ANALOG DEVICES ADIS16375 Service Manual

Low Profile, Low Noise
Six Degrees of Freedom Inertial Sensor

FEATURES

Triaxis digital gyroscope, ±300°/sec
Tight orthogonal alignment: 0.05° Triaxis digital accelerometer: ±18 g Delta-angle/velocity calculations Wide sensor bandwidth: 330 Hz High sample rate: 2.460 kSPS Autonomous operation and data collection
No external configuration commands required
Startup time: 500 ms Factory-calibrated sensitivity, bias, and axial alignment
Calibration temperature range: −40°C to +85°C SPI-compatible serial interface Embedded temperature sensor Programmable operation and control
Automatic and manual bias correction controls
4 FIR filter banks, 120 configurable taps
Digital I/O: data-ready, alarm indicator, external clock
Alarms for condition monitoring
Power-down/sleep mode for power management
Enable external sample clock input: up to 2.25 kHz
Single-command self test Single-supply operation: 3.3 V 2000 g shock survivability Operating temperature range: −40°C to +85°C

APPLICATIONS

Precision instrumentation Platform stabilization and control Industrial vehicle navigation Downhole instrumentation Robotics
ADIS16375

FUNCTIONAL BLOCK DIAGRAM

TEMPERATURE
SENSOR
TRIAXIS MEMS
ANGULAR RATE
SENSOR
TRIAXIS MEMS
ACCELERATIO N
SENSOR
SELF-TEST
ADIS16375
SIGNAL
CONDITIO NING
AND
CONVERSION
DIGITAL
CONTROL
RST
CALIBRATION
DIGITAL
PROCESSING
ALARMS
DIO3DIO2DIO1
Figure 1.
AND
DIO4
OUTPUT
REGISTERS
AND SPI
INTERFACE
POWER
MANAGEMENT

GENERAL DESCRIPTION

The ADIS16375 iSensor® is a complete inertial system that includes a triaxis gyroscope and triaxis accelerometer. Each sensor in the ADIS16375 combines industry-leading iMEMS® technology with signal conditioning that optimizes dynamic performance. The factory calibration characterizes each sensor for sensitivity, bias, alignment, and linear acceleration (gyro bias). As a result, each sensor has its own dynamic compensation formulas that provide accurate sensor measurements over a temperature range of −40°C to +85°C.
The ADIS16375 provides a simple, cost-effective method for integrating accurate, multiaxis, inertial sensing into industrial systems, especially when compared with the complexity and investment associated with discrete designs. All necessary motion testing and calibration are part of the production process at the factory, greatly reducing system integration time. Tight orthogonal alignment simplifies inertial frame alignment in navigation systems. An improved SPI interface and register structure provide faster data collection and configuration control.
This compact module is approximately 44 mm × 47 mm × 14 mm and provides a flexible connector interface that enables multiple mounting orientation options.
CS
SCLK
DIN
DOUT
VDDRTC
VCC
GND
09389-001
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010–2011 Analog Devices, Inc. All rights reserved.
ADIS16375

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Timing Specifications .................................................................. 5
Absolute Maximum Ratings............................................................ 6
ESD Caution.................................................................................. 6
Pin Configuration and Function Descriptions............................. 7
Typical Performance Characteristics ............................................. 8
Basic Operation................................................................................. 9
Register Structure......................................................................... 9
SPI Communication................................................................... 10
Device Configuration ................................................................ 10
Reading Sensor Data.................................................................. 10
User Registers.................................................................................. 11
Output Data Registers.................................................................... 13
Digital Signal Processing............................................................... 17
Sampling Plan............................................................................. 17
Averaging/Decimation Filter.................................................... 17
FIR Filter Banks.......................................................................... 17
Calibration....................................................................................... 19
Alarms.............................................................................................. 22
System Controls.............................................................................. 23
Global Commands ..................................................................... 23
Memory Management............................................................... 23
General-Purpose I/O ................................................................. 24
Power Management ................................................................... 24
Applications Information.............................................................. 26
Prototype Interface Board ......................................................... 26
Installation Tips.......................................................................... 26
Outline Dimensions....................................................................... 27
Ordering Guide .......................................................................... 27

