Datasheet ADG3301 Datasheet (ANALOG DEVICES)

www.BDTIC.com/ADI
Low Voltage 1.15 V to 5.5 V, Single-Channel

FEATURES

Bidirectional level translation Operates from 1.15 V to 5.5 V Low quiescent current < 5 µA No direction pin

APPLICATIONS

SPI®, MICROWIRE® level translation Low voltage ASIC level translation Smart card readers Cell phones and cell phone cradles Portable communication devices Telecommunications equipment Network switches and routers Storage systems (SAN/NAS) Computing/server applications GPS Portable POS systems Low cost serial interfaces

GENERAL DESCRIPTION

Bidirectional Logic Level Translator
ADG3301

FUNCTIONAL BLOCK DIAGRAM

V
CCA
A
EN

PRODUCT HIGHLIGHTS

GND
Figure 1.
V
CCY
ADG3301
Y
05517-001
The ADG3301 is a single-channel, bidirectional logic level translator. It can be used in multivoltage digital system applica­tions such as data transfer between a low voltage DSP/controller and a higher voltage device. The internal architecture allows the device to perform bidirectional logic level translation without an additional signal to set the direction in which the translation takes place.
The voltage applied to V the device, while V operation, V
CCY
must always be less than V
CCA
compatible logic signals applied to the A pin appear as V compatible levels on the Y pin. Similarly, V levels applied to the Y pin appear as V
sets the logic levels on the A side of
CCA
sets the levels on the Y side. For proper
. The V
CCY
-compatible logic
CCY
-compatible logic levels
CCA
CCA
-
CCY
-
on the A pin. The enable pin (EN) provides three-state operation on both the A pin and the Y pin. When the device enable pin is pulled low, the terminals on both sides of the device are in the high impedance state. The EN pin is referred to the V
CCA
supply
voltage and driven high for normal operation.
The ADG3301 is available in a compact 6-lead SC70 package and is guaranteed to operate over the 1.15 V to 5.5 V supply voltage range and extended −40°C to +85°C temperature range.
1. Bidirectional level translation.
2. Fully guaranteed over the 1.15 V to 5.5 V supply range.
3. No direction pin.
4. Compact 6-lead SC70 package.
Rev. 0
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
ADG3301
www.BDTIC.com/ADI
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Product Highlights........................................................................... 1
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 6
ESD Caution.................................................................................. 6
Pin Configuration and Function Descriptions............................. 7
Typical Performance Characteristics............................................. 8
Test Ci r c ui t s..................................................................................... 12
Te r mi n ol o g y .................................................................................... 15
REVISION HISTORY
12/05—Revision 0: Initial Version
Theory of Operation ...................................................................... 16
Level Translator Architecture................................................... 16
Input Driving Requirements..................................................... 16
Output Load Requirements ...................................................... 16
Enable Operation ....................................................................... 16
Power Supplies ............................................................................ 16
Data Rate ..................................................................................... 17
Applications..................................................................................... 18
Layout Guidelines....................................................................... 18
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 19
Rev. 0 | Page 2 of 20
ADG3301
www.BDTIC.com/ADI

