Datasheet ADG1406, ADG1407 Datasheet (ANALOG DEVICES)

9.5 Ω RON, 16-Channel, Differential 8-Channel,
S
±15 V/+12 V/±5 V iCMOS Multiplexers

FEATURES

9.5 Ω on resistance @ 25°C Up to 300 mA of continuous current Fully specified at ±15 V/+12 V/±5 V 3 V logic-compatible inputs Rail-to-rail operation Break-before-make switching action 28-lead TSSOP and 32-lead, 5 mm × 5 mm LFCSP_VQ

APPLICATIONS

Medical equipment Audio and video routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Communication systems

GENERAL DESCRIPTION

The ADG1406 and ADG1407 are monolithic iCMOS® analog multiplexers comprising 16 single channels and eight differential channels, respectively. The ADG1406 switches one of 16 inputs to a common output, as determined by the 4-bit binary address lines (A0, A1, A2, and A3). The ADG1407 switches one of eight differential inputs to a common differential output, as determined by the 3-bit binary address lines (A0, A1, and A2). An EN input on both devices enables or disables the device. When disabled, all channels switch off. When on, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.
The iCMOS (industrial CMOS) modular manufacturing process combines high voltage CMOS (complementary metal­oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased perfor­mance, dramatically lower power consumption, and reduced package size.
The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. iCMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery­powered instruments.
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
ADG1406/ADG1407

FUNCTIONAL BLOCK DIAGRAMS

ADG1406
S1
D
16
1-OF-16
DECODER
A0 A1 A2 A3 EN
Figure 1.
ADG1407
S1A
S8A
S1B
S8B
1-OF-8
DECODER
A0 A1 A2 EN
Figure 2.
Table 1. Related Devices
Part No. Description
ADG1206/ADG1207
Low capacitance, low charge injection, and low leakage 8-/16-channel ±15 V multiplexers
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008–2009 Analog Devices, Inc. All rights reserved.
DA
DB
07419-001
07419-002
ADG1406/ADG1407

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagrams ............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
±15 V Dual Supply ....................................................................... 3
12 V Single Supply ........................................................................ 4
±5 V Dual Supply ......................................................................... 6
Continuous Current per Channel .............................................. 7

REVISION HISTORY

3/09—Rev. 0 to Rev. A
Change to I Change to I
Changes to Figure 16 ...................................................................... 14
8/08—Revision 0: Initial Version
Parameter, Table 2 ................................................... 4
DD
Parameter, Table 3 ................................................... 5
DD
Absolute Maximum Ratings ............................................................8
Thermal Resistance .......................................................................8
ESD Caution...................................................................................8
Pin Configurations and Function Descriptions ............................9
Typical Performance Characteristics ........................................... 13
Terminology .................................................................................... 17
Test Circuits ..................................................................................... 18
Outline Dimensions ....................................................................... 20
Ordering Guide .......................................................................... 20
Rev. A | Page 2 of 20
ADG1406/ADG1407

SPECIFICATIONS

±15 V DUAL SUPPLY

VDD = +15 V ± 10%, VSS = –15 V ± 10%, GND = 0 V, unless otherwise noted.1
Table 2.
−40°C to
Parameter +25°C
+85°C
ANALOG SWITCH
Analog Signal Range VSS to VDD V On Resistance (RON) 9.5 Ω typ VDD = +13.5 V, VSS = −13.5 V, VS = ±10 V,
11.5 14 16 Ω max IS = −10 mA; see Figure 27 On-Resistance Match Between 0.55 Ω typ VDD = +13.5 V, VSS = −13.5 V , VS = ±10 V, IS =
Channels (ΔRON) 1 1.5 1.7 Ω max −10 mA
On-Resistance Flatness (R
) 1.6 Ω typ VDD = +13.5 V, VSS = −13.5 V, VS = ±10 V, IS =
FLAT(ON)
1.9 2.15 2.3 Ω max −10 mA
LEAKAGE CURRENTS VDD = +16.5 V, VSS = −16.5 V
Source Off Leakage, IS (Off) ±0.01 nA typ
±0.25 ±1 ±4 nA max Drain Off Leakage, ID (Off) ±0.01 nA typ
±0.5 ±3 ±20 nA max Channel On Leakage, ID, IS (On) ±0.05 nA typ VS = VD = ±10 V; see Figure 29 ±0.5 ±3 ±20 nA max
DIGITAL INPUTS
Input High Voltage, V Input Low Voltage, V
2.0 V min
INH
0.8 V max
INL
Input Current ±0.002 μA typ VIN = V ±0.1 μA max Digital Input Capacitance, CIN 3 pF typ
DYNAMIC CHARACTERISTICS2
Transition Time, t
105 ns typ RL = 100 Ω, CL = 35 pF
TRANSITION
160 200 225 ns max VS = 10 V, see Figure 30 Break-Before-Make Time Delay, t
40 ns typ RL = 100 Ω, CL = 35 pF
BBM
10 ns min VS1 = VS2 = 10 V; see Figure 31 tON (EN) 83 ns typ RL = 100 Ω, CL = 35 pF 110 140 155 ns max VS = 10 V; see Figure 32 t
(EN) 98 ns typ RL = 100 Ω, CL = 35 pF
OFF
120 145 165 ns max VS = 10 V; see Figure 32 Charge Injection 10 pC typ VS = 0 V, RS = 0 Ω, CL = 1 nF; see Figure 33 Off Isolation −73 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 34 Channel-to-Channel Crosstalk −70 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 35 Total Harmonic Distortion (THD + N) 0.07 % typ
−3 dB Bandwidth RL = 50 Ω, CL = 5 pF; see Figure 36 ADG1406 60 MHz typ ADG1407 110 MHz typ
Insertion Loss 0.6 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 36 CS (Off) 8 pF typ f = 1 MHz CD (Off)
ADG1406 90 pF typ f = 1 MHz ADG1407 45 pF typ f = 1 MHz
−40°C to +125°C
1
Unit Test Conditions/Comments
VS = ±10 V, VD = 10 V; see Figure 28
VS = ±10 V, VD = 10 V; see Figure 28
or VDD
GND
= 110 Ω, 15 V p-p, f = 20 Hz to 20 kHz; see
R
L
Figure 37
Rev. A | Page 3 of 20
ADG1406/ADG1407
−40°C to
Parameter +25°C
+85°C
CD, CS (On)
ADG1406 115 pF typ f = 1 MHz ADG1407 70 pF typ f = 1 MHz
POWER REQUIREMENTS VDD = +16.5 V, VSS = −16.5 V
IDD 0.002 μA typ Digital inputs = 0 V or VDD 1 μA max IDD 280 μA typ Digital inputs = 5 V 475 μA max ISS 0.002 μA typ Digital inputs = 0 V, 5 V or VDD 1 μA max VDD/VSS ±4.5/±16.5 V min/max
1
Temperature range for B version is 40°C to +125°C.
2
Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