REVISION HISTORY

7/11—Rev. A to Rev. B
Changes to Accelerometers, Nonlinearity Parameter and Power
Supply, VDD Parameter in Table 1................................................. 3
Changes to t
Changed Angular Displacement Heading to Delta Angles ...... 14
Changes to Delta Angles Section.................................................. 14
Changes to Table 28 and Velocity Changes Section................... 15
Change to Figure 18 ....................................................................... 17
Changes to Data-Ready Indicator Section and Input Sync/Clock
Control Section............................................................................... 24
Moved Real-Time Clock Configuration/Data Section, Table 96,
Table 97, and Table 98.................................................................... 25
Changes to Real-Time Clock Configuration/Data Section ...... 25
Changes to Prototype Interface Board Section........................... 26
, t
, t2, and t3 Parameters in Table 2................... 5
CLS
CHS
2/11—Rev. 0 to Rev. A
Changes to Gyroscopes Misalignment and Accelerometers
Misalignment Test Conditions/Comments, Table 1.....................3
Added Endnote 7...............................................................................4
Changes to Table 54 and Table 55 ................................................ 17
Changes to Table 57, Table 58, and Table 59............................... 18
10/10—Revision 0: Initial Version
Rev. B | Page 2 of 28
ADIS16375

SPECIFICATIONS

TA = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±300°/sec ± 1 g, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
GYROSCOPES
Dynamic Range ±300 ±350 °/sec
Sensitivity1 16-bit resolution, x_GYRO_OUT registers only 0.01311 °/sec/LSB
Initial Sensitivity Tolerance ±1 %
Sensitivity Temperature Coefficient −40°C ≤ TA ≤ +85°C ±40 ppm/°C
Misalignment Axis-to-axis ±0.05 Degrees
Axis-to-frame (package) ±1.0 Degrees
Nonlinearity Best-fit straight line ±0.025 % of FS
Initial Bias Error ±1 σ ±1.0 °/sec
In-Run Bias Stability 1 σ 12 °/hr
Angular Random Walk 1 σ 1.0 °/√hr
Bias Temperature Coefficient −40°C ≤ TA ≤ +85°C ±0.005 °/sec/°C
Linear Acceleration Effect on Bias Any axis, 1 σ (GEN_CONFIG[7] = 1) ±0.013 °/sec/g
Output Noise No filtering 0.45 °/sec rms
Rate Noise Density f = 25 Hz, no filtering 0.02 °/sec/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 14.5 kHz
ACCELEROMETERS Each axis
Dynamic Range ±18
Sensitivity1 16-bit resolution, x_ACCL_OUT registers only 0.8192 mg/LSB
Initial Sensitivity Tolerance ±1 %
Sensitivity Temperature Coefficient −40°C ≤ TA ≤ +85°C ±25 ppm/°C
Misalignment Axis-to-axis ±0.035 Degrees
Axis-to-frame (package) ±1.0 Degrees
Nonlinearity Best-fit straight line, ±10 g ±0.1 % of FS
Best-fit straight line, ±18 g ±0.5 % of FS
Initial Bias Error ±1 σ ±16 mg
In-Run Bias Stability 1 σ 0.13 mg
Velocity Random Walk 1 σ 0.076 m/sec/√hr
Bias Temperature Coefficient −40°C ≤ TA ≤ +85°C ±0.1 mg/°C
Output Noise No filtering 1.5 mg rms
Noise Density No filtering 0.06 mg/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 5.5 kHz
TEMPERATURE SENSOR
