ANALOG DEVICES ADL5350 Service Manual

LF to 4 GHz
R

FEATURES

Broadband radio frequency (RF), intermediate frequency (IF),
and local oscillator (LO) ports Conversion loss: 6.8 dB Noise figure: 6.5 dB High input IP3: 25 dBm High input P1dB: 19 dBm Low LO drive level Single-ended design: no need for baluns Single-supply operation: 3 V @ 19 mA Miniature, 2 mm × 3 mm, 8-lead LFCSP RoHS compliant

APPLICATIONS

Cellular base stations Point-to-point radio links RF instrumentation
High Linearity Y-Mixer
ADL5350

FUNCTIONAL BLOCK DIAGRAM

GND
ADL5350
RF IF
LO
LO
INPUT
Figure 1.
3V
RF
INPUT OR
OUTPUT
VPOS
OUTPUT O
INPUT
GND
IF
05615-001

GENERAL DESCRIPTION

The ADL5350 is a high linearity, up-and-down converting mixer capable of operating over a broad input frequency range. It is well suited for demanding cellular base station mixer designs that require high sensitivity and effective blocker immunity. Based on a GaAs pHEMT, single-ended mixer architecture, the ADL5350 provides excellent input linearity and low noise figure without the need for a high power level LO drive.
In 850 MHz/900 MHz receive applications, the ADL5350 provides a typical conversion loss of only 6.7 dB. The input IP3 is typically greater than 25 dBm, with an input compression point of 19 dBm. The integrated LO amplifier allows a low LO drive level, typically only 4 dBm for most applications.
The high input linearity of the ADL5350 makes the device an excellent mixer for communications systems that require high blocker immunity, such as GSM 850 MHz/900 MHz and 800 MHz CDMA2000. At 2 GHz, a slightly greater supply current is required to obtain similar performance.
The single-ended broadband RF/IF port allows the device to be customized for a desired band of operation using simple external filter networks. The LO-to-RF isolation is based on the LO rejection of the RF port filter network. Greater isolation can be achieved by using higher order filter networks, as described in the
Applications Information section.
The ADL5350 is fabricated on a GaAs pHEMT, high performance IC process. The ADL5350 is available in a 2 mm × 3 mm, 8-lead LFCSP. It operates over a −40°C to +85°C temperature range. An evaluation board is also available.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved.
ADL5350

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
850 MHz Receive Performance .................................................. 3
1950 MHz Receive Performance ................................................ 3
Spur Tables......................................................................................... 4
850 MHz Spur Table..................................................................... 4
1950 MHz Spur Table................................................................... 4
Absolute Maximum Ratings............................................................ 5
ESD Caution.................................................................................. 5
Pin Configuration and Function Descriptions............................. 6
Typical Perf or m an c e Charac t e r istics ..............................................7
850 MHz Characteristics..............................................................7
1950 MHz Characteristics......................................................... 12
Functional Description .................................................................. 17
Circuit Description .................................................................... 17
Implementation Procedure....................................................... 17
Applications Information.............................................................. 19
Low Frequency Applications .................................................... 19
High Frequency Applications................................................... 19
Evaluation Board ............................................................................ 21
Outline Dimensions ....................................................................... 22
Ordering Guide .......................................................................... 22

REVISION HISTORY

2/08—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
ADL5350

SPECIFICATIONS

850 MHz RECEIVE PERFORMANCE

VS = 3 V, TA = 25°C, LO power = 4 dBm, re: 50 Ω, unless otherwise noted.
Table 1.
Parameter Min Typ Max Unit Conditions
RF Frequency Range 750 850 975 MHz LO Frequency Range 500 780 945 MHz Low-side LO IF Frequency Range 30 70 250 MHz Conversion Loss 6.7 dB fRF = 850 MHz, fLO = 780 MHz, fIF = 70 MHz SSB Noise Figure 6.4 dB fRF = 850 MHz, fLO = 780 MHz, fIF = 70 MHz Input Third-Order Intercept (IP3) 25 dBm
Input 1dB Compression Point (P1dB) 19.8 dBm fRF = 820 MHz, fLO = 750 MHz, fIF = 70 MHz LO-to-IF Leakage 29 dBc LO power = 4 dBm, fLO = 780 MHz LO-to-RF Leakage 13 dBc LO power = 4 dBm, fLO = 780 MHz RF-to-IF Leakage 19.5 dBc RF power = 0 dBm, fRF = 850 MHz, fLO = 780 MHz IF/2 Spurious −50 dBc RF power = 0 dBm, fRF = 850 MHz, fLO = 780 MHz Supply Voltage 2.7 3 3.5 V Supply Current 16.5 mA LO power = 4 dBm
= 849 MHz, f
f
RF1
each RF tone 0 dBm
= 850 MHz, fLO = 780 MHz, fIF = 70 MHz;
RF2

