ANALOG DEVICES ADM1168 Service Manual

Super Sequencer and Monitor with
V

FEATURES

Complete supervisory and sequencing solution for up to
8 supplies 16 event deep black box nonvolatile fault recording 8 supply fault detectors enable supervision of supplies to
<0.5% accuracy at all voltages at 25°C
<1.0% accuracy across all voltages and temperatures 4 selectable input attenuators allow supervision of supplies to
14.4 V on VH
6 V on VP1 to VP3 (VPx) 4 dual-function inputs, VX1 to VX4 (VXx)
High impedance input to supply fault detector with
thresholds between 0.573 V and 1.375 V
General-purpose logic input 8 programmable driver outputs, PDO1 to PDO8 (PDOx)
Open-collector with external pull-up
Push/pull output, driven to VDDCAP or VPx
Open-collector with weak pull-up to VDDCAP or VPx
Internally charge-pumped high drive for use with external
NFET (PDO1 to PDO6 only)
Sequencing engine (SE) implements state machine control of
PDO outputs
State changes conditional on input events Enables complex control of boards Power-up and power-down sequence control Fault event handling Interrupt generation on warnings Watchdog function can be integrated in SE Program software control of sequencing through SMBus
Device powered by the highest of VPx, VH for improved
redundancy User EEPROM: 256 bytes Industry-standard 2-wire bus interface (SMBus) Guaranteed PDO low with VH, VPx = 1.2 V Available in 32-lead, 7 mm × 7 mm LQFP

APPLICATIONS

Central office systems Servers/routers Multivoltage system line cards DSP/FPGA supply sequencing In-circuit testing of margined supplies
Nonvolatile Fault Recording
ADM1168

FUNCTIONAL BLOCK DIAGRAM

REFOUT REFGND
VREF
ADM1168
VX1
VX2
VX3
VX4
VP1
VP2
VP3
VH
AGND
DDCAP
DUAL-
FUNCTION
INPUTS
(LOGIC INPUTS
OR
SFDs)
PROGRAMMABLE
RESET
GENERATORS
(SFDs)
VDD
ARBITRATO R
VCCP
SEQUENCING
ENGINE
GND
Figure 1.

GENERAL DESCRIPTION

The ADM1168 Super Sequencer® is a configurable supervisory/ sequencing device that offers a single-chip solution for supply monitoring and sequencing in multiple supply systems.
The device also provides up to eight programmable inputs for monitoring undervoltage faults, overvoltage faults, or out-of-window faults on up to eight supplies. In addition, eight programmable outputs can be used as logic enables. Six of these programmable outputs can also provide up to a 12 V output for driving the gate of an NFET that can be placed in the path of a supply.
The logical core of the device is a sequencing engine. This state machine-based construction provides up to 63 different states. This design enables very flexible sequencing of the outputs based on the condition of the inputs.
A block of nonvolatile EEPROM is available that can be used to store user-defined information and may also be used to hold a number of fault records that are written by the sequencing engine defined by the user when a particular fault or sequence occurs.
The ADM1168 is controlled via configuration data that can be programmed into an EEPROM. The whole configuration can be programmed using an intuitive GUI-based software package provided by Analog Devices, Inc.
For more information about the ADM1168 register map, refer
AN-721 Application Note.
to the
SDASCLA1A0
SMBus
INTERFACE
EEPROMFAULT RECO RDING
CONFIGURABLE
OUTPUT
DRIVERS
(HV CAPABLE OF
DRIVING GATES
OF NFET)
CONFIGURABLE
OUTPUT
DRIVERS
(LV CAPABLE
OF DRIVING
LOGI C SIGNALS)
PDO1
PDO2
PDO3
PDO4
PDO5
PDO6
PDO7
PDO8
PDOGND
09474-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
ADM1168