VDD = 12 V ± 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.
Table 3.
−40°C to
Parameter +25°C
ANALOG SWITCH
Analog Signal Range 0 to VDD V On Resistance (RON) 18 Ω typ VDD = 10.8 V, VSS = 0 V; VS = 0 V to 10 V,
21.5 26 28.5 Ω max IS = −10 mA; see Figure 27 On-Resistance Match Between 0.55 Ω typ VDD = 10.8 V, VSS = 0 V; VS = 0 V to 10 V,
Channels (ΔRON) 1.2 1.6 1.8 Ω max IS = −10 mA
On-Resistance Flatness (R
) 5 Ω typ VDD = 10.8 V, VSS = 0 V; VS = 0 V to 10 V,
FLAT(ON)
6 6.9 7.3 Ω max IS = −10 mA
LEAKAGE CURRENTS VDD = 10.8 V
Source Off Leakage, IS (Off) ±0.01 nA typ
±0.25 ±1 ±4 nA max Drain Off Leakage, ID (Off) ±0.01 nA typ
±0.5 ±3 ±20 nA max
Channel On Leakage, ID, IS (On) ±0.01 nA typ VS = VD = 1 V or 10 V; see Figure 29
±0.5 ±3 ±20 nA max
DIGITAL INPUTS
Input High Voltage, V Input Low Voltage, V
2.0 V min
INH
0.8 V max
INL
Input Current ±0.002 μA typ VIN = V ±0.1 μA max Digital Input Capacitance, CIN 4 pF typ
DYNAMIC CHARACTERISTICS
Transition Time, t
TRANSITION
2
170 ns typ RL = 100 Ω, CL = 35 pF 250 310 350 ns max VS = 8 V; see Figure 29 Break-Before-Make Time Delay, t
75 ns typ RL = 100 Ω, CL = 35 pF
BBM
30 ns min VS1 = VS2 = 8 V; see Figure 31
+85°C
−40°C to +125°C
−40°C to +125°C
1
Unit Test Conditions/Comments
1
Unit Test Conditions/Comments
= 1 V/10 V, VD = 10 V/1 V; see
V
S
Figure 28
V Figure 28
= 1 V/10 V, VD = 10 V/1 V; see
S
or VDD
GND
Rev. A | Page 4 of 20
ADG1406/ADG1407
−40°C to
Parameter +25°C
+85°C
tON (EN) 145 ns typ RL = 100 Ω, CL = 35 pF 205 250 285 ns max VS = 8 V; see Figure 31 t
(EN) 112 ns typ RL = 100 Ω, CL = 35 pF
OFF
150 175 200 ns max VS = 8 V; see Figure 31
Charge Injection
10 pC typ
Off Isolation −73 dB typ
Channel-to-Channel Crosstalk −70 dB typ
−3 dB Bandwidth RL = 50 Ω, CL = 5 pF; see Figure 36 ADG1406 35 MHz typ ADG1407 70 MHz typ
Insertion Loss 0.6 dB typ
CS (Off) 12 pF typ f = 1 MHz CD (Off)
ADG1406 145 pF typ f = 1 MHz ADG1407 72 pF typ f = 1 MHz
CD, CS (On)
ADG1406 166 pF typ f = 1 MHz ADG1407 93 pF typ f = 1 MHz
POWER REQUIREMENTS VDD = 13.2 V
IDD 0.002 μA typ Digital inputs = 0 V or VDD 1 μA max IDD 150 μA typ Digital inputs = 5 V
475 μA max
VDD 5/16.5 V min/max VSS = 0 V, GND = 0 V
1
Temperature range for B version: −40°C to +125°C.
2
Guaranteed by design, not subject to production test.
−40°C to +125°C
1
Unit Test Conditions/Comments
= 6 V, RS = 0 Ω, CL = 1 nF; see
V
S
Figure 33 R
see Figure 34 R
see Figure 35
R see Figure 36
= 50 Ω, CL = 5 pF, f = 1 MHz;
L
= 50 Ω, CL = 5 pF, f = 1 MHz;
L
= 50 Ω, CL = 5 pF, f = 1 MHz;
L
Rev. A | Page 5 of 20
ADG1406/ADG1407

