWM) option, reduce the external part count and improve efficiency.
The ADP1870/ADP1871 operate over the −40°C to +125°C junction temperature range and are available in a 10-lead MSOP and LFCSP packages.
VIN
ADP1870/
ADP1871
COMP/EN BST
FB DRVH
GND SW
VREG DRVL
PGND
C
BST
R
RES
Figure 1.
VIN = 16.5V
VIN = 13V
TA = 25°C V
= 1.8V
OUT
f
= 300kHz
SW
WÜRTH INDUCTOR: 744325120, L = 1. 2µH, DCR = 1.8m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
LOAD CURRENT (mA)
= 1.8 V, 300 kHz)
OUT
C
IN
Q1
L
V
OUT
C
OUT
Q2
LOAD
08730-001
08730-102
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.
ADP1870/ADP1871

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Typical Applications Circuit ............................................................ 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
Boundary Condition .................................................................... 5
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
Typical Performance Characteristics ............................................. 7
ADP1870/ADP1871 Block Diagram ............................................ 18
Theory of Operation ...................................................................... 19
Startup .......................................................................................... 19
Soft Start ...................................................................................... 19
Precision Enable Circuitry ........................................................ 19
Undervoltage Lockout ............................................................... 19
On-Board Low Dropout Regulator .......................................... 19
Thermal Shutdown ..................................................................... 20
Programming Resistor (RES) Detect Circuit .......................... 20
Valley Current-Limit Setting .................................................... 20
Hiccup Mode During Short Circuit ......................................... 21
Synchronous Rectifier ................................................................ 22
Power Saving Mode (PSM) Version (ADP1871) ................... 22
Timer Operation ........................................................................ 22
Pseudo-Fixed Frequency ........................................................... 23
Applications Information .............................................................. 24
Feedback Resistor Divider ........................................................ 24
Inductor Selection ...................................................................... 24
Output Ripple Voltage (VRR) .................................................. 24
Output Capacitor Selection ....................................................... 24
Compensation Network ............................................................ 25
Efficiency Considerations ......................................................... 26
Input Capacitor Selection .......................................................... 27
Thermal Considerations ............................................................ 28
Design Example .......................................................................... 29
External Component Recommendations .................................... 31
Layout Considerations ................................................................... 33
IC Section (Left Side of Evaluation Board) ............................. 37
Power Section ............................................................................. 37
Differential Sensing .................................................................... 38
Typical Applications Circuits ........................................................ 39
15 A, 300 kHz High Current Application Circuit .................. 39
5.5 V Input, 600 kHz Application Circuit ............................... 39
300 kHz High Current Application Circuit ............................ 40
Outline Dimensions ....................................................................... 41
Ordering Guide .......................................................................... 42

REVISION HISTORY

6/10—Rev. 0 to Rev. A
Added LFCSP Package ....................................................... Universal
Changes to Applications Section .................................................... 1
Changes to Internal Regulator Characteristics Parameter,
Table 1 ............................................................................................ 3
Changes to Table 2 and Table 3 ....................................................... 5
Changes to Figure 3 and Table 4 ..................................................... 6
Change to Figure 22 ....................................................................... 10
Changes to Figure 65 ...................................................................... 18
Changes to Efficiency Considerations Section ........................... 26
Changes to Table 9 ................................................................................... 28
Added Figure 84; Renumbered Sequentially ...................................... 28
Added Figure 96 ....................................................................................... 41
Changes to Ordering Guide ................................................................... 42
3/10—Revision 0: Initial Version
Rev. A | Page 2 of 44
ADP1870/ADP1871