1950 MHz RECEIVE PERFORMANCE

VS = 3 V, TA = 25°C, LO power = 6 dBm, re: 50 Ω, unless otherwise noted.
Table 2.
Parameter Min Typ Max Unit Conditions
RF Frequency Range 1800 1950 2050 MHz LO Frequency Range 1420 1760 2000 MHz Low-side LO IF Frequency Range 50 190 380 MHz Conversion Loss 6.8 dB fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz SSB Noise Figure 6.5 dB fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz Input Third-Order Intercept (IP3) 25 dBm
Input 1dB Compression Point (P1dB) 19 dBm fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz LO-to-IF Leakage 13.5 dBc LO power = 6 dBm, fLO = 1760 MHz LO-to-RF Leakage 10.5 dBc LO power = 6 dBm, fLO = 1760 MHz RF-to-IF Leakage 11.5 dBc RF power = 0 dBm, fRF = 1950 MHz, fLO = 1760 MHz IF/2 Spurious −54 dBc RF power = 0 dBm, fRF = 1950 MHz, fLO = 1760 MHz Supply Voltage 2.7 3 3.5 V Supply Current 19 mA LO power = 6 dBm
= 1949 MHz, f
f
RF1
each RF tone 0 dBm
RF2
= 1951 MHz, fLO = 1760 MHz, fIF = 190 MHz;
Rev. 0 | Page 3 of 24
ADL5350

SPUR TABLES

All spur tables are (N × fRF) − (M × fLO) mixer spurious products for 0 dBm input power, unless otherwise noted. N.M. indicates that a spur was not measured due to it being at a frequency >6 GHz.

850 MHz SPUR TABLE

Table 3.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 –100 –20.6 –19.2 –15.3 –16.7 –38.4 –26.6 –22.1 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M . 1 –21.6 –5.6 –23. 6 –19. 6 –31.9 –28.7 –46.1 –48.5 –33. 2 N. M. N.M. N. M. N.M. N.M. N. M. N.M. 2 –50.0 –69.2 –50.5 –59.8 –49. 1 –57.5 –51.0 –77.7 –65.8 –60. 8 N.M. N.M. N. M. N.M. N.M. N.M. 3 –74.8 –66.0 –71.8 –68.1 –70. 2 –67.4 –66.9 –70.8 –85.2 –87. 3 –72.2 N. M. N.M. N.M. N.M . N.M. 4 –100 –92.6 –91.6 –96.1 –92.7 –98.7 –90.2 –91.7 –88.8 –100 –100 –91.7 –88.6 N.M. N.M. N.M. 5 –100 –100 –100 –100 –100 –100 –100 –100 –99.5 –100 –100 –100 –100 –100 N.M. N .M. 6 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 N.M.
N
7 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 8 N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 9 N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 10 N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 11 N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 12 N.M. N.M. N.M. N.M. N.M. N. M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 13 N.M. N.M. N.M. N.M. N.M. N. M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 14 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 15 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100

1950 MHz SPUR TABLE

M
05615–068
Table 4.
0 –100 –13.1 –32.8 –22.4 N.M. N.M. N. M. N.M . N.M. N.M. N.M. N.M . N.M. N.M. N.M. N. M. 1 –10. 8 –7. 0 –25.3 – 27.7 –33. 9 N.M. N.M. N.M. N.M. N.M. N.M . N.M. N. M. N.M. N. M. N. M. 2 –48. 2 –61. 2 –41. 2 –44.6 –47.0 –74.6 N.M. N.M. N.M. N.M. N. M. N.M . N.M. N.M. N.M. N. M. 3 –72. 3 –71. 4 –83. 6 –64.5 –62.4 –64.3 –83.7 N.M. N. M. N.M. N.M . N.M. N. M. N.M. N. M. N. M. 4 N. M. N.M. –91. 4 –84.2 –78.3 –76.5 –80.0 –92.0 N.M. N. M. N.M. N.M. N.M. N. M. N.M. N.M. 5 N. M. N.M. N.M . –90.8 –82.3 –77.1 –79.5 –83.8 –95.2 N. M. N.M. N.M. N.M. N.M. N.M. N.M. 6 N.M.N.M.N.M.N.M.–100 –100 –93.4 –94.5 –100 –99.2 –100 N.M. N.M. N.M. N. M. N.M.
N
7 N.M.N.M.N.M.N.M.N.M.≤–100 –100 –94.0 –96.4 –100 –100 –100 N.M. N. M. N.M. N.M. 8 N.M.N.M.N.M.N.M.N.M.N.M.–100 –100 –100 –100 –100 –100 –100 N.M . N.M. N.M. 9 N.M.N.M.N.M.N.M.N.M.N.M.N.M.≤–100 ≤–100 ≤–100 ≤–100 ≤–100 ≤–100 ≤–100 N .M. N. M. 10 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 N.M. 11 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 12 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 13 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 14 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 15 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100
0123456789101112131415
M
05615–069
Rev. 0 | Page 4 of 24
ADL5350

