Analog Devices ADG429TQ, ADG429BP, ADG429BN, ADG428TQ, ADG428BP Datasheet

...
LC2MOS Latchable 4-/8-Channel
ADG428
DECODERS/DRIVERS
LATCHES
WR
S1
S8
RS
D
A2 A1 A0 EN
DA
S1A
S4A
ADG429
DECODERS/DRIVERS
A1 A0 EN
DB
S1B
S4B
LATCHES
WR
RS
a
FEATURES 44 V Supply Maximum Ratings V
to VDD Analog Signal Range
SS
Low On Resistance (60 typ) Low Power Consumption (1.6 mW max) Low Charge Injection (<4 pC typ) Fast Switching Break-Before-Make Switching Action Plug-In Replacement for DG428/DG429
APPLICATIONS Automatic Test Equipment Data Acquisition Systems Communication Systems Avionics and Military Systems Microprocessor Controlled Analog Systems Medical Instrumentation
High Performance Analog Multiplexers
ADG428/ADG429
FUNCTIONAL BLOCK DIAGRAMS
GENERAL DESCRIPTION
The ADG428 and ADG429 are monolithic CMOS analog multiplexers comprising eight single channels and four differen­tial channels respectively. On-chip address and control latches facilitate microprocessor interfacing. The ADG428 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG429 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF. All the control inputs, address and enable inputs are TTL compatible over the full specified operating temperature range. This makes the part suitable for bus-controlled systems such as data acquisition sys­tems, process controls, avionics and ATEs because the TTL­compatible address latches simplify the digital interface design and reduce the board space required.
2
The ADG428/ADG429 are designed on an enhanced LC
MOS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. Inherent in the design is low charge injection for mini­mum transients when switching the digital inputs.
The ADG428/ADG429 are improved replacements for the DG428/DG429 Analog Multiplexers.
REV. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