SPECIFICATIONS

All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). V
− VSW = V
V
BST
REG
− V
RECT_DROP
(see Figure 40 to Figure 42). VIN = 12 V. The specifications are valid for TJ = −40°C to +125°C,
unless otherwise specified.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
POWER SUPPLY CHARACTERISTICS
High Input Voltage Range VIN C
= 22 µF to PGND (at Pin 1)
IN
ADP1870ARMZ-0.3/ADP1871ARMZ-0.3 (300 kHz) 2.95 12 20 V ADP1870ARMZ-0.6/ADP1871ARMZ-0.6 (600 kHz) 2.95 12 20 V ADP1870ARMZ-1.0/ADP1871ARMZ-1.0 (1.0 MHz) 3.25 12 20 V Quiescent Current I Shutdown Current
Q_REG
I
REG,SD
I
BST,SD
+ I
VFB = 1.5 V, no switching 1.1 mA
Q_BST
+
COMP/EN < 285 mV 190 280 A
Undervoltage Lockout UVLO Rising VIN (see Figure 35 for temperature variation) 2.65 V UVLO Hysteresis Falling VIN from operational state 190 mV
INTERNAL REGULATOR
CHARACTERISTICS VREG Operational Output Voltage V
VREG should not be loaded externally because it is intended to only bias internal circuitry.
C
REG
VREG
= 1 µF to PGND, 0.22 µF to GND, VIN = 2.95 V to 20 V ADP1870ARMZ-0.3/ADP1871ARMZ-0.3 (300 kHz) 2.75 5 5.5 V ADP1870ARMZ-0.6/ADP1871ARMZ-0.6 (600 kHz) 2.75 5 5.5 V ADP1870ARMZ-1.0/ADP1871ARMZ-1.0 (1.0 MHz) 3.05 5 5.5 V VREG Output in Regulation VIN = 7 V, 100 mA 4.8 4.981 5.16 V V
= 12 V, 100 mA 4.8 4.982 5.16 V
IN
Load Regulation 0 mA to 100 mA, VIN = 7 V 32 mV 0 mA to 100 mA, VIN = 20 V 33 mV Line Regulation VIN = 7 V to 20 V, 20 mA 2.5 mV V VIN to V
Dropout Voltage 100 mA out of V
REG
= 7 V to 20 V, 100 mA 2.0 mV
IN
, VIN ≤ 5 V 300 415 mV
REG
Short VREG to PGND VIN = 20 V 229 320 mA
SOFT START
Soft Start Period See Figure 58 3.0 ms
ERROR AMPLIFER
FB Regulation Voltage VFB T T T
= +25°C 600 mV
J
= −40°C to +85°C 596 600 604 mV
J
= −40°C to +125°C 594.2 600 605.8 mV
J
Transconductance Gm 320 496 670 µS FB Input Leakage Current I
V
FB, Leak
= 0.6 V, COMP/EN = released 1 50 nA
FB
CURRENT-SENSE AMPLIFIER GAIN
Programming Resistor (RES)
RES = 47 kΩ ± 1% 2.7 3 3.3 V/V
Value from DRVL to PGND RES = 22 kΩ ± 1% 5.5 6 6.5 V/V RES = none 11 12 13 V/V RES = 100 kΩ ± 1% 22 24 26 V/V
SWITCHING FREQUENCY
ADP1870ARMZ-0.3/
Typical values measured at 50% time points with 0 nF at DRVH and DRVL; maximum values are guaranteed by bench evaluation
1
300 kHz
ADP1871ARMZ-0.3 (300 kHz)
On-Time VIN = 5 V, V
= 2 V, TJ = 25°C 1120 1200 1280 ns
OUT
Minimum On-Time VIN = 20 V 146 190 ns
Minimum Off-Time 84% duty cycle (maximum) 340 400 ns
REG
= 5 V,
Rev. A | Page 3 of 44
ADP1870/ADP1871
Parameter Symbol Conditions Min Typ Max Unit
ADP1870ARMZ-0.6/
ADP1871ARMZ-0.6 (600 kHz) On-Time VIN = 5 V, V Minimum On-Time VIN = 20 V, V Minimum Off-Time 65% duty cycle (maximum) 340 400 ns
ADP1870ARMZ-1.0/
ADP1871ARMZ-1.0 (1.0 MHz) On-Time VIN = 5 V, V Minimum On-Time VIN = 20 V 60 85 ns Minimum Off-Time 45% duty cycle (maximum) 340 400 ns
OUTPUT DRIVER CHARACTERISTICS
High-Side Driver
Output Source Resistance I Output Sink Resistance I Rise Time2 t Fall Time2 t
Low-Side Driver
Output Source Resistance I Output Sink Resistance I Rise Time2 t Fall Time2 t
Propagation Delays
DRVL Fall to DRVH Rise2 t
DRVH Fall to DRVL Rise2 t SW Leakage Current I Integrated Rectifier
Channel Impedance I
PRECISION ENABLE THRESHOLD
Logic High Level VIN = 2.9 V to 20 V, V Enable Hysteresis VIN = 2.9 V to 20 V, V
COMP VOLTAGE
COMP Clamp Low Voltage V
COMP Clamp High Voltage V COMP Zero Current Threshold V
THERMAL SHUTDOWN T
Thermal Shutdown Threshold Rising temperature 155 °C Thermal Shutdown Hysteresis 15 °C Hiccup Current Limit Timing 6 ms
1
The maximum specified values are with the closed loop measured at 10% to 90% time points (see Figure and Figure 61), C
MOSFETs being Infineon BSC042N03MSG.
2
Not automatic test equipment (ATE) tested.
600 kHz
= 2 V, TJ = 25°C 500 540 580 ns
OUT
= 0.8 V 82 110 ns
OUT
1.0 MHz
= 2 V, TJ = 25°C 285 312 340 ns
OUT
= 1.5 A, 100 ns, positive pulse (0 V to 5 V) 2.25 3
SOURCE
= 1.5 A, 100 ns, negative pulse (5 V to 0 V) 0.7 1
SINK
V
r,DR VH
V
f,DRV H
V
r,DR VL
V
f,DRV L
V
tpdhDRVH
V
tpdhDRVL
V
SWLEAK
COMP(l ow)
(2.75 V ≤ V
COMP(h igh)
(2.75 V ≤ V
COMP_ZC T
TMSD
− VSW = 4.4 V, CIN = 4.3 nF (see Figure 60) 25 ns
BST
− VSW = 4.4 V, CIN = 4.3 nF (see Figure 61) 11 ns
BST
= 1.5 A, 100 ns, positive pulse (0 V to 5 V) 1.6 2.2
SOURCE
= 1.5 A, 100 ns, negative pulse (5 V to 0 V) 0.7 1
SINK
= 5.0 V, CIN = 4.3 nF (see Figure 61) 18 ns
REG
= 5.0 V, CIN = 4.3 nF (see Figure 60) 16 ns
REG
− VSW = 4.4 V (see Figure 60) 15.4 ns
BST
− VSW = 4.4 V (see Figure 61) 18 ns
BST
= 25 V, VSW = 20 V, V
BST
= 10 mA 22
SINK
From disabled state, release COMP/EN pin to enable device (2.75 V ≤ V
REG
≤ 5.5 V) 2.55 V
REG
≤ 5.5 V) 1.07 V
REG
= 5 V 110 µA
REG
= 2.75 V to 5.5 V 245 285 330 mV
REG
= 2.75 V to 5.5 V 37 mV
REG
0.47 V
≤ 5.5 V)
60
= 4.3 nF, and the upper- and lower-side
GATE
Rev. A | Page 4 of 44
ADP1870/ADP1871