SPECIFICATIONS

V
= 1.65 V to 5.5 V, V
CCY
Table 1.
Parame ter
1
LOGIC INPUTS/OUTPUTS
A Side
Input High Voltage
V
Input Low Voltage Output High Voltage V Output Low Voltage V Capacitance
3
Leakage Current I
Y Side
Input High Voltage Input Low Voltage3 V Output High Voltage V Output Low Voltage V Capacitance
3
Leakage Current I
Enable (EN)
Input High Voltage V Input Low Voltage Leakage Current I Capacitance Enable Time
3
3
SWITCHING CHARACTERISTICS3
3.3 V ± 0.3 V ≤ V
CCA
≤ V
AY Level Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
YA Level Translation
Propagation Delay Rise Time
Fall Time Maximum Data Rate Part-to-Part Skew
1.8 V ± 0.15 V ≤ V
CCA
AY Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
≤ V
CCA
3
3
3
3
3
, V
CCY
CCY
= 1.15 V to V
, GND = 0 V. All specifications T
CCY
MIN
to T
, unless otherwise noted.
MAX
Symbol Conditions Min Typ2Max Unit
V
IHA
IHA
V
ILA
VY = V
OHA
VY = 0 V, IOL = 20 µA, see Figure 27 0.4 V
OLA
C
A
LA, HiZ
V
IHY
ILY
OHY
OLY
CY
LY, H iZ
V
IHEN
IHEN
V
ILEN
LEN
C
EN
t
EN
= 5 V ± 0.5 V
CCY
V
= 1.15 V V
CCA
V
= 1.2 V to 5.5 V 0.65 × V
CCA
− 0.3 V
CCA
CCA
0.35 × V , IOH = 20 µA, see Figure 27 V
CCY
− 0.4 V
CCA
f = 1 MHz, EN = 0, see Figure 32 9 pF VA = 0 V/V
0.65 × V
, EN = 0, see Figure 29 ±1 µA
CCA
V
CCY
0.35 × V
VA = V
, IOH = 20 µA, see Figure 28 V
CCA
− 0.4 V
CCY
VA = 0 V, IOL = 20 µA, see Figure 28 0.4 V f = 1 MHz, EN = 0, see Figure 33 6 pF VY = 0 V/V
V
CCA
V
CCA
, EN = 0, see Figure 30 ±1 µA
CCY
= 1.15 V V = 1.2 V to 5.5 V 0.65 × V
− 0.3 V
CCA
V
CCA
0.35 × V
VEN = 0 V/V
, VA = 0 V, see Figure 31 ±1 µA
CCA
3 pF RS = RT = 50 Ω, VA = 0 V/V
= 0 V/V
V
Y
= RT = 50 Ω, CL = 50 pF,
R
S
(YA), see Figure 34
CCY
(AY),
CCA
1 1.8 µs
see Figure 35
t
P, A→Y
t
R, A→Y
t
F, A→Y
D
MAX, A→Y
t
PPSKEW, A→Y
6 10 ns 2 3.5 ns 2 3.5 ns 50 Mbps 3 ns
= RT = 50 Ω, CL = 15 pF,
R
S
see Figure 36
t
P, Y→A
t
R, Y→A
t
F, Y→A
D
MAX, Y→A
t
PPSKEW, Y→A
, V
= 3.3 V ± 0.3 V
CCY
4 7 ns 1 3 ns
3 7 ns 50 Mbps 2 ns
= RT = 50 Ω, CL = 50 pF,
R
S
see Figure 35
t
P, A→Y
t
R, A→Y
t
F, A→Y
D
MAX, A→Y
t
PPSKEW, A→Y
8 11 ns 2 5 ns 2 5 ns 50 Mbps 4 ns
CCA
CCY
CCA
V
V
V
Rev. 0 | Page 3 of 20
ADG3301
www.BDTIC.com/ADI
Parame ter
1
YA Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
1.15 V to 1.3 V ≤ V AY Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
YA Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
1.15 V to 1.3 V ≤ V AY Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
YA Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
2.5 V ± 0.2 V ≤ V AY Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
YA Translation
Propagation Delay Rise Time Fall Time Maximum Data Rate Part-to-Part Skew
CCA
CCA
CCA
≤ V
≤ V
≤ V
Symbol Conditions Min Typ2Max Unit
= RT = 50 Ω, CL = 15 pF,
R
S
see Figure 36
t
P, Y→A
t
R, Y→A
t
F, Y→A
D
MAX, Y→A
t
PPSKEW, Y→A
, V