PRODUCT HIGHLIGHTS

1. Extended Signal Range The ADG428/ADG429 are fabricated on an enhanced
2
MOS process, giving an increased signal range that ex-
LC tends to the supply rails.
2. Low Power Dissipation
3. Low R
ON
4. Single/Dual Supply Operation
5. Single Supply Operation For applications where the analog signal is unipolar, the ADG428/ADG429 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999
ADG428/ADG429–SPECIFICATIONS
1
DUAL SUPPLY
Parameter +25ⴗC +85ⴗC +25ⴗC +125ⴗC Units Test Conditions/Comments
ANALOG SWITCH
Analog Signal Range V R
ON
R
ON
LEAKAGE CURRENTS
Source OFF Leakage I
Drain OFF Leakage I
ADG428 ±0.07 ±0.7 ±0.07 ±0.7 nA typ Test Circuit 3 ADG429 ±0.05 ±0.5 ±0.05 ±0.5 nA typ
Channel ON Leakage I
ADG428 ±1 ±100 ±1 ±100 nA max Test Circuit 4 ADG429 ±1 ±50 ±1 ±50 nA max
DIGITAL INPUTS
Input High Voltage, V Input Low Voltage, V Input Current
or I
I
INL
CIN, Digital Input Capacitance 8 8 pF typ f = 1 MHz
DYNAMIC CHARACTERISTICS
t
TRANSITION
t
OPEN
t
ON
t
OFF
, Write Pulsewidth 100 100 ns min
t
W
, Address, Enable Setup Time 100 100 ns min
t
S
, Address, Enable Hold Time 10 10 ns min
t
H
t
RS
Charge Injection 4 4 pC typ V
OFF Isolation –75 –75 dB typ R
Channel-to-Channel Crosstalk 85 85 dB typ R
C
S
C
D
ADG428 40 40 pF typ ADG429 20 20 pF typ
C
D
ADG428 54 54 pF typ ADG429 34 34 pF typ
POWER REQUIREMENTS V
I
DD
I
SS
NOTES
1
Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C.
2
Guaranteed by design, not subject to production test.
Specifications subject to change without notice.
INH
(EN, WR) 115 115 ns typ R
(EN, RS) 105 105 ns typ R
, Reset Pulsewidth 100 100 ns min VS = +5 V
(OFF) 11 11 pF typ f = 1 MHz
(OFF) f = 1 MHz
, CS (ON) f = 1 MHz
(VDD = +15 V, VSS = –15 V, GND = 0 V, WR = 0 V, RS = 2.4 V unless otherwise noted)
B Version T Version
–40C to –55C to
SS
to V
DD
VSS to VDDV
60 60 Ω typ VD = ±10 V, I 100 125 100 125 max
10 10 % max –10 V < VS < 10 V, IS = –1 mA
(OFF) ±0.03 ±0.3 ±0.03 ±0.3 nA typ VD = ±10 V, V
S
±0.5 ±50 ±0.5 ±50 nA max Test Circuit 2
(OFF) V
D
= ±10 V, V
D
±1 ±100 ±1 ±100 nA max ±1 ±50 ±1 ±50 nA max
, IS (ON) VS = V
D
INH
INL
±0.1 ±1 ±0.1 ±1 µA max V
2
110 110 ns typ R 250 300 250 300 ns max V
2.4 2.4 V min
0.8 0.8 V max
= 0 or V
IN
= 1 M, C
L
= ±10 V, V
S1
Test Circuit 5
10 10 ns min R
150 225 150 225 ns max V
150 300 150 300 ns max V
= 1 k, C
L
= +5 V; Test Circuit 6
V
S
= 1 k, C
L
= +5 V; Test Circuit 7
S
= 1 k, C
L
= +5 V; Test Circuit 7
S
= 0 V, R
S
Test Circuit 10
= 1 k, C
L
–60 –60 dB min V
= 7 V rms, VEN = 0 V; Test Circuit 11
S
= 1 k, C
L
Test Circuit 12
= 0 V, VEN = 0 V
IN
20 20 µA typ 100 100 µA max
0.001 0.001 µA typ 55µA max
= –1 mA
S
= ⫿10 V;
S
= ⫿10 V;
S
= ±10 V;
D
DD
= 35 pF;
L
= ⫿10 V;
S8
= 35 pF;
L
= 35 pF;
L
= 35 pF;
L
= 0 , C
S
= 15 pF, f = 100 kHz;
L
= 15 pF, f = 100 kHz;
L
= 10 nF;
L
REV. C–2–
ADG428/ADG429
1
SINGLE SUPPLY
Parameter +25ⴗC +85ⴗC +25ⴗC +125ⴗC Units Test Conditions/Comments
ANALOG SWITCH
Analog Signal Range 0 to V R
ON
R
ON
LEAKAGE CURRENTS
Source OFF Leakage I
Drain OFF Leakage I
ADG428 ±0.015 ±0.015 nA typ Test Circuit 3 ADG429 ±0.008 ±0.008 nA typ
Channel ON Leakage I
ADG428 ±0.02 ±0.02 nA typ Test Circuit 4 ADG429 ±0.01 ±0.01 nA max
DIGITAL INPUTS
Input High Voltage, V Input Low Voltage, V Input Current
or I
I
INL
CIN, Digital Input Capacitance 8 8 pF typ f = 1 MHz
DYNAMIC CHARACTERISTICS
t
TRANSITION
t
OPEN
t
ON
t
OFF
, Write Pulsewidth 100 100 ns min
t
W
, Address, Enable Setup Time 100 100 ns min
t
S
, Address, Enable Hold Time 10 10 ns min
t
H
t
RS
Charge Injection 4 4 pC typ V
OFF Isolation –75 –75 dB typ R
Channel-to-Channel Crosstalk 85 85 dB typ R
C
S
C
D
ADG428 40 40 pF typ ADG429 20 20 pF typ
C
D
ADG428 54 54 pF typ ADG429 34 34 pF typ
POWER REQUIREMENTS V
I
DD
NOTES
1
Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C.
2
Guaranteed by design, not subject to production test.
Specifications subject to change without notice.
INH
(EN, WR) 200 200 ns typ R
(EN, RS) 80 80 ns typ R
, Reset Pulsewidth 100 100 ns min VS = +5 V
(OFF) 11 11 pF typ f = 1 MHz
(OFF) f = 1 MHz
, CS (ON) f = 1 MHz
(VDD = +12 V, VSS = 0 V, GND = 0 V, WR = 0 V, RS = 2.4 V unless otherwise noted)
B Version T Version
–40C to –55C to
DD
0 to V
90 90 Ω typ V
DD
V
= +10 V, I
D
= –500 µA
S
200 200 max
10 10 % max 0 V < VS < 10 V, IS = –1 mA
(OFF) ±0.005 ±0.005 nA typ V
S
= 10 V/0 V, VS = 0 V/10 V;
D
±0.5 ±50 ±0.5 ±50 nA max Test Circuit 2
(OFF) VD = 10 V/0 V, VS = 0 V/10 V;
D
±1 ±100 ±1 ±100 nA max ±1 ±50 ±1 ±50 nA max
, IS (ON) VS = VD = 10 V/0 V;
D
±1 ±100 ±1 ±100 nA max ±1 ±50 ±1 ±50 nA max
INH
INL
2
250 250 ns typ R 350 450 350 450 ns max V
2.4 2.4 V min
0.8 0.8 V max
±1 ±1 µA max V
= 0 or V
IN
= 1 M, C
L
= 10 V/0 V, VS8 = 0 V/10 V;
S1
DD
= 35 pF;
L
Test Circuit 5
25 10 25 10 ns min R
300 400 300 400 ns max V
300 400 300 400 ns max V
= 1 k, C
L
= +5 V; Test Circuit 6
V
S
= 1 k, C
L
= +5 V; Test Circuit 7
S
= 1 k, C
L
= +5 V; Test Circuit 7
S
= 6 V, R
S
= 35 pF;
L
= 35 pF;
L
= 35 pF;
L
= 0 , C
S
= 10 nF;
L
Test Circuit 10
–60 –60 dB min V
= 1 k, C
L
= 7 V rms, VEN = 0 V; Test Circuit 11
S
= 1 k, C
L
= 15 pF, f = 100 kHz;
L
= 15 pF, f = 100 kHz;
L
Test Circuit 12
= 0 V, VEN = 0 V
IN
20 20 µA typ 100 100 µA max
REV. C –3–
ADG428/ADG429
WARNING!
ESD SENSITIVE DEVICE
TOP VIEW
(Not to Scale)
18
17
16
15
14
13
12
11
10
1
2
3
4
5
6
7
8
9
ADG428
D
S4
WR
A0 EN
V
SS
S3
S2
S1
S8
S7
RS
A1 A2 GND
S6
S5
V
DD
3 2 1 20 19
9 10 11 12 13
18 17 16 15 14
4 5 6 7 8
TOP VIEW
(Not to Scale)
PIN 1 IDENTIFIER
NC = NO CONNECT
EN
V
SS
S1 S2 S3
A2 GND V
DD
S5 S6
ADG428
A0WRNCRSA1
S4
D
NC
S8
S7
TOP VIEW
(Not to Scale)
18
17
16
15
14
13
12
11
10
1
2
3
4
5
6
7
8
9
ADG429
DA
S4A
WR
A0 EN
V
SS
S3A
S2A
S1A
DB
S4B
RS
A1 GND V
DD
S3B
S2B
S1B
3 2 1 20 19
9 10 11 12 13
18 17 16 15 14
4 5 6 7 8
TOP VIEW
(Not to Scale)
PIN 1 IDENTIFIER
NC = NO CONNECT
EN
V
SS
S1A S2A S3A
GND V
DD
S1B S2B S3B
ADG429
A0WRNCRSA1
S4A
DANCDB
S4B