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
VREG to PGND, GND −0.3 V to +6 V
VIN to PGND −0.3 V to +28 V
FB, COMP/EN to GND −0.3 V to (V
DRVL to PGND −0.3 V to (V
SW to PGND −2.0 V to +28 V
BST to SW −0.6 V to (V
BST to PGND −0.3 V to 28 V
DRVH to SW −0.3 V to V
PGND to GND
θJA (10-Lead MSOP)
2-Layer Board 213.1°C/W 4-Layer Board 171.7°C/W
θJA (10-Lead LFCSP)
4-Layer Board 40°C/W
Operating Junction Temperature
Range Storage Temperature Range −65°C to +150°C Soldering Conditions JEDEC J-STD-020 Maximum Soldering Lead
Temperature (10 sec)
±0.3 V
−40°C to +125°C
300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute maximum ratings apply individually only, not in combination. Unless otherwise specified, all other voltages are referenced to PGND.
REG
REG
REG
REG
+ 0.3 V) + 0.3 V)
+ 0.3 V)

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type θ
θJA (10-Lead MSOP)
2-Layer Board 213.1 °C/W 4- Layer Board 171.7 °C/W
θJA (10-Lead LFCSP)
4- Layer Board 40 °C/W
1
θJA is specified for the worst-case conditions; that is, θJA is specified for the
device soldered in a circuit board for surface-mount packages.
1
Unit
JA

BOUNDARY CONDITION

In determining the values given in Ta b l e 2 and Ta ble 3 , natural convection was used to transfer heat to a 4-layer evaluation board.