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Detailed Block Diagram .................................................................. 3
Specifications..................................................................................... 4
Absolute Maximum Ratings............................................................ 6
Thermal Resistance ...................................................................... 6
ESD Caution.................................................................................. 6
Pin Configuration and Function Descriptions............................. 7
Typical Performance Characteristics ............................................. 8
Powering the ADM1168................................................................ 10
Inputs................................................................................................ 11
Supply Supervision..................................................................... 11
Programming the Supply Fault Detectors............................... 11
Input Comparator Hysteresis.................................................... 12
Input Glitch Filtering ................................................................. 12
Supply Supervision with VXx Inputs....................................... 13
VXx Pins as Digital Inputs........................................................ 13
Outputs ............................................................................................ 14
Supply Sequencing Through Configurable Output Drivers. 14
Default Output Configuration.................................................. 14
Sequencing Engine......................................................................... 15
Overview ..................................................................................... 15
Warnings...................................................................................... 15
SMBus Jump (Unconditional Jump)........................................ 15
Sequencing Engine Application Example............................... 16
Fault and Status Reporting........................................................ 17
Nonvolatile Black Box Fault Recording................................... 17
Black Box Writes with No External Supply ............................ 18
Applications Diagram.................................................................... 19
Communicating with the ADM1168........................................... 20
Configuration Download at Power-Up................................... 20
Updating the Configuration ..................................................... 20
Updating the Sequencing Engine............................................. 21
Internal Registers........................................................................ 21
EEPROM ..................................................................................... 21
Serial Bus Interface..................................................................... 22
SMBus Protocols for RAM and EEPROM.............................. 24
Write Operations........................................................................ 24
Read Operations......................................................................... 25
Outline Dimensions....................................................................... 27
Ordering Guide .......................................................................... 27

REVISION HISTORY

4/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 28
ADM1168

DETAILED BLOCK DIAGRAM

VX1
VX2
VX3
VX4
VP1
VP2
ADM1168
SELECTABLE
ATTENUATOR
REFOUT REFGND
VREF
GPI SIGNAL
CONDITIONING
SFD
GPI SIGNAL
CONDITIONING
SFD
SFD
SDA SCL A1 A0
SMBus
INTERFACE
DEVICE
CONTROLLER
FAULT
RECORDING
SEQUENCING
ENGINE
OSC
EEPROM
CONFIGURABLE
OUTPUT DRIVER
(HV)
CONFIGURABLE
OUTPUT DRIVER
(HV)
CONFIGURABLE
OUTPUT DRIVER
(LV)
PDO1
PDO2
PDO3
PDO4
PDO5
PDO6
PDO7
VP3
VH
AGND
VDDCAP
SELECTABLE
ATTENUATOR
VDD
ARBITRATOR
CHARGE PUMP
GND
SFD
REG 5.25V
VCCP
CONFIGURABLE
OUTPUT DRIVER
(LV)
PDO8
PDOGND
09474-002
Figure 2. Detailed Block Diagram
Rev. 0 | Page 3 of 28
ADM1168