= 3.3 V ± 0.3 V
CCY
CCY
5 8 ns 2 3.5 ns 2 3.5 ns 50 Mbps 3 ns
= RT = 50 Ω, CL = 50 pF,
R
S
see Figure 35
t
P, A→Y
t
R, A→Y
t
F, A→Y
D
MAX, A→Y
t
PPSKEW, A→Y
9 18 ns 3 5 ns 2 5 ns 40 Mbps 10 ns
= RT = 50 Ω, CL = 15 pF,
R
S
see Figure 36
t
P, Y→A
t
R, Y→A
t
F, Y→A
D
MAX, Y→A
t
PPSKEW, Y→A
, V
= 1.8 V ± 0.3 V
CCY
CCY
5 9 ns 2 4 ns 2 4 ns 40 Mbps 4 ns
= RT = 50 Ω, CL = 50 pF,
R
S
see Figure 35
t
P, A→Y
t
R, A→Y
t
F, A→Y
D
MAX, A→Y
t
PPSKEW, A→Y
12 25 ns 7 12 ns 3 5 ns 25 Mbps 15 ns
= RT = 50 Ω, CL = 15 pF,
R
S
see Figure 36
t
P, Y→A
t
R, Y→A
t
F, Y→A
D
MAX, Y→A
t
PPSKEW, Y→A
, V
= 3.3 V ± 0.3 V
CCY
CCY
14 35 ns 5 16 ns
2.5 6.5 ns 25 Mbps
23.5 ns
= RT = 50 Ω, CL = 50 pF,
R
S
see Figure 35
t
P, A→Y
t
R, A→Y
t
F, A→Y
D
MAX, A→Y
t
PPSKEW, A→Y
7 10 ns
2.5 4 ns 2 5 ns 60 Mbps 4 ns
= RT = 50 Ω, CL = 15 pF,
R
S
see Figure 36
t
P, Y→A
t
R, Y→A
t
F, Y→A
D
MAX, Y→A
t
PPSKEW, Y→A
5 8 ns 1 4 ns 3 5 ns 60 Mbps 3 ns
Rev. 0 | Page 4 of 20
ADG3301
www.BDTIC.com/ADI
Parame ter
1
Symbol Conditions Min Typ2Max Unit
POWER REQUIREMENTS
Power Supply Voltages V V Quiescent Power Supply Current I
I
Three-State Mode Power Supply Current I I
1
Temperature range for the B version is −40°C to +85°C.
2
All typical values are at TA = 25°C, unless otherwise noted.
3
Guaranteed by design, not subject to production test.
CCA
CCY
CCA
CCY
HiZA
HiZY
V
CCA
≤ V
CCY
1.15 5.5 V
1.65 5.5 V VA = 0 V/V
= V
V
CCA
VA = 0 V/V V
= V
CCA
V
= V
CCA
V
= V
CCA
, VY = 0 V/V
CCA
= 5.5 V, EN = 1
CCY
, VY = 0 V/V
CCA
= 5.5 V, EN = 1
CCY
= 5.5 V, EN = 0 0.1 5 µA
CCY
= 5.5 V, EN = 0 0.1 5 µA
CCY
CCY
CCY
,
,
0.17 5 µA
0.27 5 µA
Rev. 0 | Page 5 of 20
ADG3301
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 2.
Parameter Rating
V
to GND −0.3 V to +7 V
CCA
V
to GND V
CCY
Digital Inputs (A) −0.3 V to V Digital Inputs (Y) −0.3 V to V EN to GND −0.3 V to +7 V Operating Temperature Range
Industrial (B Version) −40°C to +85°C Storage Temperature Range −65°C to +150°C Junction Temperature 150°C θJA Thermal Impedance (4-Layer Board)
6-Lead SC70 494.1°C/W Lead Temperature, Soldering (10 sec) 300°C IR Reflow, Peak Temperature (< 20 sec) 260(+0/−5)°C
to +7 V
CCA
+ 0.3 V
CCA
+ 0.3 V
CCY
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 6 of 20
ADG3301
V
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1
CCA
ADG3301
A 2
TOP VIEW
(Not to Scale)
GND 3
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No. Mnemonic Description
1 V
CCA
Power Supply Voltage Input for the A I/O Pin (1.15 V ≤ V 2 A Input/Output A. Referenced to V 3 GND Ground (0 V). 4 EN Active High Enable Input. 5 Y Input/Output Y. Referenced to V 6 V
CCY
Power Supply Voltage Input for the Y I/O Pin (1.65 V ≤ V
CCY
CCA
6
V
CCY
Y5
EN4
05517-002
≤ V
CCA
CCY).
.
.
≤ 5.5V).
CCY
Rev. 0 | Page 7 of 20
ADG3301
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

