Datasheet ADG1208, ADG1209 Datasheet (ANALOG DEVICES)

查询ADG1208供应商
Low Capacitance, 4-/8-Channel
FEATURES
<1 pC charge injection over full signal range 1 pF off capacitance 33 V supply range 120 Ω on resistance Fully specified at ±15 V/+12 V 3 V logic compatible inputs Rail-to-rail operation Break-before-make switching action Available in 16-lead TSSOP and 4 mm × 4 mm LFCSP_VQ Typical power consumption < 0.03 μW
APPLICATIONS
Audio and video routing Automatic test equipment Data-acquisition systems Battery-powered systems Sample-and-hold systems Communication systems
±15 V/+12 V iCMOS™ Multiplexers
ADG1208/ADG1209
FUNCTIONAL BLOCK DIAGRAMS
ADG1208
S1
S8
1-OF-8
DECODER
S1A
S4A
D
S1B
S4B
Figure 1.
ADG1209
1-OF-4
DECODER
A0 A1 E NA0 A1 A2 EN
DA
DB
05713-001
GENERAL DESCRIPTION
The ADG1208 and ADG1209 are monolithic, iCMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1208 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG1209 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched off. When on, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.
The iCMOS (industrial CMOS) modular manufacturing process combines high voltage CMOS (complementary metal­oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.
The ultralow capacitance and exceptionally low charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required.
Figure 2 shows that there is minimum charge injection over the entire signal range of the device. iCMOS construction also ensures ultralow power dissipation, making the parts ideally suited for portable and battery powered instruments.
1.0 MUX (SOURCE TO DRAIN)
=25°C
T
A
0.9
0.8
0.7
0.6
0.5
0.4
0.3
CHARGE INJECTION (pC)
0.2
0.1
0
–15 15
Figure 2. Source to Drain Charge Injection vs. Source Voltage
VDD=+5V V
= –5V
SS
–10 –5 0 5 10
VS(V)
VDD= +15V
= –15V
V
SS
VDD= +12V V
=0V
SS
05713-051
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2006 Analog Devices, Inc. All rights reserved.
ADG1208/ADG1209
TABLE OF CONTENTS
Features.............................................................................................. 1
Absolute Maximum Ratings ............................................................7
Applications....................................................................................... 1
Functional Block Diagrams............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Dual Supply................................................................................... 3
Single Supply................................................................................. 5
REVISION HISTORY
4/06—Revision 0: Initial Version
ESD Caution...................................................................................7
Pin Configurations and Function Descriptions............................8
Typical Performance Characteristics........................................... 10
Terminology.................................................................................... 14
Test Circuits..................................................................................... 15
Outline Dimensions....................................................................... 17
Ordering Guide .......................................................................... 17
Rev. 0 | Page 2 of 20
ADG1208/ADG1209
SPECIFICATIONS
DUAL SUPPLY
VDD = +15 V ± 10%, VSS = –15 V ± 10%, GND = 0 V, unless otherwise noted.
Table 1.
40ºC to
Parameter +25ºC
+85ºC
40ºC to +125ºC
ANALOG SWITCH