±5 V DUAL SUPPLY

VDD = +5 V ± 10%, VSS = −5 V ± 10%, GND = 0 V, unless otherwise noted.
Table 4.
−40°C to
Parameter +25°C
+85°C
ANALOG SWITCH
Analog Signal Range VSS to VDD V On Resistance (RON) 21 Ω typ VDD = +4.5 V, VSS = −4.5 V, VS = ±4.5 V, 25 29 32 Ω max IS = −10 mA; see Figure 27 On -Resistance Match Between 0.6 Ω typ VDD = +4.5 V, VSS = −4.5 V, VS = ±4.5V,
Channels (ΔRON) 1.3 1.7 1.9 Ω max IS = −10 mA
On -Resistance Flatness (R
) 5.2 Ω typ VDD = +4.5 V, VSS = −4.5 V, VS = ±4.5 V;
FLAT(ON)
6.4 7.3 7.6 Ω max IS = −10 mA
LEAKAGE CURRENTS VDD = +5.5 V, VSS = −5.5 V
Source Off Leakage, IS (Off) ±0.01 nA typ
±0.25 ±1 ±4 nA max Drain Off Leakage, ID (Off) ±0.01 nA typ
±0.5 ±3 ±20 nA max
Channel On Leakage, ID, IS (On) ±0.01 nA typ VS = VD = ±4.5 V; see Figure 29
±0.5 ±3 ±20 nA max
DIGITAL INPUTS
Input High Voltage, V Input Low Voltage, V
2.0 V min
INH
0.8 V max
INL
Input Current ±0.002 μA typ VIN = V ±0.1 μA max Digital Input Capacitance, CIN 3.5 pF typ
DYNAMIC CHARACTERISTICS2
Transition Time, t
260 ns typ RL = 100 Ω, CL = 35 pF
TRANSITION
435 510 565 ns max VS = 5 V; see Figure 30 Break-Before-Make Time Delay, t
90 ns typ RL = 100 Ω, CL = 35 pF
BBM
30 ns min VS1 = VS2 = 5 V; see Figure 31 tON (EN) 230 ns typ RL = 100 Ω, CL = 35 pF 335 400 445 ns max VS = 5 V; see Figure 32 t
(EN) 205 ns typ RL = 100 Ω, CL = 35 pF
OFF
290 340 370 ns max VS = 5 V; see Figure 32 Charge Injection 10 pC typ VS = 0 V, RS = 0 Ω, CL = 1 nF; see Figure 33 Off Isolation –73 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 34 Channel-to-Channel Crosstalk –70 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 35 Total Harmonic Distortion, THD + N 0.18 % typ
−3 dB Bandwidth RL = 50 Ω, CL = 5 pF; see Figure 36 ADG1406 40 MHz typ ADG1407 80 MHz typ
Insertion Loss 1.15 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz; see Figure 36 CS (Off) 10 pF typ f = 1 MHz CD (Off)
ADG1406 123 pF typ f = 1 MHz ADG1407 62 pF typ f = 1 MHz
CD, CS (On)
ADG1406 148 pF typ f = 1 MHz ADG1407 88 pF typ f = 1 MHz
−40°C to +125°C
1
Unit Test Conditions/Comments
VS = ±4.5 V, VD = 4.5 V; see Figure 28
VS = ±4.5 V, VD = 4.5 V; see Figure 28
or VDD
GND
= 110 Ω, 5 V p-p, f = 20 Hz to 20 kHz; see
R
L
Figure 37
Rev. A | Page 6 of 20
ADG1406/ADG1407
−40°C to
Parameter +25°C
+85°C
POWER REQUIREMENTS VDD = +5.5 V, VSS = −5.5 V
IDD 0.002 μA typ Digital inputs = 0 V or VDD 1 μA max ISS 0.002 μA typ Digital inputs = 0 V, 5 V, or VDD 1 μA max VDD/VSS ±4.5/±16.5 V min/max
1
Temperature range for B version: −40°C to +125°C.
2
Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL

Table 5. ADG1406
Parameter 25°C 85°C 125°C Unit Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL
15 V Dual Supply VDD = +13.5 V, VSS = −13.5 V
28-Lead TSSOP 180 100 50 mA max 32-Lead LFCSP 300 150 60 mA max
12 V Single Supply VDD = 10.8 V, VSS = 0 V
28-Lead TSSOP 150 90 50 mA max 32-Lead LFCSP 260 130 55 mA max
5 V Dual Supply VDD = +4.5 V, VSS = −4.5 V
28-Lead TSSOP 140 85 45 mA max 32-Lead LFCSP 245 130 55 mA max
1
Guaranteed by design, not subject to production test.
1
−40°C to +125°C
1
Unit Test Conditions/Comments
Table 6. ADG1407
Parameter 25°C 85°C 125°C Unit Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL
1
15 V Dual Supply VDD = +13.5 V, VSS = −13.5 V
28-Lead TSSOP 135 85 45 mA max 32-Lead LFCSP 235 125 55 mA max
12 V Single Supply VDD = 10.8 V, VSS = 0 V
28-Lead TSSOP 110 70 40 mA max 32-Lead LFCSP 190 110 50 mA max
5 V Dual Supply VDD = +4.5 V, VSS = −4.5 V
28-Lead TSSOP 105 65 40 mA max 32-Lead LFCSP 180 100 50 mA max
1
Guaranteed by design, not subject to production test.
Rev. A | Page 7 of 20
ADG1406/ADG1407

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 7.
Parameter Rating
V
to VSS 35 V
DD
VDD to GND −0.3 V to +25 V V
to GND +0.3 V to −25 V
SS
Analog, Digital Inputs1
Continuous Current, Sx or Dx Pins
Peak Current, Sx or Dx Pins (Pulsed
at 1 ms, 10% Duty Cycle Maximum)
28-Lead TSSOP 300 mA 32-Lead LFCSP_VQ 550 mA
Operating Temperature Range
Industrial (B Version) –40°C to +125°C Storage Temperature Range –65°C to +150°C Junction Temperature 150°C Reflow Soldering, Pb-Free
Peak Temperature 260 (+0/−5)°C
Time at Peak Temperature 10 sec to 40 sec
1
Overvoltages at the Ax, EN, Sx, or Dx pins are clamped by internal diodes.
Limit current to the maximum ratings given.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating may be applied at any one time.
− 0.3 V to VDD + 0.3 V
V
SS
or 30 mA, whichever occurs first
Table 5 and Tab l e 6 specifications + 15%

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 8. Thermal Resistance
Package Type θJA θ
28-Lead TSSOP 97.9 14 °C/W 32-Lead LFCSP_VQ 27.27 °C/W
Unit
JC