1.0 TA = 25°C
1 CHANNEL
0.9
= 50pF
C
L
0.8
0.7
0.6
(mA)
0.5
CCA
I
0.4
0.3
0.2
0.1
0
0 5 10 15 20 25 30 35 40 45 50
Figure 3. I
V
= 3.3V, V
CCA
V
CCA
DATA RATE (Mbps)
vs. Data Rate (AY Level Translation)
CCA
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
= 1.8V
CCY
CCY
10
TA = 25°C 1 CHANNEL
9
= 50pF
C
L
8
7
6
(mA)
5
CCY
I
4
3
2
1
0
0 5 10 15 20 25 30 35 40 45 50
Figure 4. I
V
= 3.3V, V
CCA
V
DATA RATE (Mbps)
vs. Data Rate (AY Level Translation)
CCY
CCA
= 5V
CCY
V
= 1.2V, V
CCA
= 1.8V, V
= 1.8V
CCY
3.0
TA = 25°C 1 CHANNEL C
= 15pF
L
2.5
V
= 3.3V, V
2.0
(mA)
1.5
CCA
I
1.0
0.5
0
0 5 10 15 20 25 30 35 40 45 50
Figure 5. I
CCA
V
CCA
DATA RATE (Mbps)
vs. Data Rate (YA Level Translation)
CCA
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
CCY
= 1.8V
CCY
CCY
= 3.3V
= 3.3V
= 3.3V
05517-003
05517-004
05517-005
3.0 TA = 25°C 1 CHANNEL C
= 15pF
L
2.5
2.0
V
= 3.3V, V
CCA
(mA)
1.5
CCY
I
1.0
0.5
0
0 5 10 15 20 25 30 35 40 45 50
Figure 6. I
vs. Data Rate (YA Level Translation)
CCY
V
DATA RATE (Mbps)
CCA
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
CCY
= 1.8V
1.6 TA =25°C 1 CHANNEL
1.4
V
= 1.2V
CCA
V
= 1.8V
CCY
1.2
1.0
(mA)
0.8
CCY
I
0.6
0.4
0.2
0
13 23 33 43 53 63 73
CAPACITIVE LOAD (pF)
Figure 7. I
vs. Capacitive Load at Pin Y for AY
CCY
20Mbps
10Mbps
5Mbps
1Mbps
(1.2 V1.8 V) Level Translation
1.0 TA = 25°C
1 CHANNEL
(mA)
CCA
I
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
= 1.2V
V
CCA
=1.8V
V
CCY
20Mbps
10Mbps 5Mbps
0
13 23 33 43 53
Figure 8. I
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin A for YA
CCA
1Mbps
(1.8 V1.2 V) Level Translation
CCY
= 3.3V
05517-006
05517-007
05517-008
Rev. 0 | Page 8 of 20
ADG3301
www.BDTIC.com/ADI
9
TA = 25°C 1 CHANNEL
8
V
= 1.8V
CCA
V
= 3.3V
CCY
7
6
5
(mA)
4
CCY
I
3
2
1
0
13 23 33 43 53 63 73
Figure 9. I
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin Y for A→Y
CCY
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
(1.8 V3.3 V) Level Translation
5.0
TA = 25°C 1 CHANNEL
4.5
V
= 1.8V
CCA
V
= 3.3V
CCY
0
13 23 33 43 53
Figure 10. I
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin A for YA
CCA
(mA)
CCA
I
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
(3.3 V1.8 V) Level Translation
12
TA = 25°C 1 CHANNEL V
= 3.3V
CCA
10
= 5V
V
CCY
8
6
(mA)
CCY
I
4
2
0
13 23 33 43 53 63 73
Figure 11. I
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin Y for AY
CCY
(3.3 V5 V) Level Translation
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
05517-009
05517-010
05517-011
7
TA = 25°C 1 CHANNEL V
= 3.3V
6
CCA
V
= 5V
CCY
5
4
(mA)
3
CCA
I
2
1
0
13 23 33 43 53
Figure 12. I
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin A for YA
CCA
50Mbps
30Mbps 20Mbps
10Mbps
5Mbps
(5 V3.3 V) Level Translation
10
TA = 25°C 1 CHANNEL
9
DATA RATE = 50kbps
8
7
6
5
4
RISE TIME(ns)
3
2
1
0
13 23 33 43 53 63 73
V
= 1.2V, V
CCA
V
= 1.8V, V
CCA
V
= 3.3V, V
CCA
CAPACITIVE LOAD (pF)
CCY
= 1.8V
CCY
CCY
Figure 13. Rise Time vs. Capacitive Load at Pin Y
(AY Level Translation)
4.0 TA = 25°C 1 CHANNEL
3.5
DATA RATE = 50kbps
3.0
2.5
2.0
1.5
FALL TIME (ns)
1.0
0.5
0
13 23 33 43 53 63 73
V
= 1.2V, V