ESD CAUTION

Rev. A | Page 5 of 44
ADP1870/ADP1871

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

VIN
1
GND
FB
ADP1870/
2
ADP1871
3
TOP VIEW
4
(Not to Scale)
5
COMP/EN
VREG
NOTES
1. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 VIN High Input Voltage. Connect VIN to the drain of the upper-side MOSFET. 2 COMP/EN Output of the Internal Error Amplifier/IC Enable. When this pin functions as EN, applying 0 V to this pin disables the IC. 3 FB Noninverting Input of the Internal Error Amplifier. This is the node where the feedback resistor is connected. 4 GND
Analog Ground Reference Pin of the IC. All sensitive analog components should be connected to this ground plane (see the Layout Considerations section).
5 VREG
Internal Regulator Supply Bias Voltage for the ADP1870/ADP1871 Controller (Includes the Output Gate Drivers). A bypass capacitor of 1 µF directly from this pin to PGND and a 0.1 µF across VREG and GND are recommended. VREG should not be loaded externally because it is intended to only bias internal circuitry.
6 DRVL
Drive Output for the External Lower-Side, N-Channel MOSFET. This pin also serves as the current-sense gain
setting pin (see Figure 69). 7 PGND Power GND. Ground for the lower-side gate driver and lower-side, N-channel MOSFET. 8 DRVH Drive Output for the External Upper-Side, N-Channel MOSFET. 9 SW Switch Node Connection. 10 BST
Bootstrap for the Upper-Side MOSFET Gate Drive Circuitry. An internal boot rectifier (diode) is connected
between VREG and BST. A capacitor from BST to SW is required. An external Schottky diode can also be
connected between VREG and BST for increased gate drive capability.
10
9 8 7 6
BST SW DRVH PGND DRVL
08730-003
Rev. A | Page 6 of 44
ADP1870/ADP1871