Scale Factor Output = 0x0000 at 25°C (±5°C) 0.00565 °C/LSB
LOGIC INPUTS2
Input High Voltage, VIH 2.0 V
Input Low Voltage, VIL 0.8 V
CS Wake-Up Pulse Width
Logic 1 Input Current, IIH V
Logic 0 Input Current, IIL V
All Pins Except RST RST Pin
Input Capacitance, CIN 10 pF
DIGITAL OUTPUTS
Output High Voltage, VOH I
Output Low Voltage, VOL I
20 μs
= 3.3 V 10 μA
IH
= 0 V
IL
10 μA
0.33 mA
= 0.5 mA 2.4 V
SOURCE
= 2.0 mA 0.4 V
SINK
g
Rev. B | Page 3 of 28
ADIS16375
Parameter Test Conditions/Comments Min Typ Max Unit
FLASH MEMORY Endurance3 100,000 Cycles
Data Retention4 T
FUNCTIONAL TIMES5 Time until data is available
Power-On Startup Time 500 ms Reset Recovery Time 500 ms Sleep Mode Recovery Time 500 μs Flash Memory Update Time 375 ms Flash Memory Test Time 50 ms Automatic Self Test Time Using internal clock, 100 SPS 10 ms
CONVERSION RATE 2.46 kSPS
Initial Clock Accuracy 0.02 % Temperature Coefficient 40 ppm/°C Sync Input Clock 0.76 2.25 kHz
POWER SUPPLY, VDD Operating voltage range 3.0 3.6 V
Power Supply Current7 Normal mode, VDD = 3.3 V 173 mA
Sleep mode, VDD = 3.3 V 12.3 mA Power-down mode, VDD = 3.3 V 120 μA POWER SUPPLY, VDDRTC Operating voltage range 3.3 V
Real-Time Clock Supply Current Normal mode, VDDRTC = 3.3 V 13 μA
1
Each gyroscope and accelerometer has 32 bits of available resolution. The 16-bit sensitivity shown reflects the register that contains the upper 16 bits of the sensor
output. Divide this number by 2 for every bit added to this resolution in downstream processing routines.
2
The digital I/O signals are driven by an internal 3.3 V supply, and the inputs are 5 V tolerant.
3
Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, +85°C, and +125°C.
4
The data retention lifetime equivalent is at a junction temperature (TJ) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with junction
temperature.
5
These times do not include thermal settling and internal filter response times (330 Hz bandwidth), which may affect overall accuracy.
6
The 0.7 kHz lower limit is established to support Nyquist sampling criteria for the 330 Hz sensor bandwidth.
7
During startup, the power supply current increases and experiences transient behaviors for a period of 400 μs. The peak current during the 400 μs transient period can
reach 1500 mA.
= 85°C 20 Years
J
Rev. B | Page 4 of 28
ADIS16375
C

TIMING SPECIFICATIONS

TA = 25°C, VDD = 3.3 V, unless otherwise noted.
Table 2.
Normal Mode Parameter Description Min1 Typ Max Unit
f
Serial clock 0.01 15 MHz
SCLK
t
Stall period between data 2 μs
STALL
t
Serial clock low period 31 ns
CLS
t
Serial clock high period 31 ns
CHS
tCS Chip select to clock edge 32 ns t
DOUT valid after SCLK edge 10 ns
DAV
t
DIN setup time before SCLK rising edge 2 ns
DSU
t
DIN hold time after SCLK rising edge 2 ns
DHD
tDR, tDF DOUT rise/fall times, ≤100 pF loading 3 8 ns t t
SFS
DSOE
high after SCLK edge
CS
assertion to data out active
CS tHD SCLK edge to data out invalid 0 ns t
DSHI
t
1
t
2
t
3
1
Guaranteed by design and characterization but not tested in production.
deassertion to data out high impedance
CS
Input sync pulse width 5 μs
Input sync to data-ready output 490 μs
Input sync period 500 μs