ESD CAUTION

Rev. A | Page 8 of 20
ADG1406/ADG1407

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

C
V
NC
NC
S16
S15
S14
S13
S12
S11
S10
GND
NC
DD
S9
A3
1
2
3
4
5
6
ADG1406
7
(Not to Scale)
8
9
10
11
12
13
14
TOP VIEW
DD
NC
V
1S16 2S15 3S14 4S13 5S12 6S11 7S10 8S9
NC
30
31
32
PIN 1 INDICAT OR
ADG1406
TOP VIEW
(Not to Scale)
9
11
10
A3
A2
GND
28
D
27
V
SS
26
S8
25
S7
24
S6
23
S5
22
S4
21
S3
20
S2
19
S1
18
EN
17
A0
16
A1
15
A2
NOTES
1. NC = NO CONNECT .
2. EXPOSED PAD TIED TO SUBSTRATE, V
SS
N
NC
NC
V
D
28
27
26
25
29
24 S8 23 S7 22 S6 21 S5 20 S4 19 S3 18 S2 17 S1
12
13
14
15
16
A1
A0
EN
NC
NC
07419-004
.
SS
NC = NO CONNECT
Figure 3. ADG1406 TSSOP Pin Configuration
07419-003
Figure 4. ADG1406 LFCSP Pin Configuration
Table 9. ADG1406 Pin Function Descriptions
Pin No.
TSSOP LFCSP_VQ Mnemonic Description
1 31 VDD Most Positive Power Supply Potential. 2, 3, 13
12, 13, 26,
NC No Connect.
27, 28, 30, 32 4 1 S16 Source Terminal 16. This pin can be an input or an output. 5 2 S15 Source Terminal 15. This pin can be an input or an output. 6 3 S14 Source Terminal 14. This pin can be an input or an output. 7 4 S13 Source Terminal 13. This pin can be an input or an output. 8 5 S12 Source Terminal 12. This pin can be an input or an output. 9 6 S11 Source Terminal 11. This pin can be an input or an output. 10 7 S10 Source Terminal 10. This pin can be an input or an output. 11 8 S9 Source Terminal 9. This pin can be an input or an output. 12 9 GND Ground (0 V) Reference. 14 10 A3 Logic Control Input. 15 11 A2 Logic Control Input. 16 14 A1 Logic Control Input. 17 15 A0 Logic Control Input. 18 16 EN
Active High Digital Input. When this pin is low, the device is disabled and all switches are
turned off. When this pin is high, the Ax logic inputs determine which switch is turned on. 19 17 S1 Source Terminal 1. This pin can be an input or an output. 20 18 S2 Source Terminal 2. This pin can be an input or an output. 21 19 S3 Source Terminal 3. This pin can be an input or an output. 22 20 S4 Source Terminal 4. This pin can be an input or an output. 23 21 S5 Source Terminal 5. This pin can be an input or an output. 24 22 S6 Source Terminal 6. This pin can be an input or an output. 25 23 S7 Source Terminal 7. This pin can be an input or an output. 26 24 S8 Source Terminal 8. This pin can be an input or an output. 27 25 VSS
Most Negative Power Supply Potential. In single-supply applications, this pin can be
connected to ground. The exposed pad is tied to the substrate, V 28 29 D Drain Terminal. This pin can be an input or an output.
.
SS
Rev. A | Page 9 of 20
ADG1406/ADG1407
Table 10. ADG1406 Truth Table
A3 A2 A1 A0 EN On Switch
X X X X 0 None 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 11 1 0 1 1 1 12 1 1 0 0 1 13 1 1 0 1 1 14 1 1 1 0 1 15 1 1 1 1 1 16
Rev. A | Page 10 of 20
ADG1406/ADG1407
V
DB
NC
S8B
S7B
S6B
S5B
S4B
S3B
S2B
S1B
GND
NC
NC
DD
1
2
3
4
5
6
ADG1407
7
(Not to Scale)
8
9
10
11
12
13
14
TOP VIEW
DD
NC
NC
V
1S8B 2S7B 3S6B 4S5B 5S4B 6S3B 7S2B 8S1B
DB
29
31
30
32
PIN 1 INDICATO R
ADG1407
TOP VIEW
(Not to Scale)
9
11
10
12
A2
NC
NC
GND
28
DA
27
V
SS
26
S8A
25
S7A
24
S6A
23
S5A
22
S4A
21
S3A
20
S2A
19
S1A
18
EN
17
A0
16
A1
15
A2
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD TIED TO SUBSTRATE, V
SS
NC
DA
NC
V
25
28
27
26
24 S8A 23 S7A 22 S6A 21 S5A 20 S4A 19 S3A 18 S2A 17 S1A
13
14
15
16
A1
A0
EN
NC
07419-037
.
SS
NC = NO CONNECT
Figure 5. ADG1407 TSSOP Pin Configuration
07419-036
Figure 6. ADG1407 LFCSP_VQ Pin Configuration
Table 11. ADG1407 Pin Function Descriptions
Pin No.
TSSOP LFCSP_VQ Mnemonic Description
1 29 VDD Most Positive Power Supply Potential. 2 31 DB Drain Terminal B. This pin can be an input or an output. 3, 13, 14
11, 12, 13, 26,
NC No Connect.
28, 30, 32 4 1 S8B Source Terminal 8B. This pin can be an input or an output. 5 2 S7B Source Terminal 7B. This pin can be an input or an output. 6 3 S6B Source Terminal 6B. This pin can be an input or an output. 7 4 S5B Source Terminal 5B. This pin can be an input or an output. 8 5 S4B Source Terminal 4B. This pin can be an input or an output. 9 6 S3B Source Terminal 3B. This pin can be an input or an output. 10 7 S2B Source Terminal 2B. This pin can be an input or an output. 11 8 S1B Source Terminal 1B. This pin can be an input or an output. 12 9 GND Ground (0 V) Reference. 15 10 A2 Logic Control Input. 16 14 A1 Logic Control Input. 17 15 A0 Logic Control Input. 18 16 EN
Active High Digital Input. When this pin is low, the device is disabled and all switches are
turned off. When this pin is high, the Ax logic inputs determine which switch is turned on. 19 17 S1A Source Terminal 1A. This pin can be an input or an output. 20 18 S2A Source Terminal 2A. This pin can be an input or an output. 21 19 S3A Source Terminal 3A. This pin can be an input or an output. 22 20 S4A Source Terminal 4A. This pin can be an input or an output. 23 21 S5A Source Terminal 5A. This pin can be an input or an output. 24 22 S6A Source Terminal 6A. This pin can be an input or an output. 25 23 S7A Source Terminal 7A. This pin can be an input or an output. 26 24 S8A Source Terminal 8A. This pin can be an input or an output. 27 25 VSS
Most Negative Power Supply Potential. In single-supply applications, this pin can be
connected to ground. The exposed pad is tied to the substrate, V 28 27 DA Drain Terminal A. This pin can be an input or an output.
.
SS
Rev. A | Page 11 of 20
ADG1406/ADG1407
Table 12. ADG1407 Truth Table
A2 A1 A0 EN On Switch Pair
X X X 0 None 0 0 0 1 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 1 8
Rev. A | Page 12 of 20
ADG1406/ADG1407