TYPICAL PERFORMANCE CHARACTERISTICS

100
95 90
VIN = 13V (PSM)
85 80 75 70 65 60 55 50 45 40
EFFICIENCY (%)
35
VIN = 16.5V (PS M )
30 25 20 15 10
5 0
10 100 1k 10k 100k
TA = 25°C V
OUT
f
= 300kHz
SW
WÜRTH INDUCTOR: 744325072, L = 0. 72µH, DCR = 1.3m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
LOAD CURRENT (mA)
Figure 4. Efficiency—300 kHz, V
VIN = 13V
= 0.8V
VIN = 16.5V
= 0.8 V
OUT
08730-104
100
95 90 85 80 75 70 65 60 55 50 45 40
EFFICIENCY (%)
35 30 25 20 15 10
5 0
10 100 1k 10k 100k
VIN = 13V (PSM)
VIN = 16.5V
(PSM)
Figure 7. Efficiency—600 kHz, V
VIN = 13V
VIN = 16.5V
TA = 25°C
= 0.8V
V
OUT
f
= 600kHz
SW
WÜRTH INDUCTOR: 744355147, L = 0. 47µH, DCR = 0.67m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
LOAD CURRENT (mA)
= 0.8 V
OUT
08730-107
100
95
VIN = 5V (PSM)
90 85 80 75 70 65 60 55 50 45 40
EFFICIENCY (%)
35 30 25 20 15 10
5 0
VIN = 13V (PSM)
VIN = 16.5V (PS M )
10 100 1k 10k 100k
LOAD CURRENT (mA)
Figure 5. Efficiency—300 kHz, V
100
VIN = 16.5V (PS M )
95 90 85 80 75
VIN = 13V (PSM)
70 65 60 55 50 45 40
EFFICIENCY (%)
35 30 25 20 15 10
5 0
10 100 1k 10k 100k
LOAD CURRENT (mA)
Figure 6. Efficiency—300 kHz, V
VIN = 16.5V
VIN = 13V
TA = 25°C
= 1.8V
V
OUT
f
= 300kHz
SW
WÜRTH INDUCTOR: 744325120, L = 1. 2µH, DCR = 1.8m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
= 1.8 V
OUT
VIN = 13V
VIN = 16.5V
TA = 25°C
= 7V
V
OUT
f
= 300kHz
SW
WÜRTH INDUCTOR: 7443551200, L = 2.0µH, DCR = 2.6m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
= 7 V
OUT
100
95 90 85
VIN = 13V (PSM)
80 75 70 65 60 55 50
VIN = 16.5V (PSM)
45 40
EFFICIENCY (%)
35 30 25 20 15 10
5 0
10 100 1k 10k 100k
08730-105
Figure 8. Efficiency—600 kHz, V
100
95 90
VIN = 16.5V (PS M )
85 80 75 70 65 60 55 50 45 40
EFFICIENCY (%)
35 30 25 20 15 10
5 0
10 100 1k 10k 100k
08730-106
VIN = 13V (PSM)
VIN = 20V (PSM)
Figure 9. Efficiency—600 kHz, V
VIN = 13V
VIN = 16.5V
TA = 25°C
= 1.8V
V
OUT
f
= 600kHz
SW
WÜRTH INDUCTOR: 744325072, L = 0. 72µH, DCR = 1.3m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
LOAD CURRENT (mA)
= 1.8 V
OUT
VIN = 16.5V
VIN = 20V
TA = 25°C
= 5V
V
OUT
f
= 600kHz
SW
WÜRTH INDUCTOR: 744318180, L = 1. 4µH, DCR = 3.2m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
LOAD CURRENT (mA)
= 5 V
OUT
08730-108
08730-109
Rev. A | Page 7 of 44
ADP1870/ADP1871
100
95 90 85 80 75 70
VIN = 13V (PSM)
65 60 55 50 45 40
EFFICIENCY (%)
35 30
VIN = 16.5V (PS M )
25 20 15 10
5 0
10 100 1k 10k 100k
Figure 10. Efficiency—1.0 MHz, V
VIN = 13V
VIN = 16.5V
TA = 25°C
= 0.8V
V
OUT
f
= 1.0MHz
SW
WÜRTH INDUCTOR: 744303012, L = 0. 12µH, DCR = 0.33m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
LOAD CURRENT (mA)
= 0.8 V
OUT
08730-110
0.807
0.806
0.805
0.804
0.803
0.802
0.801
0.800
0.799
0.798
0.797
OUTPUT VOLTAGE (V)
0.796
0.795 VIN = 13V
0.794
0.793
0.792
+125°C +25°C –40°C
0 2000 4000 6000 8000 10,000
VIN = 16.5V
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 13. Output Voltage Accuracy—300 kHz, V
OUT
08730-013
= 0.8 V
100
95 90 85 80
VIN = 13V (PSM)
75 70 65 60 55 50 45 40
VIN = 16.5V (PSM)
EFFICIENCY (%)
35 30 25 20 15 10
5 0
10 100 1k 10k 100k
Figure 11. Efficiency—1.0 MHz, V
100
95 90 85
VIN = 13V (PSM)
80 75 70 65 60 55
VIN = 16.5V (PS M )
50 45 40
EFFICIENCY (%)
35 30 25 20 15 10
5 0
10 100 1k 10k 100k