Timing Diagrams

32 ns 0 11 ns
0 9 ns
CS
SCLK
DOUT
DIN
CS
SCLK
t
t
CS
1 2 3 4 5 6 15 16
t
DSOE
MSB DB14
R/W A5A6 A4 A3 A2
t
DAV
t
DSU
CHS
t
HD
DB13 DB12 DB10DB11 DB2 LSBDB1
t
DHD
t
CLS
D2
Figure 2. SPI Timing and Sequence
t
STALL
Figure 3. Stall Time and Data Rate
SYNC
LOCK (CLKIN)
DATA
READY
OUTPUT
REGISTERS
t
3
t
1
DATA VALID DATA VALID
t
2
Figure 4. Input Clock Timing Diagram
Rev. B | Page 5 of 28
D1 LSB
09389-004
t
SFS
t
DSHI
09389-002
09389-003
ADIS16375

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Acceleration
Any Axis, Unpowered 2000 g
Any Axis, Powered 2000 g VCC to GND −0.3 V to +3.6 V Digital Input Voltage to GND −0.3 V to +3.6 V Digital Output Voltage to GND −0.3 V to +3.6 V Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C
1
Extended exposure to temperatures outside the specified temperature
range of −40°C to +85°C can adversely affect the accuracy of the factory calibration. For best accuracy, store the parts within the specified operating range of −40°C to +85°C.
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Table 4. Package Characteristics
Package Type θJA θJC Device Weight
24-Lead Module (ML-24-3) 20.5 6.3 25 g

ESD CAUTION

Rev. B | Page 6 of 28
ADIS16375
A

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

DIS16375
TOP VIEW
(Not to Scale)
DIO4
DOUT
CS
RST
VDD
VDD
GND
DNC
DNC
DNC
DNC
DNC
10
12
14
16
18
20
22
24
2
11
13
15
17
19
21
23
DNC
VDDRTC
NOTES
1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT FOR THE MATI NG SO CKET CO NNECTO R.
2. THE ACTUAL CONNECTOR PI NS ARE NOT VI SIBLE FROM THE TOP VIEW .
3. MATING CONNECTOR: S AMTEC CLM-112- 02 OR EQUIVAL ENT.
4. DNC = DO NOT CONNECT.
GND
DNC
DNC
VDD
GND
DIO2
3456789
1
DIN
DIO1
DIO3
SCLK
09389-005
Figure 5. Mating Connector Pin Assignments
PIN 23
PIN 1
09389-006
Figure 6. Axial Orientation (Top Side Facing Up)
Table 5. Pin Function Descriptions
Pin No. Mnemonic Typ e Description
1 DIO3 Input/Output Configurable Digital Input/Output. 2 DIO4 Input/Output Configurable Digital Input/Output. 3 SCLK Input SPI Serial Clock. 4 DOUT Output SPI Data Output. Clocks output on SCLK falling edge. 5 DIN Input SPI Data Input. Clocks input on SCLK rising edge. 6
CS
Input SPI Chip Select.
7 DIO1 Input/Output Configurable Digital Input/Output. 8
RST
Input Reset. 9 DIO2 Input/Output Configurable Digital Input/Output. 10, 11, 12 VDD Supply Power Supply. 13, 14, 15 GND Supply Power Ground. 16 to 22, 24 DNC Not applicable Do Not Connect. 23 VDDRTC Supply Real-Time Clock Power Supply.
Rev. B | Page 7 of 28
ADIS16375

TYPICAL PERFORMANCE CHARACTERISTICS

1000
100
AVERAGE
0.001 AVERAGE
+1σ
10
ALLAN VARIANCE (°/ Hour)
1
0.01 0.1 1 10 100 1000 10000
INTEGRATION PERIOD (Seconds)
Figure 7. Gyroscope Allan Variance, +25°C
+1σ
–1σ
0.0001
ALLAN VARIANCE ( g)
0.00001
0.01 0.1 1 10 100 1000 10000
09389-007
INTEGRATION PERIOD (Seconds)
–1σ
09389-008
Figure 8. Accelerometer Allan Variance, 25°C
Rev. B | Page 8 of 28
ADIS16375