CCA
V
CCA
V
CCA
CAPACITIVE LOAD (pF)
= 1.8V
CCY
= 1.8V, V
= 3.3V, V
Figure 14. Fall Time vs. Capacitive Load at Pin Y
(AY Level Translation)
= 3.3V
= 5V
CCY
CCY
= 3.3V
= 5V
05517-012
05517-013
05517-014
Rev. 0 | Page 9 of 20
ADG3301
www.BDTIC.com/ADI
10
TA = 25°C 1 CHANNEL
9
DATA RATE = 50kbps
8
7
6
5
4
RISE TIME (ns)
3
2
1
0
13 18 23 28 33 38 43 48 53
V
= 1.2V, V
CCA
CAPACITIVE LOAD (pF)
CCY
= 1.8V
V
CCA
= 1.8V, V
V
CCA
CCY
= 3.3V, V
Figure 15. Rise Time vs. Capacitive Load at Pin A
(YA Level Translation)
4.0 TA = 25°C 1 CHANNEL
3.5
DATA RATE = 50kbps
3.0
2.5
V
= 1.2V, V
CCA
2.0
1.5
FALL TIME (ns)
1.0
0.5
0
13 18 23 28 33 38 43 48 53
= 1.8V
CCY
CAPACITIVE LOAD (pF)
V
CCA
V
= 1.8V, V
= 3.3V, V
CCA
CCY
Figure 16. Fall Time vs. Capacitive Load at Pin A
(YA Level Translation)
14
TA = 25°C 1 CHANNEL DATA RATE = 50kbps
12
10
8
6
4
PROPAGATION DELAY (ns)
2
0
13 23 33 43 53 63
V
CCA
CAPACITIVE LOAD (pF)
Figure 17. Propagation Delay (t
V
= 1.2V, V
CCA
= 1.8V, V
= 3.3V
CCY
V
= 3.3V, V
CCA
) vs. Capacitive Load at Pin Y
PLH
CCY
CCY
(AY Level Translation)
= 3.3V
CCY
= 3.3V
CCY
= 1.8V
= 5V
= 5V
= 5V
05517-015
05517-016
73
05517-017
12
DATA RATE = 50kbps T
= 25°C
A
1 CHANNEL
10
8
6
4
PROPAGATION DELAY (ns)
2
0
13 23 33 43 53 63 73
CAPACITIVE LOAD (pF)
Figure 18. Propagation Delay (t
V
= 1.2V, V
CCA
V
CCA
V
CCA
) vs. Capacitive Load at Pin Y
PHL
CCY
= 1.8V, V
= 3.3V, V
(AY Level Translation)
9
TA = 25°C 1 CHANNEL
8
DATA RATE = 50kbps
7
6
5
4
3
V
= 1.8V, V
CCA
2
PROPAGATION DELAY (ns)
1
0
13 18 23 28 33 38 43 48 53
= 3.3V
CCY
CAPACITIVE LOAD (pF)
Figure 19. Propagation Delay (t
V
= 1.2V, V
CCA
V
CCA
) vs. Capacitive Load at Pin A
PLH
= 3.3V, V
CCY
CCY
(YA Level Translation)
9
TA = 25°C 1 CHANNEL
8
DATA RATE = 50kbps
7
6
5
4
V
3
PROPAGATION DELAY (ns)
2
1
0
13 18 23 28 33 38 43 48 53
CCA
CAPACITIVE LOAD (pF)
Figure 20. Propagation Delay (t
V
= 1.2V, V
CCA
= 1.8V, V
= 3.3V
CCY
V
= 3.3V, V
CCA
PHL
CCY
) vs. Capacitive Load at Pin A
CCY
= 5V
(YA Level Translation)
= 1.8V
CCY
CCY
= 1.8V
= 5V
= 1.8V
= 3.3V
= 5V
05517-018
05517-019
05517-020
Rev. 0 | Page 10 of 20
ADG3301
www.BDTIC.com/ADI
TA = 25°C DATA RATE = 25Mbps C
= 50pF
L
1 CHANNEL
TA = 25°C DATA RATE = 50Mbps
= 15pF
C
L
1 CHANNEL
400mV/DIV
5ns/DIV
Figure 21. Eye Diagram at Y Output
(1.2 V to 1.8 V Level Translation, 25 Mbps)
TA = 25°C DATA RATE = 25Mbps
200mV/DIV
5ns/DIV
Figure 22. Eye Diagram at A Output
(1.8 V to 1.2 V Level Translation, 25 Mbps)
TA = 25°C DATA RATE = 50Mbps
C
= 15pF
L
1 CHANNEL
= 50pF
C
L
1 CHANNEL
05517-021
05517-022
400mV/DIV
3ns/DIV
Figure 24. Eye Diagram at A Output
(3.3 V to 1.8 V Level Translation, 50 Mbps)
TA = 25°C DATA RATE = 50Mbps CL = 50pF 1 CHANNEL
1V/DIV
3ns/DIV
Figure 25. Eye Diagram at Y Output
(3.3 V to 5 V Level Translation, 50 Mbps)
TA = 25°C DATA RATE = 50Mbps
= 15pF
C
L
1 CHANNEL
05517-024
05517-025
500mV/DIV
3ns/DIV
05517-023
Figure 23. Eye Diagram at Y Output
(1.8 V to 3.3 V Level Translation, 50 Mbps)
Rev. 0 | Page 11 of 20
800mV/DIV
3ns/DIV
Figure 26. Eye Diagram at A Output
(5 V to 3.3 V Level Translation, 50 Mbps)
05517-026
ADG3301
www.BDTIC.com/ADI