Figure 12. Efficiency—1.0 MHz, V
VIN = 13V
VIN = 16.5V
TA = 25°C
= 1.8V
V
OUT
f
= 1.0MHz
SW
WÜRTH INDUCTOR: 744303022, L = 0. 22µH, DCR = 0.33m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
LOAD CURRENT (mA)
= 1.8 V
OUT
VIN = 13V
VIN = 16.5V
TA = 25°C
= 5V
V
OUT
f
= 1.0MHz
SW
WÜRTH INDUCTOR: 744355090, L = 0. 9µH, DCR = 1.6m
INFINEON FETs: BSC042N03MS G (UPPER/ LOWER)
LOAD CURRENT (mA)
= 5 V
OUT
1.821
1.816
1.811
1.806
1.801
OUTPUT VOLTAGE (V)
1.796
1.791
1.786
0 1500 3000 4500 6000 7500 9000 10,500 12,000 13,500 15,000
08730-111
VIN = 5.5V
+125°C +25°C –40°C
Figure 14. Output Voltage Accuracy—300 kHz, V
7.100
7.095
7.090
7.085
7.080
7.075
7.070
7.065
7.060
7.055
7.050
7.045
7.040
7.035
7.030
OUTPUT VOLTAGE (V)
7.025
7.020
7.015
7.010
7.005
7.000
08730-112
+125°C +25°C –40°C
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Figure 15. Output Voltage Accuracy—300 kHz, V
VIN = 13V
+125°C +25°C –40°C
LOAD CURRENT (mA)
VIN = 13V VIN = 16.5V
LOAD CURRENT (mA)
VIN = 16.5V
+125°C +25°C –40°C
OUT
OUT
08730-014
= 1.8 V
08730-015
= 7 V
Rev. A | Page 8 of 44
ADP1870/ADP1871
0.808
0.806
0.804
0.802
0.800
0.798
FREQUENCY (kHz)
0.796
0.794
0.792
+125°C +25°C –40°C
0 1000 2000 3000 4000 5000 6000 7000 8000 10,0009000
VIN = 13V VIN = 16.5V
LOAD CURRENT (mA)
Figure 16. Output Voltage Accuracy—600 kHz, V
= 0.8 V
OUT
08730-115
0.807
0.805
0.803
0.801
0.799
0.797
0.795
0.793
OUTPUT VOLTAGE (V)
0.791
0.789
0.787 0 2000 4000 6000 8000 10,000
VIN = 13V
LOAD CURRENT (mA)
+125°C +25°C –40°C
VIN = 16.5V
+125°C +25°C –40°C
Figure 19. Output Voltage Accuracy—1.0 MHz, V
OUT
= 0.8 V
08730-118
1.818
1.816
1.814
1.812
1.810
1.808
1.806
1.804
1.802
1.800
1.798
1.796
1.794
1.792
1.790
1.788
1.786
1.784
OUTPUT VOLTAGE (V)
1.782
1.780
1.778
1.776
1.774
1.772
1.770 0 12,00010,500900075006000450030001500
VIN = 13V
LOAD CURRENT (mA)
+125°C +25°C –40°C
VIN = 16.5V
+125°C +25°C –40°C
Figure 17. Output Voltage Accuracy—600 kHz, V
5.030
5.025
5.020
5.015
5.010
5.005
5.000
4.995
4.990
OUTPUT VOLTAGE (V)
4.985
4.980
4.975
4.970
+125°C +25°C –40°C
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
VIN = 13V VIN = 16.5V VIN = 20V
LOAD CURRENT (mA)
Figure 18. Output Voltage Accuracy—600 kHz, V
= 1.8 V
OUT
OUT
= 5 V
1.820
1.815
1.810
1.805
1.800
OUTPUT VOLTAGE (V)
1.795
1.790
0
08730-016
VIN = 13V
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 20. Output Voltage Accuracy—1.0 MHz, V
5.04
5.03
5.02
5.01
5.00
4.99
4.98
4.97
4.96
4.95
OUTPUT VOLTAGE (V)
4.94
4.93
4.92
4.91
4.90
08730-017
VIN = 13V
LOAD CURRENT (mA)
Figure 21. Output Voltage Accuracy—1.0 MHz, V
+125°C +25°C –40°C
VIN = 16.5V
+125°C +25°C –40°C
VIN = 16.5V
+125°C +25°C –40°C
7200640056004800400024001600 32000 960088008000800
OUT
OUT
10,0000 1000 2000 3000 4000 5000 6000 7000 8000 9000
08730-019
= 1.8 V
08730-020
=5 V
Rev. A | Page 9 of 44
ADP1870/ADP1871
601.0
600.5
600.0
599.5
599.0
598.5
FEEDBACK VOLTAGE (V)
598.0
597.5
597.0
V
REG
–40.0 –7.5 25.0 57.5 90.0 122.5
= 5V, VIN = 20V
V
REG
= 5V, VIN = 13V
TEMPERATURE (°C)
Figure 22. Feedback Voltage vs. Temperature
08730-121
900
880
860
840
820
800
780
760
SWITCHING FREQUENCY (kHz)
740
720
700
13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5
+125°C +25°C –40°C
VIN (V)
Figure 25. Switching Frequency vs. High Input Voltage, 1.0 MHz,