TYPICAL PERFORMANCE CHARACTERISTICS

16
14
12
10
VDD = +10V V
= –10V
SS
VDD = +12V V
= –12V
SS
VDD = +13.5V V
= –13.5V
SS
18
15
12
TA = +125°C
8
6
ON RESISTANCE (Ω)
4
2
TA = 25°C I
= –10mA
S
0
–16.5 –13.5 –4.5 4.5 16.5
–10.5 –1.5 7.5–7.5 1.5 10.5 13.5
VDD = +15V V
= –15V
SS
VS, VD (V)
VDD = +16.5V V
= –16.5V
SS
Figure 7. On Resistance as a Function of VD (VS), Dual Supply
35
30
25
20
15
ON RESISTANCE (Ω)
10
5
TA = 25°C I
= –10mA
S
0
–7 –1 7
Figure 8. On Resistance as a Function of V
40
35
30
25
20
15
ON RESISTANCE (Ω)
10
5
T
A
I
= –10mA
S
0
VDD = +3.V V
= –3.V
SS
VDD = +4.5V V
= –4.5V
SS
VDD = +5.0V V
= –5.0V
SS
VDD = +7V V
= –7V
SS
–5 1–3 3 5
= 25°C
1.50
3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5
VS, VD (V)
VDD = +5V V
= 0V
SS
VDD = +10.8V V
SS
VDD = +15V V
SS
VS, VD (V)
= 0V
= 0V
(Vs), Dual Supply
D
VDD = +8V V
= 0V
SS
VDD = +12V V
SS
VDD = +13.2V V
VDD = +5.5V V
= –5.5V
SS
= 0V
= 0V
SS
Figure 9. On Resistance as a Function of VD (VS), Single Supply
15.0
9
6
ON RESISTANCE (Ω)
3
VDD = +15V V
= –15V
07419-006
SS
0 –15 –10 –5 0 5 10 15
TA = +85°C
TA = +25°C
TA = –40°C
07419-009
VS, VD (V)
Figure 10. On Resistance as a Function of VD (VS)
for Different Temperatures, 15 V Dual Supply
30
25
20
15
10
ON RESISTANCE (Ω)
5
VDD = +5V V
= –5V
07419-007
SS
0
–5 –3–4 –2 0–1 3214
TA = +125°C
TA = +85°C
TA = +25°C
TA = –40°C
VS, VD (V)
07419-010
5
Figure 11. On Resistance as a Function of VD (VS)
for Different Temperatures, 5 V Dual Supply
25
20
15
10
ON RESISTANCE (Ω)
5
VDD = +12V V
= 0V
SS
07419-008
0
01108642
TA = +125°C
TA = +85°C
TA = +25°C
TA = –40°C
VS, VD (V)
07419-011
2
Figure 12. On Resistance as a Function of VD (VS)
for Different Temperatures, 12 V Single Supply
Rev. A | Page 13 of 20
ADG1406/ADG1407
1.0
VDD = +15V
0.8 V
= –15V
SS
V
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
LEAKAGE CURRENT (n A)
–0.8
–1.0
–1.2
–1.4
01020304050
Figure 13. Leakage Current as a Function of Temperature (up to 85°C),
8
6
4
2
0
–2
–4
LEAKAGE CURRENT (n A)
–6
–8
–10
0
Figure 14. Leakage Current as a Function of Temperature,
7
6
5
4
3
2
1
0
–1
LEAKAGE CURRENT (n A)
–2
–3
–4
0
Figure 15. Leakage Current as a Function of Temperature,
= +10V/–10V
BIAS
IS (OFF) +– I
(OFF) +–
D
I
(OFF) –+
S
I
(OFF) –+
D
I
, IS (ON) ++
D
I
, IS (ON) ––
D
VDD = +15V V
= –15V
SS
V
= +10V/–10V
BIAS
IS (OFF) +– I
(OFF) +–
D
I
(OFF) –+
S
I
(OFF) –+
D
I
, IS (ON) ++
D
I
, IS (ON) ––
D
VDD = +5V
= –5V
V
SS
= +4.5V/–4.5V
V
BIAS
IS (OFF) +–
(OFF) +–
I
D
(OFF) –+
I
S
(OFF) –+
I
D
, IS (ON) ++
I
D
, IS (ON) ––
I
D
TEMPERATURE ( °C)
60 70 80
15 V Dual Supply
TEMPERATURE ( °C)
15 V Dual Supply
TEMPERATURE ( °C)
5 V Dual Supply
14
VDD = +12V
12
V
= 0V
SS
V
= +1V/+10V
BIAS
10
8
IS (OFF) +– I
(OFF) +–
D
6
I
(OFF) –+
S
I
(OFF) –+
4
D
I
, IS (ON) ++
D
I
, IS (ON) ––
2
D
LEAKAGE CURRENT (n A)
0
–2
07419-012
–4
0
07419-015
12010080604020
TEMPERATURE ( °C)
Figure 16. Leakage Current as a Function of Temperature,
12 V Single Supply
160
T
= 25°C
140
A
I
PER LOGI C INPUT
DD
120
100
(µA)
80
DD
I
60
= +12V
V
40
20
07419-013
12010080604020
0
0 1.5 4.5 9.0 15.0
DD
V
= 0V
SS
= +5V
V
DD
V
= –5V
SS
3.0 7.5 12. 06.0 10.5 13.5
V V
DD
= –15V
SS
= +15V
07419-016
LOGIC LEVEL (Ax, EN) (V)
Figure 17. IDD vs. Logic Level
100
TA = 25°C
80
60
40
20
VDD = +5V V
= –5V
SS
0
–20
CHARGE INJECTI ON (pC)
–40
VDD = +15V V
= –15V
SS
VDD = +12V V
= 0V
SS
–60
07419-014
12010080604020
–80
–15 –10 –5 0 5 10 15
07419-017
VS (V)
Figure 18. Charge Injection vs. Source Voltage
Rev. A | Page 14 of 20
ADG1406/ADG1407
350
300
250
200
150
TIME (ns)
100
50
VDD = +12V V
VDD = +15V V
= –15V
SS
VDD = +5V V
= +5V
SS
= 0V
SS
CROSSTALK (d B)
–20
–40
–60
–80
–100
0
VDD = +15V V
SS
T
A
= –15V
= 25°C
ADJACENT CHANNELS
(S1A TO S2A)
ADJACENT SWITCHES (S1A TO S1B)
0 –40 0–20 4020 60 80 100 120
TEMPERATURE (° C)
Figure 19. Transition Time vs. Temperature
0
VDD = +15V V
= –15V
SS
T
= 25°C
–20
A
–40
–60
–80
OFF ISOLATIO N (dB)
–100
–120
10k
1k
100k 1M 10M 100M 1G
FREQUENCY (Hz)
Figure 20. Off Isolation vs. Frequency
–10
VDD = +15V V
= –15V
SS
T
= 25°C
A
–30
–50
–70
–90
CROSSTALK (dB)
–110
–130
07419-018
–120
10k
1k
100k 1M 10M 100M 1G
FREQUENCY (Hz)
07419-021
Figure 22. ADG1407 Crosstalk vs. Frequency
0
–0.5
–1.0
–1.5
–2.0
–2.5
INSERTION LOSS (dB)
–3.0
VDD = +15V V
= –15V
SS
T
= 25°C
A
–3.5
–4.0
07419-019
100
10k1k
100k 1M 10M 100M
FREQUENCY (Hz)
07419-022
Figure 23. ADG1406 On Response vs. Frequency
0.14
0.12
0.10
0.08
0.06
THD + N (%)
0.04
0.02
VS = 20V p-p
VS = 15V p-p
VS = 10V p-p
VDD = +15V
= –15V
V
SS
= 25°C
T
A
= 100
R
L
–150
10k
1k
100k 1M 10M 100M 1G
FREQUENCY (Hz)
Figure 21. ADG1406 Crosstalk vs. Frequency
07419-020
Rev. A | Page 15 of 20
0
02 8 14 20
4101661218
FREQUENCY (kHz)
Figure 24. THD + N vs. Frequency, 15 V Dual Supply
07419-023
ADG1406/ADG1407
1.2
1.0
0.8
0.6
THD + N (%)
0.4
0.2
0
02 8 14 20
Figure 25. THD + N vs. Frequency, 5 V Dual Supply
VS = 10V p-p
VS = 5V p-p
VS = 2.5V p-p
4101661218
FREQUENCY (kHz)
VDD = +5V
= –5V
V
SS
= 25°C
T
A
=110
R
L
0
VDD = +15V
= –15V
V
SS
= 25°C
T
A
–20
V p-p = 0.63V
–40
NO DECOUPLI NG
–60
ACPSRR (dB)
–80
–100
07419-024
–120
100
CAPACITORS
10k 100k
FREQUENCY (Hz)
DECOUPLING
CAPACITORS
ON SUPPLIES
1M
10M1k
07419-025
Figure 26. ACPSRR vs. Frequency
Rev. A | Page 16 of 20
ADG1406/ADG1407