Analog Signal Range VSS to VDD V On Resistance, RON 120 Ω typ VS = ±10 V, IS = −1 mA, see Figure 29 200 240 270 Ω max VDD = +13.5 V, VSS = −13.5 V On Resistance Match Between Channels,
∆R
ON
3.5 Ω typ V
6 10 12 Ω max On Resistance Flatness, R
(On) 20 Ω typ VS = −5 V, 0 V, +5 V, IS = −1 mA
FLAT
64 76 83 Ω max LEAKAGE CURRENTS
Source Off Leakage, IS (Off) ±0.02 nA typ VD = ±10 V, VS = −10 V, see Figure 30 ±0.1 ±0.6 ±1 nA max Drain Off Leakage, ID (Off) ±0.02 nA typ VS = 1 V, 10 V; VD = 10 V, 1 V; see Figure 30
ADG1208 ±0.1 ±0.6 ±1 nA max ADG1209 ±0.1 ±0.6 ±1 nA max
Channel On Leakage, ID, IS (On) ±0.02 nA typ VS = VD = ±10 V, see Figure 31
ADG1208 ±0.2 ±0.6 ±1 nA max ADG1209 ±0.2 ±0.6 ±1 nA max
DIGITAL INPUTS
Input High Voltage, V Input Low Voltage, V Input Current, I
INL
2.0 V min
INH
0.8 V max
INL
or I
±0.005 μA max VIN = V
INH
±0.1 μA max Digital Input Capacitance, CIN 2 pF typ
DYNAMIC CHARACTERISTICS2
Transition Time, t
80 ns typ RL = 300 Ω, CL = 35 pF
TRANSITION
130 165 185 ns max VS = 10 V, see Figure 32
tON (EN) 75 ns typ RL = 300 Ω, CL = 35 pF
95 105 115 ns max VS = 10 V, see Figure 34
t
(EN) 83 ns typ RL = 300 Ω, CL = 35 pF
OFF
100 125 140 ns max VS = 10 V, see Figure 34
Break-Before-Make Time Delay, t
25 ns typ RL = 300 Ω, CL = 35 pF
BBM
10 ns min VS1 = VS2 = 10 V, see Figure 33 Charge Injection 0.4 pC typ VS = 0 V, RS = 0 Ω, CL = 1 nF, see Figure 35 Off Isolation −85 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 36 Channel-to-Channel Crosstalk −85 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 38 Total Harmonic Distortion + Noise 0.15 % typ
−3 dB Bandwidth 550 MHz typ RL = 50 Ω, CL = 5 pF, see Figure 37 CS (Off) 1 pF typ f = 1 MHz, VS = 0 V
1.5 pF max f = 1 MHz, VS = 0 V CD (Off) ADG1208 6 pF typ f = 1 MHz, VS = 0 V 7 pF max f = 1 MHz, VS = 0 V CD (Off) ADG1209 3.5 pF typ f = 1 MHz, VS = 0 V
4.5 pF max f = 1 MHz, VS = 0 V
Rev. 0 | Page 3 of 20
1
Unit Test Conditions/Comments
= ±10 V, IS = −1 mA
S
or V
INH
INL
= 10 kΩ, 5 V rms, f = 20 Hz to 20 kHz,
R
L
see
Figure 39
ADG1208/ADG1209
40ºC to
Parameter +25ºC
+85ºC
CD, CS (On) ADG1208 7 pF typ f = 1 MHz, VS = 0 V 8 pF max f = 1 MHz, VS = 0 V CD, CS (On) ADG1209 5 pF typ f = 1 MHz, VS = 0 V 6 pF max f = 1 MHz, VS = 0 V
POWER REQUIREMENTS
IDD 0.002 μA typ Digital inputs = 0 V or VDD
1.0 μA max IDD 220 μA typ Digital inputs = 5 V 320 μA max ISS 0.002 μA typ Digital inputs = 0 V or VDD
1.0 μA max ISS 0.002 μA typ Digital inputs = 5 V
1.0 μA max VDD/VSS ±5/±16.5 V min/max |V
1
Temperature range is as follows: Y version: –40°C to +125°C.
2
Guaranteed by design, not subject to production test.
40ºC to +125ºC
Unit Test Conditions/Comments
VDD = +16.5 V, VSS = 16.5 V
| = |VSS|
DD
Rev. 0 | Page 4 of 20
ADG1208/ADG1209
SINGLE SUPPLY
VDD = 12 V ± 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.1
Table 2.
−40ºC to
Parameter +25ºC
+85ºC
ANALOG SWITCH
Analog Signal Range 0 to VDD V On Resistance, RON 300 Ω typ VS = 0 V to10 V, IS = −1 mA, see Figure 29 475 567 625 Ω max VDD = 10.8 V, VSS = 0 V On Resistance Match Between Channels,
∆R
ON
5 Ω typ V
16 26 27 Ω max On Resistance Flatness, R
(On) 60 Ω typ VS = 3 V, 6 V, 9 V; IS = −1 mA
FLAT
LEAKAGE CURRENTS VDD = 13.2 V
Source Off Leakage, IS (Off) ±0.02 nA typ VS = 1 V/10 V, VD = 10 V/1 V, see Figure 30 ±0.1 ±0.6 ±1 nA max Drain Off Leakage, ID (Off) ±0.02 nA typ VS = 1 V/10 V, VD = 10 V/1 V, see Figure 30
ADG1208 ±0.1 ±0.6 ±1 nA max ADG1209 ±0.1 ±0.6 ±1 nA max