ABSOLUTE MAXIMUM RATINGS

Table 5.
Parameter Rating
Supply Voltage, VS 4.0 V RF Input Level 23 dBm LO Input Level 20 dBm Internal Power Dissipation 324 mW θJA 154.3°C/W Maximum Junction Temperature 135°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. 0 | Page 5 of 24
ADL5350

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1RF/IF
2GND2
ADL5350
TOP VIEW
3LOIN
(Not to Scale)
4NC
NC = NO CONNECT
Figure 2. Pin Configuration
8 RF/IF
7NC
6 VPOS
5 GND1
05615-002
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
1, 8 RF/IF
RF and IF Input/Output Ports. These nodes are internally tied together. RF and IF port separation is
achieved using external tuning networks. 2, 5, Paddle GND2, GND1, GND Device Common (DC Ground). 3 LOIN LO Input. Needs to be ac-coupled. 4, 7 NC No Connect. Grounding NC pins is recommended. 6 VPOS
Positive Supply Voltage for the Drain of the LO Buffer. A series RF choke is needed on the supply line
to provide proper ac loading of the LO buffer amplifier.
Rev. 0 | Page 6 of 24
ADL5350

TYPICAL PERFORMANCE CHARACTERISTICS

850 MHz CHARACTERISTICS

Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.
20
19
18
17
16
15
14
13
SUPPLY CURRENT (mA)
12
11
10
40–200 20406080
TEMPERATURE ( °C)
Figure 3. Supply Current vs. Temperature
10
9
8
7
6
5
4
3
CONVERSION LOSS (dB)
2
1
0
–40 806040200–20
TEMPERATURE ( °C)
Figure 4. Conversion Loss vs. Temperature
28
27
26
25
24
23
22
INPUT IP3 (dBm)
21
20
19
18
–40 806040200–20
TEMPERATURE ( °C)
Figure 5. Input IP3 (IIP3) vs. Temperature
05615-003
05615-004
05615-005
INPUT P1dB (dBm)
22
20
18
16
14
SUPPLY CURRENT (mA)
12
10
7.4
7.2
7.0
6.8
6.6
6.4
CONVERSION LOSS (dB)
6.2
6.0
23
22
21
20
19
18
17
16
15
14
13
–40 806040200–20
TEMPERATURE ( °C)
Figure 6. Input P1dB vs. Temperature
+25°C
–40°C +85°C
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 7. Supply Current vs. Supply Voltage
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 8. Conversion Loss vs. Supply Voltage
+85°C
+25°C
–40°C
05615-006
05615-007
05615-008
Rev. 0 | Page 7 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.
28
22
INPUT IP3 (dBm)
INPUT P1dB (dBm)
27
26
25
24
23
22
2.7 3.53.43.33.23.13.02.92.8
23
22
21
20
19
18
17
+85°C
SUPPLY VOLTAGE (V)
Figure 9. Input IP3 vs. Supply Voltage
–40°C
+25°C
+85°C
–40°C
+25°C
20
18
16
14
SUPPLY CURRENT (mA)
12
10
750 975950925900875850825800775
05615-009
–40°C
+25°C
RF FREQUENCY ( MHz)
+85°C
05615-012
Figure 12. Supply Current vs. RF Frequency
7.6
7.4
7.2
7.0
6.8
6.6
6.4
CONVERSION LOSS (dB)
6.2
6.0
+85°C
+25°C
–40°C
NOISE FI GURE (dB)
16
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 10. Input P1dB vs. Supply Voltage
8.0
7.5
7.0
6.5
6.0
5.5
5.0
2.7 3. 53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 11. Noise Figure vs. Supply Voltage
05615-010
05615-011
5.8 750 800 850 900 950
RF FREQUENCY (M Hz)
Figure 13. Conversion Loss vs. RF Frequency
27.0
26.5
INPUT IP3 (dBm)
26.0
25.5
25.0
24.5
24.0
23.5
23.0
22.5
22.0 750 975950925900875850825800775
+85°C
RF FREQUENCY (M Hz)
–40°C
+25°C
Figure 14. Input IP3 vs. RF Frequency
05615-013
05615-014
Rev. 0 | Page 8 of 24
Loading...
+ 16 hidden pages