Range = 13 V to 16.5 V
V
IN
08730-124
325
315
305
295
285
275
SWITCHI NG FREQUENCY (kHz)
265
255
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2
+125°C +25°C –40°C
VIN (V)
NO LOAD
08730-022
Figure 23. Switching Frequency vs. High Input Voltage, 300 kHz, ±10% of 12 V
650
600
550
500
SWITCHI NG FREQUENCY (kHz)
450
400
13.0 13.4 13.8 14.2 14.6 15.0 15.4 15.8 16.2
Figure 24. Switching Frequency vs. High Input Voltage, 600 kHz, V
+125°C +25°C –40°C
Range = 13 V to 16.5 V
V
IN
VIN (V)
NO LOAD
= 1.8 V,
OUT
08730-123
280
265
250
235
220
FREQUENCY (kHz)
205
190
VIN = 13V VIN = 20V VIN = 16.5V
0 10,0008000600040002000
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 26. Frequency vs. Load Current, 300 kHz, V
330
320
310
300
290
280
270
FREQUENCY (kHz)
260
250
240
0 15,0012,000 13,50010,500900075006000450030001500
VIN = 20V VIN = 13V VIN = 16.5V
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 27. Frequency vs. Load Current, 300 kHz, V
OUT
OUT
= 0.8 V
= 1.8 V
08730-025
08730-026
Rev. A | Page 10 of 44
ADP1870/ADP1871
338
334
330
326
322
318
314
FREQUENCY (kHz)
310
306
302
298
0 6400 7200 8000 8800560048004000320024001600800
VIN = 13V VIN = 16.5V
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 28. Frequency vs. Load Current, 300 kHz, V
OUT
08730-027
= 7 V
740 733 726 719 712 705 698 691 684 677 670 663
FREQUENCY (kHz)
656 649 642 635 628 621
0 96008800800072006400560048004000320024001600800
VIN = 13V VIN = 16.5V
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 31. Frequency vs. Load Current, 600 kHz, V
OUT
08730-030
= 5 V
540
510
480
450
420
390
FREQUENCY (kHz)
360
330
300
VIN = 13V VIN = 16.5V
0 12,0001200 2400 3600 4800 6000 7200 8400 9600 10,800
+125°C +25°C –40°C
LOAD CURRENT (mA)
Figure 29. Frequency vs. Load Current, 600 kHz, V
675
655
635
615
595
575
555
FREQUENCY (kHz)
535
515
495
VIN = 13V VIN = 16.5V
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
LOAD CURRENT (mA)
Figure 30. Frequency vs. Load Current, 600 kHz, V
OUT
OUT
= 0.8 V
+125°C +25°C –40°C
= 1.8 V
850
775
700
625
550
FREQUENCY (kHz)
475
400
08730-028
Figure 32. Frequency vs. Load Current, V
1225
1150
1075
1000
925
850
775
FREQUENCY (kHz)
700
625
550
08730-029
Figure 33. Frequency vs. Load Current, 1.0 MHz, V
VIN = 13V VIN = 16.5V
0 12,00010,0008000600040002000
VIN = 13V +125°C VIN = 16.5V
0 12,0009600 10,8008400720060004800360024001200
+125°C +25°C –40°C
LOAD CURRENT (mA)
+25°C –40°C
LOAD CURRENT (mA)
= 1.0 MHz, 0.8 V
OUT
= 1.8 V
OUT
08730-031
08730-032
Rev. A | Page 11 of 44
ADP1870/ADP1871
FREQUENCY (kHz)
1450
1400
1350
1300
1250
1200
1150
1100
1050
1000
VIN = 13V +125°C VIN = 16.5V
0 8000800 1600 2400 3200 4000 4800 5600 6400 7200
LOAD CURRENT (mA)
+25°C –40°C
Figure 34. Frequency vs. Load Current, 1.0 MHz, V
OUT
08730-033
= 5 V
82
80
78
76
74
72
70
68
MAXIMUM DUTY CY CLE (%)
66
64
62
5.5 6.7 7.9 9.1 10.3 11.5 12.7 13.9 15.1 16.3
+125°C +25°C –40°C
VIN (V)
Figure 37. Maximum Duty Cycle vs. High Voltage Input (VIN)
08730-036
2.658
2.657
2.656
2.655
2.654
2.653
UVLO (V)
2.652
2.651
2.650
2.649 –40 120100806040200–20
TEMPERATURE ( °C)
Figure 35. UVLO vs. Temperature
95
90
85
80
75
70
65
MAXIMUM DUTY CY CLE (%)
60
55
300 400 500 600 700 800 900 1000
FREQUENCY (kHz)
Figure 36. Maximum Duty Cycle vs. Frequency