TERMINOLOGY

t
RON
Ohmic resistance between the D and S terminals.
ΔR
ON
Difference between the R
FLAT(ON)
R
of any two channels.
ON
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.
I
(Off)
S
Source leakage current when the switch is off.
I
(Off)
D
Drain leakage current when the switch is off.
I
, IS (On)
D
Channel leakage current when the switch is on.
V
, VS
D
Analog voltage on Terminal D and Terminal S.
C
(Off)
S
Channel input capacitance for the off condition.
C
(Off)
D
Channel output capacitance for the off condition.
C
, CS (On)
D
On switch capacitance.
C
IN
Digital input capacitance.
t
(EN)
ON
Delay time between the 50% and 90% points of the digital input and the switch on condition.
t
(EN)
OFF
Delay time between the 50% and 90% points of the digital input and the switch off condition.
t
TRANSITION
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
BBM
Off time measured between the 80% points of the switches when switching from one address state to another.
V
INL
Maximum input voltage for Logic 0.
V
INH
Minimum input voltage for Logic 1.
I
, I
INL
INH
Input current of the digital input.
I
DD
Positive supply current.
I
SS
Negative supply current.
Off Isolation
A measure of unwanted signal coupling through an off channel.
Charge Injection
A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth
The frequency at which the output is attenuated by 3 dB.
On Response
The frequency response of the on switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.
ACPSRR (AC Power Supply Rejection Ratio)
Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modu­lated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.
Rev. A | Page 17 of 20
ADG1406/ADG1407