BASIC OPERATION

The ADIS16375 is an autonomous sensor system that starts up on its own when it has a valid power supply. After running through its initialization process, it begins sampling, processing, and loading calibrated sensor data into the output registers, which are accessible using the SPI port. The SPI port typically connects to a compatible port on an embedded processor, using the connection diagram in Figure 9. The four SPI signals facilitate synchronous, serial data communication. Connect
RST
Tabl e 5
(see ) to VDD
or leave it open for normal operation. The factory default configuration provides users with a data-ready signal on the DIO2 pin, which pulses high when new data is available in the output data registers.
VDD
SYSTEM PROCESSOR SPI MASTER
I/O LI NES ARE COMPATIBLE WI TH
3.3V LOG IC LEVE LS
SS
SCLK
MOSI
MISO
IRQ DIO2
Figure 9. Electrical Connection Diagram
6
3
5
4
9
10
CS
SCLK
DIN
DOUT
13 14 15
+3.3V
11 12 23
ADIS16375
09389-010
Table 6. Generic Master Processor Pin Names and Functions
Mnemonic Function
SS
Slave select
IRQ Interrupt request MOSI Master output, slave input MISO Master input, slave output SCLK Serial clock
Embedded processors typically use control registers to configure their serial ports for communicating with SPI slave devices, such as the ADIS16375. Tabl e 7 provides a list of settings, which describe the SPI protocol of the ADIS16375. The initialization routine of the master processor typically establishes these settings using firmware commands to write them into its serial control registers.
Table 7. Generic Master Processor SPI Settings
Processor Setting Description
Master The ADIS16375 operates as a slave. SCLK ≤ 15 MHz Maximum serial clock rate. SPI Mode 3 CPOL = 1 (polarity), and CPHA = 1 (phase). MSB-First Mode Bit sequence. 16-Bit Mode Shift register/data length.

REGISTER STRUCTURE

The register structure and SPI port provide a bridge between the sensor processing system and an external, master processor. It contains both output data and control registers. The output data registers include the latest sensor data, a real-time clock, error flags, alarm flags, and identification data. The control registers include sample rate, filtering, input/output, alarms, calibration, and diagnostic configuration options. All communication between the ADIS16375 and an external processor involves either reading or writing to one of the user registers.
TRIAXIS
GYRO
TRIAXIS
ACCEL
TEMP
SENSOR
CONTROLL ER
Figure 10. Basic Operation
DSP
The register structure uses a paged addressing scheme that is comprised of 13 pages, with each one containing 64 register locations. Each register is 16-bits wide, with each byte having its own unique address within that page’s memory map. The SPI port has access to one page at a time, using the bit sequences in Figure 15. Select the page to activate for SPI access by writing its code to the PAGE_ID register. Read the PAGE_ID register to determine which page is currently active. Ta b le 8 displays the PAGE_ID contents for each page, along with their basic function. The PAGE_ID register is located at Address 0x00 on every page.
Table 8. User Register Page Assignments
Page PAGE_ID Function
0 0x00 Output data, clock, identification 1 0x01 Reserved 2 0x02 3 0x03 4 0x04 5 0x05 6 0 x06 7 0x07 8 0 x08 9 0x09 10 0x0A 11 0x0B
Calibration Control: sample rate, filtering, I/O, alarms Reserved FIR Filter Bank A Coefficients, 1 to 60 FIR Filter Bank A, Coefficients, 61 to 120 FIR Filter Bank B, Coefficients, 1 to 60 FIR Filter Bank B, Coefficients, 61 to 120 FIR Filter Bank C, Coefficients, 1 to 60 FIR Filter Bank C, Coefficients, 61 to 120 FIR Filter Bank D, Coefficients, 1 to 60
12 0x0C FIR Filter Bank D, Coefficients, 61 to 120
OUTPUT
REGISTERS
CONTROL
REGISTERS
SPI
09389-011
Rev. B | Page 9 of 28
Loading...
+ 19 hidden pages