TEST CIRCUITS

0.1µF
EN
V
CCA
A
K1
ADG3301
GND
V
CCY
0.1µF
Y
EN
V
CCA
K2
0.1µF
A
ADG3301
V
CCY
0.1µF
Y
K
A
I
OH
K2
I
OL
0.1µF
EN
V
CCA
Figure 27. V
A
OH/VOL
ADG3301
GND
Figure 28. VOH/VOL Voltages at Pin Y
Voltages at Pin A
V
CCY
Y
I
OH
0.1µF
GND
05517-030
05517-027
Figure 30. Three-State Leakage Current at Pin Y
V
CCA
0.1µF
K1
I
OL
05517-028
A
K
A
EN
ADG3301
GND
V
CCY
0.1µF
Y
05517-031
Figure 31. EN Pin Leakage Current
0.1µF
EN
V
CCA
ADG3301
V
CCY
0.1µF
EN
V
CCA
ADG3301
V
CCY
A
K
A
GND
Y
05517-029
Figure 29. Three-State Leakage Current at Pin A
EN
V
CCA
A
ADG3301
GND
Figure 33. Capacitance at Pin Y
Rev. 0 | Page 12 of 20
V
CCY
Y
CAPACITANCE
METER
CAPACITANCE
A
Figure 32. Capacitance at Pin A
METER
05517-033
GND
Y
05517-032
ADG3301
www.BDTIC.com/ADI
A→Y DIRECTION
0.1µF
+
10µF
V
CCA
ADG3301
V
CCY
0.1µF
+
10µF
1M
SIGNAL SOURCE
R
S
50
0.1µF
SIGNAL SOURCE
R
S
50
K1
Z0 = 50
+
10µF
K1
1M
Z
= 50
0
1M
V
V
V
V
EN
A
A
EN
EN
R
T
50
Y→A DIRECTION
V
CCA
A
A
15pF
EN GND
R
T
50
GND
ADG3301
V
Y
50pF
CCY
0.1µF
Y
V
Y
V
Y
+
K2
1M
10µF
K2
V
CCA
0V V
CCA/VCCY
0V V
CCY/VCCA
0V
V
CCA
0V V
CCA/VCCY
0V V
CCY/VCCA
0V
05517-034
V
EN
VA/V
Y
90% VY/V
A
V
EN
VA/V
Y
VY/V
A
10%
NOTE:
t
IS THE LARGEST OF
EN
t
EN1
t
EN2
t
AND
t
EN1
IN BOTH A→Y AND Y→A DIRECTIONS.
EN2
Figure 34. Enable Time
Rev. 0 | Page 13 of 20
ADG3301
www.BDTIC.com/ADI
V
CCY
0.1µF
YA
V
Y
50pF
+
10µF
0.1µF
15pF
EN
V
CCA
+
10µF
V
A
ADG3301
V
CCY
0.1µF
+
10µF
SIGNAL
SOURCE
R
V R
50
Y
Z0 = 50
T
YA
50
S
SIGNAL
SOURCE
R
50
S
0.1µF
Z0 = 50
V
50
EN
V
CCA
+
10µF
A
R
T
ADG3301
GND
V
A
50%
t
P, A→Y
90%
50%
10%
t
V
Y
P, A→Y
t
F, A→Y
Figure 35. Switching Characteristics (AY Level Translation)
t
R, AY
V
Y
50%
V
A
90% 50%
10%
05517-035
Figure 36. Switching Characteristics (YA Level Translation)
GND
t
P, Y→A
t
F, Y→A
t
P, Y→A
t
R, YA
05517-036
Rev. 0 | Page 14 of 20
ADG3301
www.BDTIC.com/ADI