TEST CIRCUITS

V
SD
V
S
Figure 27. On Resistance
3V
ADDRESS DRIVE (V
0V
t
TRANSITION
OUTPUT
)
IN
I
DS
07419-125
50% 50%
90%
IS(OFF) ID(OFF)
V
S
SD
A A
Figure 28. Off Leakage
t
< 20ns
r
t
< 20ns
f
V
IN
t
TRANSITION
90%
V
D
50
2.4V EN
07419-026
V
DD
V
DD
A0
A1
A2
A3
ADG1406
GND
V
SS
V
SS
S2 TO S15
S16
1
SD
NC
NC = NO CONNECT
Figure 29. On Leakage
S1
D
OUTPUT
300
V
S1
V
S16
35pF
ID(ON)
A
V
D
07419-027
ADDRESS DRIVE (V
OUTPUT
3V
ENABLE DRIVE (V
0V
OUTPUT
1
SIMILAR CO NNECTION F OR ADG1407.
Figure 30. Address to Output Switching Times, t
3V
)
IN
0V
80% 80%
t
BBM
V
IN
50
Figure 31. Break-Before-Make Delay, t
)
IN
t
(EN)
ON
50% 50%
0.9V
OUT
0.9V
t
(EN)
OFF
OUT
V
IN
TRANSITION
V
DDVSS
V
DDVSS
A0
A1
A2
A3
ADG1406
2.4V EN
1
SIMILAR CO NNECTION F OR ADG1407.
BBM
A0
A1
A2
A3
EN
50
S1
S2 TO S15
S16
1
GND
V
V
DD
V
V
DD
S2 TO S16
ADG1406
GND
D
SS
SS
OUTPUT
S1
1
D
300
OUTPUT
300
V
V
S
S
35pF
35pF
07419-028
07419-029
Figure 32. Enable Delay, t
Rev. A | Page 18 of 20
ON
1
SIMILAR CO NNECTION F OR ADG1407.
(EN), t
(EN)
OFF
07419-030
ADG1406/ADG1407
3V
V
V
DD
SS
V
V
DD
A0
SS
A1
V
IN
A2
A3
ADG1406
S
EN
GND
1
D
C 1nF
V
OUT
L
07419-031
V
IN
R
S
V
OUT
Q
INJ
= CL × ΔV
OUT
ΔV
OUT
V
S
1
SIMILAR CO NNECTION F OR ADG1407.
Figure 33. Charge Injection
0.1µF
V
V
DD
V
SS
0.1µF
NETWORK
V
DD
SS
S
50
D
GND
ANALYZER
50
V
V
OUT
R
L
50
S
NETWORK
ANALYZER
V
OUT
R
L
50
V
S
V
0.1µF
S1
V
DD
SS
0.1µF
V
S2
V
DD
SS
D
R 50
GND
0.1µF
V
OFF ISOLATION = 20 log
OUT
V
S
07419-032
Figure 34. Off Isolation
V
V
DD
V
SS
0.1µF
NETWORK
V
DD
SS
S
D
GND
ANALYZER
50
V
V
OUT
R
L
50
S
CHANNEL-TO-CHANNEL CROSSTALK = 20 log
Figure 36. Channel-to-Channel Crosstalk
V
0.1µF
IN
V
IN
V
DD
V
SS
0.1µF
V
DD
SS
S
D
GND
WITH SWITCH
V
INSERTION LOSS = 20 log
Figure 35. Bandwidth
OUT
WITHOUT SWITCH
V
OUT
07419-033
Figure 37. THD + Noise
R
L
10k
V
OUT
V
S
AUDIO PRECISION
R
S
V
S
V p-p
V
OUT
07419-034
07419-035
Rev. A | Page 19 of 20
ADG1406/ADG1407
C
Y
C

OUTLINE DIMENSIONS

9.80
9.70
9.60
INDI
1.00
0.85
0.80
PIN 1
ATO R
12° MAX
SEATING PLANE
PIN 1
0.15
0.05
OPLANARIT
0.10
28
0.65
BSC
0.30
0.19
COMPLIANT TO JEDEC STANDARDS MO-153-AE
1.20 MAX
SEATING
PLANE
15
4.50
4.40
4.30
0.20
0.09
6.40 BSC
141
Figure 38. 28-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-28)
Dimensions shown in millimeters
0.08
0.60 MAX
25
24
(BOTTOM VIEW)
17
16
5.00
BSC SQ
TOP
VIEW
0.80 MAX
0.65 TYP
0.30
0.23
0.18
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2
4.75
BSC SQ
0.20 REF
0.05 MAX
0.02 NOM
0.60 MAX
0.50
BSC
0.50
0.40
0.30
COPLANARIT Y
Figure 39. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5 mm × 5 mm Body, Very Thin Quad
(CP-32-2)
Dimensions shown in millimeters
8° 0°
0.75
0.60
0.45
PIN 1
32
EXPOSED
PAD
9
3.50 REF
FOR PROPER CONNECTION O F THE EXPOSED PAD, REFER TO THE PIN CONF IGURATIO N AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
INDICATOR
1
3.25
3.10 SQ
2.95
8
0.25 MIN
011708-A

ORDERING GUIDE

Model Temperature Range Description Package Option
ADG1406BRUZ ADG1406BRUZ-REEL71 −40°C to +125°C 28-Lead Thin Shrink Small Outline Package [TSSOP] RU-28 ADG1406BCPZ-REEL71 −40°C to +125°C 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-2 ADG1407BRUZ ADG1407BRUZ-REEL7 ADG1407BCPZ-REEL7
1
Z = RoHS Compliant Part.
©2008–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07419-0-3/09(A)
1
−40°C to +125°C 28-Lead Thin Shrink Small Outline Package [TSSOP] RU-28
1
−40°C to +125°C 28-Lead Thin Shrink Small Outline Package [TSSOP] RU-28
1
−40°C to +125°C 28-Lead Thin Shrink Small Outline Package [TSSOP] RU-28
1
−40°C to +125°C 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-2
Rev. A | Page 20 of 20
Loading...