Analog Devices ADN2525 Datasheet

10.7 Gbps Active Back-Termination,

FEATURES

Up to 10.7 Gbps operation Very low power: 670 mW (IBIAS = 40 mA, IMOD = 40 mA) Typical 24 ps rise/fall times Full back-termination of output transmission lines Drives TOSAs with resistances ranging from 5 Ω to 50 Ω PECL-/CML-compatible data inputs Bias current range: 10 mA to 100 mA Differential modulation current range: 10 mA to 80 mA Automatic laser shutdown (ALS)
3.3 V operation Compact 3 mm × 3 mm LFCSP package Voltage input control for bias and modulation currents XFP-compliant bias current monitor Optical evaluation board available

APPLICATIONS

SONET OC-192 optical transceivers SDH STM-64 optical transceivers 10 Gb Ethernet optical transceivers XFP/X2/XENPAK/XPAK/MSA 300 optical modules SR and VSR optical links
Differential Laser Diode Driver
ADN2525

GENERAL DESCRIPTION

The ADN2525 laser diode driver is designed for direct modula­tion of packaged laser diodes having a differential resistance ranging from 5 Ω to 50 Ω. The active back-termination technique provides excellent matching with the output transmission lines while reducing the power dissipation in the output stage. The back-termination in the ADN2525 absorbs signal reflections from the TOSA end of the output transmission lines, enabling excellent optical eye quality to be achieved even when the TOSA end of the output transmission lines is significantly mis­terminated. The small package provides the optimum solution for compact modules where laser diodes are packaged in low pin-count optical subassemblies.
The modulation and bias currents are programmable via the MSET and BSET control pins. By driving these pins with control voltages, the user has the flexibility to implement various average power and extinction ratio control schemes, including closed-loop control and look-up tables. The automatic laser shutdown feature allows the user to turn on/off the bias and modulation currents by driving the ALS pin with the proper logic levels.
The product is available in a space-saving 3 mm × 3 mm LFCSP package specified from −40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

VCC ALS
VCC
5050
GND
DATAP
DATAN
800
200
MSET GND BSET
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
VCC
Figure 1.
ADN2525
50IMOD
VCC
800
200
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
200 2
www.analog.com
IMODP
IMODN
IBMON IBIAS
02461-001
ADN2525
TABLE OF CONTENTS
Specifications..................................................................................... 3
Thermal Specifications ................................................................ 4
Absolute Maximum Ratings............................................................ 5
ESD Caution.................................................................................. 5
Pin Configuration and Function Descriptions............................. 6
Typical Performance Characteristics ............................................. 7
Theory of Operation ........................................................................ 9
Input Stage ..................................................................................... 9
Bias Current .................................................................................. 9
Automatic Laser Shutdown (ALS) ........................................... 10
Modulation Current ................................................................... 10
REVISION HISTORY
3/05—Revision 0: Initial Version
Load Mis-termination ............................................................... 12
Power Consumption .................................................................. 12
Applications Information .............................................................. 13
Typical Application Ci rc u it ....................................................... 13
Layout Guidelines....................................................................... 13
Design Example.......................................................................... 14
Headroom Calculations ........................................................ 14
BSET and MSET Pin Voltage Calculation .......................... 14
Outline Dimensions ....................................................................... 15
Ordering Guide .......................................................................... 15
Rev. 0 | Page 2 of 16
ADN2525