TERMINOLOGY

V
IHA
Logic input high voltage at Pin A.
V
ILA
Logic input low voltage at Pin A.
V
OHA
Logic output high voltage at Pin A.
V
OLA
Logic output low voltage at Pin A.
C
A
Capacitance measured at Pin A (EN = 0).
I
LA, HiZ
Leakage current at Pin A when EN = 0 (Pin A three-stated).
V
IHY
Logic input high voltage at Pin Y.
V
ILY
Logic input low voltage at Pin Y.
V
OHY
Logic output high voltage at Pin Y.
V
OLY
Logic output low voltage at Pin Y.
C
Y
Capacitance measured at Pin Y (EN = 0).
t
R, A→Y
Rise time when translating logic levels in the AY direction.
t
F, A →Y
Fall time when translating logic levels in the AY direction.
D
MAX, A→Y
Guaranteed data rate when translating logic levels in the A→Y direction under the driving and loading conditions specified in Tabl e 1 .
t
PPSKEW, A→Y
Difference in propagation delay between any one channel and the same channel on a different part (under same driving/loading conditions) when translating in the A→Y direction.
t
P, Y→ A
Propagation delay when translating logic levels in the Y→A direction.
t
R, Y→A
Rise time when translating logic levels in the YA direction.
t
F, Y →A
Fall time when translating logic levels in the Y A direction.
D
MAX, Y→A
Guaranteed data rate when translating logic levels in the Y→A direction under the driving and loading conditions specified in Tabl e 1 .
I
LY, HiZ
Leakage current at pin and when EN = 0 (Pin A three-stated).
V
IHEN
Logic input high voltage at the EN pin.
V
ILEN
Logic input low voltage at the EN pin.
C
EN
Capacitance measured at EN pin.
I
LEN
Enable (EN) pin leakage current.
t
EN
Three-state enable time for Pin A and Pin Y.
t
P, A→ Y
Propagation delay when translating logic levels in the A→Y direction.
t
PPSKEW, Y→A
Difference in propagation delay between any one channel and the same channel on a different part (under the same driving/ loading conditions) when translating in the YA direction.
I
CCA
V
CCA
I
CCY
V
CCY
I
HiZA
V
CCA
I
HiZY
V
CCY
Rev. 0 | Page 15 of 20
supply current.
supply current.
supply current during three-state mode (EN = 0).
supply current during three-state mode (EN = 0).
ADG3301
www.BDTIC.com/ADI

THEORY OF OPERATION

The ADG3301 level translator allows the level shifting necessary for data transfer in a system where multiple supply voltages are used. The device requires two supplies, V V
(V
≤ V
CCY
CCA
). These supplies set the logic levels on each
CCY
CCA
and
side of the device. When driving the A pin, the device translates the V
-compatible logic levels to V
CCA
-compatible logic levels
CCY
available at the Y pin. Similarly, because the device is capable of bidirectional translation, when driving the Y pin the V patible logic levels are translated to V
-compatible logic levels
CCA
CCY
-com-
available at the A pin. When EN = 0, the A pin and the Y pin are three-stated. When EN is driven high, the ADG3301 goes into normal operation mode and performs level translation.

LEVEL TRANSLATOR ARCHITECTURE

The ADG3301 consists of a single bidirectional channel that can translate logic levels in either the AY or the YA direction. It uses a one-shot accelerator architecture that ensures excellent switching characteristics. Figure 37 shows a simplified block diagram of the ADG3301 level translator.
V
CCA
6k
U2
U1
P
A
Figure 37. Simplified Block Diagram of an ADG3301 Channel
ONE-SHOT GENERATOR
U4
6k
U3
The logic level translation in the AY direction is performed using a level translator (U1) and an inverter (U2), while the translation in the YA direction is performed using the inverters U3 and U4. The one-shot generator detects a rising or falling edge present on either the A side or the Y side of the channel. It sends a short pulse that turns on the PMOS transis­tors (T1 and T2) for a rising edge, or the NMOS transistors (T3 and T4) for a falling edge. This charges/discharges the capacitive load faster, which results in fast rise and fall times.
V
CCY
T2T1
N
Y
T3T4
05517-037

INPUT DRIVING REQUIREMENTS

To ensure correct operation of the ADG3301, the circuit that drives the input of an ADG3301 channel must have an output impedance of less than or equal to 150 Ω and a minimum peak current driving capability of 36 mA.

OUTPUT LOAD REQUIREMENTS

The ADG3301 level translator is designed to drive CMOS­compatible loads. If current driving capability is required, it is recommended to use buffers between the ADG3301 outputs and the load.

ENABLE OPERATION

The ADG3301 provides three-state operation at the A I/O pin and Y I/O pin by using the enable (EN) pin as shown in Table 4.
Table 4. Truth Table
EN Y I/O Pin A I/O Pin
0 Hi-Z 1 Normal operation
1
High impedance state.
2
In normal operation, the ADG3301 performs level translation.
1
2
1
Hi-Z Normal operation
2
While EN = 0, the ADG3301 enters into tri-state mode. In this mode, the current consumption from both the V
CCA
and V
CCY
supplies is reduced, allowing the user to save power, which is critical especially on battery-operated systems. The EN input pin can be driven with either V
CCA
- or V
-compatible logic levels.
CCY

POWER SUPPLIES

For proper operation of the ADG3301, the voltage applied to the V to V sequence is V properly only after both supply voltages reach their nominal values. It is not recommended to use the part in a system where, during power-up, V significant increase in the current taken from the V For optimum performance, the V decoupled to GND, and placed as close as possible to the device.
must be always less than or equal to the voltage applied
CCA
. To meet this condition, the recommended power-up
CCY
first and then V
CCY
may be greater than V
CCA
. The ADG3301 operates
CCA
due to a
CCY
CCA
CCA
and V
pins should be
CCY
supply
Rev. 0 | Page 16 of 20
ADG3301
www.BDTIC.com/ADI