SPECIFICATIONS

VH = 3.0 V to 14.4 V1, VPx = 3.0 V to 6.0 V1, TA = −40°C to +85°C, unless otherwise noted.
Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
POWER SUPPLY ARBITRATION
VH, VPx 3.0 V Minimum supply required on one of the VH, VPx pins VPx 6.0 V Maximum VDDCAP = 5.1 V typical VH 14.4 V VDDCAP = 4.75 V VDDCAP 2.7 4.75 5.4 V Regulated LDO output C
10 μF Minimum recommended decoupling capacitance
VDDCAP
POWER SUPPLY
Supply Current, IVH, I Additional Currents
All PDOx FET Drivers On 1 mA
Current Available from VDDCAP 2 mA
EEPROM Erase Current 10 mA 1 ms duration only, VDDCAP = 3 V
SUPPLY FAULT DETECTORS
VH Pin
Input Impedance 52 Input Attenuator Error ±0.05 % Midrange and high range Detection Ranges
High Range 6 14.4 V
Midrange 2.5 6 V
VPx Pins
Input Impedance 52 Input Attenuator Error ±0.05 % Low range and midrange Detection Ranges
Midrange 2.5 6 V
Low Range 1.25 3 V
Ultralow Range 0.573 1.375 V No input attenuation error
VXx Pins
Input Impedance 1 Detection Ranges
Ultralow Range 0.573 1.375 V No input attenuation error
Absolute Accuracy ±1 %
Threshold Resolution 8 Bits Digital Glitch Filter 0 μs Minimum programmable filter length
100 μs Maximum programmable filter length
REFERENCE OUTPUT
Reference Output Voltage 2.043 2.048 2.053 V No load Load Regulation −0.25 mV Sourcing current
0.25 mV Sinking current Minimum Load Capacitance 1 μF Capacitor required for decoupling, stability PSRR 60 dB DC
4.2 6 mA VDDCAP = 4.75 V, PDO1 to PDO8 off
VPx
VDDCAP = 4.75 V, PDO1 to PDO6 loaded with 1 μA each, PDO7 to PDO8 off
Maximum additional load that can be drawn from all PDO pull-ups to VDDCAP
Internal reference VREF error + DAC nonlinearity + comparator offset error
Rev. 0 | Page 4 of 28
ADM1168
Parameter Min Typ Max Unit Test Conditions/Comments
PROGRAMMABLE DRIVER OUTPUTS
High Voltage (Charge Pump) Mode
(PDO1 to PDO6) Output Impedance 500 V
11 12.5 14 V IOH = 0 μA
OH
10.5 12 13.5 V IOH = 1 μA I
20 μA 2 V < VOH < 7 V
OUTAVG
Standard (Digital Output) Mode
(PDO1 to PDO8) VOH 2.4 V VPU (pull-up to VDDCAP or VPx) = 2.7 V, IOH = 0.5 mA
4.5 V VPU to VPx = 6.0 V, IOH = 0 mA V VOL 0 0.50 V IOL = 20 mA
2
I
20 mA Maximum sink current per PDO pin
OL
2
I
60 mA Maximum total sink for all PDO pins
SINK
R
16 20 29 Internal pull-up
PULL-UP
I
(VPx)2 2 mA
SOURCE
Three-State Output Leakage Current 10 μA V
Oscillator Frequency 90 100 110 kHz All on-chip time delays derived from this clock
DIGITAL INPUTS (VXx, A0, A1)
Input High Voltage, VIH 2.0 V Maximum VIN = 5.5 V
Input Low Voltage, VIL 0.8 V Maximum VIN = 5.5 V
Input High Current, IIH −1 μA VIN = 5.5 V
Input Low Current, IIL 1 μA VIN = 0 V
Input Capacitance 5 pF
Programmable Pull-Down Current,
PULL-DOWN
I
SERIAL BUS DIGITAL INPUTS (SDA, SCL)
Input High Voltage, VIH 2.0 V
Input Low Voltage, VIL 0.8 V
Output Low Voltage, V
2
0.4 V I
OL
SERIAL BUS TIMING See Figure 27
Clock Frequency, f
Bus Free Time, t
Start Setup Time, t
Stop Setup Time, t
Start Hold Time, t
SCL Low Time, t
SCL High Time, t
400 kHz
SCLK
1.3 μs
BUF
0.6 μs
SU;STA
0.6 μs
SU;STO
0.6 μs
HD;STA
1.3 μs
LOW
0.6 μs
HIGH
SCL, SDA Rise Time, tr 300 ns
SCL, SDA Fall Time, tf 300 ns
Data Setup Time, t
Data Hold Time, t
100 ns
SU;DAT
250 ns
HD;DAT
Input Low Current, IIL 1 μA VIN = 0 V
SEQUENCING ENGINE TIMING
State Change Time 10 μs
1
At least one of the VH, VPx pins must be ≥3.0 V to maintain the device supply on VDDCAP.
2
Specification is not production tested but is supported by characterization data at initial product release.
− 0.3 V VPU ≤ 2.7 V, IOH = 0.5 mA
PU
Current load on any VPx pull-ups, that is, total source current available through any number of PDO pull-up switches configured onto any one VPx pin
= 14.4 V
PDO
20 μA VDDCAP = 4.75 V, T
= −3.0 mA
OUT
= 25°C, if known logic state is required
A
Rev. 0 | Page 5 of 28
ADM1168

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
Voltage on VH Pin 16 V Voltage on VPx Pins 7 V Voltage on VXx Pins −0.3 V to +6.5 V Voltage on A0, A1 Pins −0.3 V to +7 V Voltage on REFOUT Pin 5 V Voltage on VDDCAP, VCCP Pins 6.5 V Voltage on PDOx Pins 16 V Voltage on SDA, SCL Pins 7 V Voltage on GND, AGND, PDOGND,
REFGND Pins Input Current at Any Pin ±5 mA Package Input Current ±20 mA Maximum Junction Temperature (TJ max) 150°C Storage Temperature Range −65°C to +150°C Lead Temperature, Soldering Vapor Phase, 60 sec 215°C ESD Rating, All Pins 2000 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
−0.3 V to +0.3 V

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type θJA Unit
32-Lead LQFP 54 °C/W