ABSOLUTE MAXIMUM RATINGS

(T
= +25°C unless otherwise noted.)
A
1
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V
V
DD
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V
V
SS
Analog, Digital Inputs
2
. . . . . . . . . . VSS – 2 V to VDD + 2 V or
30 mA, Whichever Occurs First
Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 30 mA
Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
(Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C
Extended (T Version) . . . . . . . . . . . . . . . . –55°C to +125°C
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C
Cerdip Package, Power Dissipation . . . . . . . . . . . . . . . 900 mW
, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 73°C/W
θ
JA
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +300°C
Plastic Package, Power Dissipation . . . . . . . . . . . . . . . 470 mW
, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 115°C/W
θ
JA
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C
SOIC Package, Power Dissipation . . . . . . . . . . . . . . . . 600 mW
, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 77°C/W
θ
JA
Lead Temperature, Soldering
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C
PLCC Package, Power Dissipation . . . . . . . . . . . . . . . 800 mW
, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 90°C/W
θ
JA
Lead Temperature, Soldering
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
2
Overvoltages at A, EN, WR, RS , S or D will be clamped by internal diodes. Current
should be limited to the maximum ratings given.
ADG428 PIN CONFIGURATIONS
DIP/SOIC PLCC
ADG429 PIN CONFIGURATIONS
DIP PLCC

ORDERING GUIDE

Model
1
Temperature Range Package Options
2
ADG428BN –40°C to +85°C N-18 ADG428BP –40°C to +85°C P-20A ADG428BR –40°C to +85°C R-18 ADG428TQ –55°C to +125°CQ-18
ADG429BN –40°C to +85°C N-18 ADG429BP –40°C to +85°C P-20A ADG429TQ –55°C to +125°CQ-18
NOTES
1
For availability of MIL-STD-883, Class B processed parts, contact factory.
2
N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; R = Small Outline IC (SOIC).
–4–

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG428/ADG429 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
REV. C
Loading...
+ 8 hidden pages