SPECIFICATIONS

VCC = VCC Typical values are specified at 25°C, IMOD = 40 mA.
Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
BIAS CURRENT (IBIAS)
Bias Current Range 10 100 mA Bias Current while ALS Asserted 100 µA ALS = high Compliance Voltage1 0.6 VCC – 1.2 V IBIAS = 100 mA
0.6 VCC – 0.8 V IBIAS = 10 mA MODULATION CURRENT (IMODP, IMODN)
Modulation Current Range 10 80 mA diff R Modulation Current while ALS Asserted 0.5 mA diff ALS = high Rise Time (20% to 80%) Fall Time (20% to 80%) Random Jitter Deterministic Jitter3, Differential |S22| −10 dB 5 GHz < F < 10 GHz, Z0 = 50 Ω differential
−14 dB F < 5 GHz, Z0 = 50 Ω differential Compliance Voltage1 VCC − 1.1 VCC + 1.1 V
DATA INPUTS (DATAP, DATAN)
Input Data Rate 10.7 Gbps NRZ Differential Input Swing 0.4 1.6 V p-p diff Differential ac-coupled Differential |S11| −16.8 dB F < 10 GHz, Z0 = 100 Ω differential Input Termination Resistance 85 100 115 Differential
BIAS CONTROL INPUT (BSET)
BSET Voltage to IBIAS Gain 75 100 120 mA/V BSET Input Resistance 800 1000 1200
MODULATION CONTROL INPUT (MSET)
MSET Voltage to IMOD Gain 70 88 110 mA/V See Figure 29 MSET Input Resistance 800 1000 1200
BIAS MONITOR (IBMON)
IBMON to IBIAS Ratio 10 µA/mA Accuracy of IBIAS to IBMON Ratio −5.0 +5.0 %
−4.0 +4.0 %
−2.5 +2.5 %
−2 +2 %
AUTOMATIC LASER SHUTDOWN (ALS)
V
IH
V
IL
I
IL
I
IH
ALS Assert Time 10 µs Rising edge of ALS to fall of IBIAS and IMOD below
ALS Negate Time 10 µs Falling edge of ALS to rise of IBIAS and IMOD above
POWER SUPPLY
V
CC
I
CC5
I
SUPPLY6
1
Refers to the voltage between the pin for which the compliance voltage is specified and GND.
2
The pattern used is composed by a repetitive sequence of eight 1s followed by eight 0s at 10.7 Gbps.
3
Measured using the high speed characterization circuit shown in Figure 3.
4
The pattern used is K28.5 (00111110101100000101) at 10.7 Gbps rate.
5
Only includes current in the ADN2525 VCC pins.
6
Includes current in ADN2525 VCC pins and dc current in IMODP and IMODN pull-up inductors. See the section for total supply current calculation. Power Consumption
to VCC
MIN
2, 3
0.4 0.9 ps rms
, TA = −40°C to +85°C, 50 Ω differential load resistance, unless otherwise noted.
MAX
LOAD
2, 3
24 32.5 ps
2, 3
24 32.5 ps
4
7.2 12 ps p-p
10 mA IBIAS < 20 mA, R 20 mA IBIAS < 40 mA, R 40 mA IBIAS < 70 mA, R 70 mA IBIAS < 100 mA, R
2.4 V
0.8 V
−20 +20 µA 0 200 µA
10% of nominal; see Figure 2
90% of nominal; see Figure 2
3.07 3.3 3.53 V 39 45 mA V 157 176 mA V
BSET
BSET
= 5 Ω to 50 Ω differential
IBMON
IBMON
IBMON
IBMON
= V
= 0 V
MSET
= V
MSET
= 0 V. I
= ICC + IMODP + IMODN
SUPPLY
= 1 kΩ
= 1 kΩ
= 1 kΩ
= 1 kΩ
Rev. 0 | Page 3 of 16
ADN2525
VEEV
V

THERMAL SPECIFICATIONS

Table 2.
Parameter Min Typ Max Unit Conditions/Comments
θ
J-PAD
θ
J-TOP
IC Junction Temperature 125 °C
2.6 5.8 10.7 °C/W Thermal resistance from junction to bottom of exposed pad.
65 72.2 79.4 °C/W Thermal resistance from junction to top of package.
ALS
IBIAS
AND IMOD
90%
ALS
NEGATE TIME
t
= 50
Z
0
J2
GND GND GND
J3
GND GND
10%
ALS
ASSERT TIME
Figure 2. ALS Timing Diagram
EE
TP1
VCC
DATAP
DATAN
VCC
VEE
1k
TP2
ADN2525
J8 J5
VBSET
BSET IBMON IBIAS GND
GND
= 50 Z0 = 25 Z0 = 50
Z
0
10nF
10nF
GND
MSET NC1 ALS GND
VMSET
GND
10
IMODP
IMODN
VCC
VCC
VEE
EE
10nF
10nF
22µF
GND
GND
GND
Z
= 25 Z0 = 50Z0 = 50Z0 = 50
0
GND
GND
t
02461-002
GND
BIAS TEE
35
35
GND
GND
BIAS TEE GND
BIAS TEE: Picosecond Pulse Labs Model 5542-219 Adapter: Pasternack PE-9436 2.92mm female-to-female adapter Attenuator: Pasternack PE-7046 2.92mm 20dB attenuator
70
GNDGND
VEE
ADAPTER
ADAPTER
ATTENUATOR
ATTENUATOR
GND
50
OSCILLOSCOPE
50
GND
GND GND GND
02461-003
Figure 3. High Speed Characterization Circuit
Rev. 0 | Page 4 of 16
ADN2525

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Min Max Unit
Supply Voltage, VCC to GND −0.3 +4.2 V IMODP, IMODN to GND VCC − 1 .5 4.75 V DATAP, DATAN to GND VCC − 1.8 VCC − 0.4 V All Other Pins −0.3 VCC + 0.3 V Junction Temperature 150 °C Storage Temperature −65 +150 °C Soldering Temperature
(Less than 10 sec)
240 °C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 5 of 16
Loading...
+ 11 hidden pages