ESD CAUTION

Rev. 0 | Page 6 of 28
ADM1168
D

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

GND
VDDCAP
SDA
SCLA1A0
VCCP
PDOGN
NCNCNC
25
4
PDO1 PDO2 PDO3 PDO4 PDO5 PDO6 PDO7 PDO8
17
16
NC
09474-003
32
12
VX1 VX2 VX3 VX4 VP1 VP2 VP3
VH
NC = NO CONNECT. DO NOT CONNECT TO THI S PIN.
8
PIN 1 INDICATO R
ADM1168
(Not to Scale)
9
AGND
REFGND
TOP VIEW
NC
REFOUT
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 to 4 VX1 to VX4
High Impedance Inputs to Supply Fault Detectors. Fault thresholds can be set from 0.573 V to 1.375 V. Alternatively, these pins can be used as general-purpose digital inputs.
5 to 7 VP1 to VP3
Low Voltage Inputs to Supply Fault Detectors. Three input ranges can be set by altering the input attenuation on a potential divider connected to these pins, the output of which connects to a supply fault detector. These pins allow thresholds from 2.5 V to 6 V, from 1.25 V to 3 V, and from 0.573 V to 1.375 V.
8 VH
High Voltage Input to Supply Fault Detectors. Three input ranges can be set by altering the input attenuation on a potential divider connected to this pin, the output of which connects to a supply fault detector.
This pin allows thresholds from 6 V to 14.4 V and from 2.5 V to 6 V. 9 AGND1 Ground Return for Input Attenuators. 10 REFGND1 Ground Return for On-Chip Reference Circuits. 11, 13 to 16 NC No Connect. 12 REFOUT
Reference Output, 2.048 V. Note that a capacitor must always be connected between this pin and REFGND.
A 10 μF capacitor is recommended for this purpose. 17 to 24 PDO8 to PDO1 Programmable Output Drivers. 25 PDOGND1 Ground Return for Output Drivers. 26 VCCP
Central Charge-Pump Voltage of 5.25 V. A reservoir capacitor must be connected between this pin and
GND. A 10 μF capacitor is recommended for this purpose. 27 A0 Logic Input. This pin sets the seventh bit of the SMBus interface address. 28 A1 Logic Input. This pin sets the sixth bit of the SMBus interface address. 29 SCL SMBus Clock Pin. Bidirectional open drain requires external resistive pull-up. 30 SDA SMBus Data Pin. Bidirectional open drain requires external resistive pull-up. 31 VDDCAP
Device Supply Voltage. Linearly regulated from the highest of the VPx and VH pins to a typical of 4.75 V.
A capacitor must be connected between this pin and GND. A 10 μF capacitor is recommended for
this purpose. 32 GND1 Supply Ground.
1
In a typical application, all ground pins are connected together.
Rev. 0 | Page 7 of 28
ADM1168

TYPICAL PERFORMANCE CHARACTERISTICS

(V)
VDDCAP
V
6
5
4
3
2
1
0
0654321
Figure 4. V
V
VP1
VDDCAP
(V)
vs. V
09474-050
VP1
180
160
140
120
100
(µA)
80
VP1
I
60
40
20
0
0123456
(V)
V
VP1
Figure 7. I
vs. V
VP1
(VP1 Not as Supply)
VP1
09474-053
6
5
4
(V)
3
VDDCAP
V
2
1
0
011412108642
(V)
V
VH
Figure 5. V
5.0
4.5
4.0
3.5
3.0
2.5
(mA)
VP1
I
2.0
1.5
1.0
0.5
0
0123456
Figure 6. I
VP1
vs. V
vs. VVH
VDDCAP
(V)
V
VP1
(VP1 as Supply)
VP1
5.0
4.5
4.0
3.5
3.0
2.5
(mA)
VH
I
2.0
1.5
1.0
0.5
350
300
250
200
(µA)
VH
150
I
100
50
0
011412108642
0
0654321
Figure 8. I
Figure 9. I
vs. VVH (VH as Supply)
VH
vs. VVH (VH Not as Supply)
VH
6
09474-051
09474-052
6
(V)
V
VH
V
(V)
VH
09474-054
09474-055
Rev. 0 | Page 8 of 28
ADM1168
14
12
(V)
10
PDO1
8
6
4
CHARGE-PUMPED V
2
0
0 15.012.510.07.55.02.5
Figure 10. Charge-Pumped V
I
(µA)
LOAD
(FET Drive Mode) vs. I
PDO1
LOAD
09474-056
4.5
4.0
3.5
3.0
2.5
(V)
2.0
PDO1
V
1.5
1.0
0.5
0
065040302010
Figure 12. V
VP1 = 5V
VP1 = 3V
(µA)
I
LOAD
(Weak Pull-Up to VPx) vs. I
PDO1
LOAD
0
09474-058
5.0
4.5
4.0
3.5
3.0
(V)
2.5
PDO1
V
2.0
1.5
1.0
0.5
0
0654321
Figure 11. V
VP1 = 3V
(mA)
I
LOAD
(Strong Pull-Up to VPx) vs. I
PDO1
VP1 = 5V
LOAD
09474-057
2.058
2.053
2.048
REFOUT (V)
2.043
2.038 –40 –20 0 20 40 60 10080
TEMPERATURE (°C)
Figure 13. REFOUT vs. Temperature
VP1 = 3.0V
VP1 = 4.75V
09474-061
Rev. 0 | Page 9 of 28
Loading...
+ 19 hidden pages