+125°C +25°C –40°C
680
630
580
530
480
430
380
330
MINUMUM OF F-TIME (ns)
280
230
180
–40 120100806040200–20
08730-034
V
= 2.7V
REG
V
= 3.6V
REG
V
= 5.5V
REG
TEMPERATURE (°C)
08730-037
Figure 38. Minimum Off-Time vs. Temperature
680
630
580
530
480
430
380
330
MINUMUM OFF-TIME (ns)
280
230
180
2.7 5.55.14.74.33.93.53.1
08730-035
Figure 39. Minimum Off-Time vs. V
V
(V)
REG
(Low Input Voltage)
REG
+125°C +25°C –40°C
08730-038
Rev. A | Page 12 of 44
ADP1870/ADP1871
800
720
640
560
480
400
320
RECTIFI ER DROP (mV)
240
160
80
300 400 500 600 700 800 900 1000
V
= 2.7V
REG
V
= 3.6V
REG
V
= 5.5V
REG
+125°C +25°C –40°C
FREQUENCY (kHz)
Figure 40. Internal Rectifier Drop vs. Frequency
08730-039
80
72
64
56
48
40
32
24
BODY DIODE CONDUCT I ON TIME (n s)
16
8
2.73.13.53.94.34.75.15.5
300kHz +125°C 1MHz
V
(V)
REG
+25°C –40°C
Figure 43. Lower-Side MOSFET Body Diode Conduction Time vs. V
08730-042
REG
1280 1200 1120 1040
960 880 800 720 640 560 480
RECTIFI ER DROP (mV)
400 320 240 160
80
2.73.13.53.94.34.75.15.5
Figure 41. Internal Boost Rectifier Drop vs. V
720
640
560
480
400
VIN = 5.5V VIN = 13V VIN = 16.5V
300kHz +125°C 1MHz
Over V
1MHz 300kHz
V
REG
Variation
IN
+25°C –40°C
(V)
TA = 25°C
(Low Input Voltage)
REG
OUTPUT VOLTAGE
1
2
3
4
CH1 50mV
08730-040
CH3 10V
B
B
W
W
CH2 5A CH4 5V
INDUCTOR CURRENT
SW NODE
LOW SIDE
M400ns A CH2 3.90A
T 35.8%
08730-043
Figure 44. Power Saving Mode (PSM) Operational Waveform, 100 mA
OUTPUT VOLTAGE
1
INDUCTOR CURRENT
2
320
RECTIFI ER DROP (mV)
240
160
80
2.73.13.53.94.34.75.15.5
Figure 42. Internal Boost Rectifier Drop vs. V
V
(V)
REG
REG
08730-041
Rev. A | Page 13 of 44
3
4
CH1 50mV CH3 10V
B
B
W
W
CH2 5A CH4 5V
M4.0µs A CH2 3.90A
T 35.8%
Figure 45. PSM Waveform at Light Load, 500 mA
SW NODE
LOW SIDE
08730-044
ADP1870/ADP1871
OUTPUT VOLTAGE
4
INDUCTOR CURRENT
2
OUTPUT VO LTAGE
1
SW NODE
3
CH1 5A CH3 10V CH4 100mV
M400ns A CH3 2.20V
B
T 30.6%
W
Figure 46. CCM Operation at Heavy Load, 12 A
(See Figure 94 for Application Circuit)
OUTPUT VOLTAGE
2
12A STEP
1
3
4
CH1 10A CH2 200mV CH3 20V CH4 5V
B
M2ms A CH1 3.40A
W
T 75.6%
Figure 47. Load Transient Step—PSM Enabled, 12 A
(See Figure 94 Application Circuit)
SW NODE
LOW SIDE
1
3
SW NODE
LOW SIDE
12A NEGATIVE STEP
4
CH1 10A CH2 200mV
08730-045
CH3 20V CH4 5V
B
M20µs A CH1 3.40A
W
T 48.2%
08730-048
Figure 49. Negative Step During Heavy Load Transient Behavior—PSM Enabled,
12 A (See Figure 94 Application Circuit)
4
OUTPUT VO LTAGE
12A STEP
1
2
3
CH1 10A CH2 5V
08730-046
CH3 20V CH4 200mV
LOW SIDE
SW NODE
M2ms A CH1 6.20A
B
T 15.6%
W
08730-049
Figure 50. Load Transient Step—Forced PWM at Light Load, 12 A
(See Figure 94 Application Circuit)
2
12A POSITIVE ST EP
OUTPUT VOLTAGE
1
3
SW NODE
LOW SIDE
4
CH1 10A CH2 200mV CH3 20V CH4 5V
B
M20µs A CH1 3.40A
W
T 30.6%
08730-047
Figure 48. Positiv e Step During Heavy Load Trans ient Behavior—PSM Enabled,
12 A, V
= 1.8 V (See Figure 94 Application Circuit)
OUT
Rev. A | Page 14 of 44
OUTPUT VOLTAGE
4
12A POSITIVE STEP
1
2
3
SW NODE
CH1 10A CH2 5V CH3 20V CH4 200m V
M20µs A CH1 6.20A
B
T 43.8%
W
LOW SIDE
08730-050
Figure 51. Positive Step During Heavy Load Transient Behavior—Forced PWM
at Light Load, 12 A, V
= 1.8 V (See Figure 94 Application Circuit)
OUT
Loading...
+ 30 hidden pages