DATA RATE

The maximum data rate at which the device is guaranteed to operate is a function of the V
CCA
and V nation and the load capacitance. It represents the maximum frequency of a square wave that can be applied to the I/O pins, which ensures that the device operates within the datasheet specifications in terms of output voltage (V
Table 5. Guaranteed Data Rate (Mbps)
V
CCA
1.2 V (1.15 V to 1.3 V) 25 30 40 40
1.8 V (1.65 V to 1.95 V) 45 50 50
2.5 V (2.3 V to 2.7 V) 60 50
3.3 V (3.0 V to 3.6 V) 50 5 V (4.5 V to 5.5 V)
1
The load capacitance used is 50 pF when translating in the AY direction and 15 pF when translating in the YA direction.
supply voltage combi-
CCY
and VOH) and
OL
1
1.8 V
(1.65 V to 1.95 V)
power dissipation (the junction temperature does not exceed the value specified under the Absolute Maximum Ratings section).
Table 5 shows the guaranteed data rates at which the ADG3301
n operate in both directions (AY or YA level translation)
ca for various V
2.5 V
(2.3 V to 2.7 V)
and V
CCA
V
CCY
supply combinations.
CCY
3.3 V
(3.0 V to 3.6 V)
(4.5 V to 5.5 V)
5 V
Rev. 0 | Page 17 of 20
ADG3301
www.BDTIC.com/ADI

APPLICATIONS

The ADG3301 is designed for digital circuits that operate at different supply voltages; therefore, logic level translation is required. The lower voltage logic signals are connected to the A pin, and the higher voltage logic signals are connected to the Y pin. The ADG3301 can provide level translation in both directions from AY or YA, eliminating the need for a level translator IC for each direction. The internal architecture allows the ADG3301 to perform bidirectional level translation without an additional signal to set the direction in which the translation is made. This simplifies the design by eliminating the timing requirements for the direction signal and reduces the number of ICs used for level translation.
Figure 38 shows an application where a 1.8 V microprocessor transfers data to or from a 3.3 V peripheral device using the ADG3301 level translator.
100nF100nF
I/O
MICROPROCESSOR/ MICROCONTROLLER/ DSP
1
V
CCA
ADG3301
2
L
A
3
GND
6
V
CCY
EN
5
Y
4
3.3V1.8V
I/O
H
PERIPHERAL
DEVICE

LAYOUT GUIDELINES

As with any high speed digital IC, the printed circuit board layout is important for the overall performance of the circuit. Care should be taken to ensure proper power supply bypass and return paths for the high speed signals. Each V V
) should be bypassed using low effective series resistance
CCY
pin (V
CC
(ESR) and effective series inductance (ESI) capacitors placed as close as possible to the V
CCA
and V
pins. The parasitic induc-
CCY
tance of the high-speed signal track might cause significant overshoot. This effect can be reduced by keeping the length of the tracks as short as possible. A solid copper plane for the return path (GND) is also recommended.
CCA
and
GND GND
Figure 38 1.8 V to 3.3 V Level Translation Circuit
05517-038
Rev. 0 | Page 18 of 20
ADG3301
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

2.20
2.00
1.80
2.40
1.35
1.25
1.15 PIN 1
1.30 BSC
1.00
0.90
0.70
0.10 MAX
0.10 COPLANARITY
COMPLIANT TO JEDEC STANDARDS MO-203-AB
Figure 39. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]

ORDERING GUIDE

Model Temperature Range Package Description Branding1Package Option
ADG3301BKSZ-REEL ADG3301BKSZ-REEL72 −40°C to +85°C 6-Lead Thin Shrink Small Outline Transistor Package S0H KS-6
1
Branding on this package is limited to three characters due to space constraints.
2
Z = Pb-free part.
2
−40°C to +85°C 6-Lead Thin Shrink Small Outline Transistor Package S0H KS-6
4 5 6
2.10
3 2 1
1.80
0.65 BSC
0.40
0.10
0.30
0.15
1.10
0.80
SEATING PLANE
(KS-6)
Dimensions shown in millimeters
0.22
0.08
0.30
0.10
Rev. 0 | Page 19 of 20
ADG3301
www.BDTIC.com/ADI
NOTES
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05517-0-12/05(0)
Rev. 0 | Page 20 of 20
Loading...