Channel On Leakage ID, IS (On) ±0.02 nA typ VS = VD = 1 V or 10 V; see Figure 31
ADG1208 ±0.2 ±0.6 ±1 nA max ADG1209 ±0.2 ±0.6 ±1 nA max
DIGITAL INPUTS
Input High Voltage, V Input Low Voltage, V Input Current, I
INL
2.0 V min
INH
0.8 V max
INL
or I
±0.001
INH
±0.1 μA max VIN = V
Digital Input Capacitance, CIN 3 pF typ
DYNAMIC CHARACTERISTICS
Transition Time, t
TRANSITION
2
100 ns typ RL = 300 Ω, CL = 35 pF
170 210 235 VS = 8 V, see Figure 32
tON (EN) 90 ns typ RL = 300 Ω, CL = 35 pF 110 140 160 VS = 8 V, see Figure 34 t
(EN) 105 ns typ RL = 300 Ω, CL = 35 pF
OFF
130 155 175 VS = 8 V, see Figure 34
Break-Before-Make Time Delay, t
45 ns typ RL = 300 Ω, CL = 35 pF
BBM
20 ns min VS1 = V Charge Injection −0.2 pC typ VS = 6 V, RS = 0 Ω, CL = 1 nF, see Figure 35 Off Isolation −85 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 36 Channel-to-Channel Crosstalk −85 dB typ RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 38
−3 dB Bandwidth 450 MHz typ RL = 50 Ω, CL = 5 pF, see Figure 37 CS (Off) 1.2 pF typ f = 1 MHz, VS = 6 V
1.8 pF max f = 1 MHz, VS = 6 V CD (Off) ADG1208 7.5 pF typ f = 1 MHz, VS = 6 V 9 pF max f = 1 MHz, VS = 6 V CD (Off) ADG1209 4.5 pF typ f = 1 MHz, VS = 6 V
5.5 pF max f = 1 MHz, VS = 6 V CD, CS (On) ADG1208 9 pF typ f = 1 MHz, VS = 6 V
10.5 pF max f = 1 MHz, VS = 6 V CD, CS (On) ADG1209 6 pF typ f = 1 MHz, VS = 6 V
7.5 pF max f = 1 MHz, VS = 6 V
−40ºC to +125ºC
Rev. 0 | Page 5 of 20
Unit Test Conditions/Comments
= 0 V to 10 V, IS = −1 mA
S
or V
INL
S2
INH
= 8 V, see Figure 33
ADG1208/ADG1209
−40ºC to
Parameter +25ºC
+85ºC
POWER REQUIREMENTS VDD = 13.2 V
IDD 0.002 μA typ Digital inputs = 0 V or VDD
1.0 μA max IDD 220 μA typ Digital inputs = 5 V
330 μA max
VDD 5/16.5 V min/max VSS = 0 V, GND = 0 V
1
Temperature range is as follows: Y version: –40°C to +125°C.
2
Guaranteed by design, not subject to production test.
−40ºC to +125ºC Unit Test Conditions/Comments
Rev. 0 | Page 6 of 20
ADG1208/ADG1209
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 3.
Parameter Rating
V
to VSS 35 V
DD
VDD to GND −0.3 V to +25 V V
to GND +0.3 V to −25 V
SS
Analog, Digital Inputs
Continuous Current, S or D 30 mA Peak Current, S or D (Pulsed at
1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (Y Version) –40°C to +125°C
Storage Temperature –65°C to +150°C Junction Temperature 150°C TSSOP, θJA, Thermal Impedance 112°C/W LFCSP_VQ, θJA, Thermal Impedance 30.4°C/W Reflow Soldering Peak
Temperature (Pb-Free)
1
Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should
be limited to the maximum ratings given.
1
VSS − 0.3 V to VDD + 0.3 V or 30 mA (whichever occurs first)
100 mA
260(+0/−5)°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 7 of 20
ADG1208/ADG1209
V
V
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
1
A0
2
EN
3
SS
ADG1208
TOP VI EW
4
S1
(Not t o Scal e)
5
S2
6
S3
7
S4
8
DS
Figure 3. ADG1208 Pin Configuration (TSSOP)
Table 4. ADG1208 Pin Function Descriptions
Pin Number
TSSOP LFCSP_VQ Mnemonic Description
1 15 A0 Logic Control Input. 2 16 EN
3 1 VSS
4 2 S1 Source Terminal 1. Can be an input or an output. 5 3 S2 Source Terminal 2. Can be an input or an output. 6 4 S3 Source Terminal 3. Can be an input or an output. 7 5 S4 Source Terminal 4. Can be an input or an output. 8 6 D Drain Terminal. Can be an input or an output. 9 7 S8 Source Terminal 8. Can be an input or an output. 10 8 S7 Source Terminal 7. Can be an input or an output. 11 9 S6 Source Terminal 6. Can be an input or an output. 12 10 S5 Source Terminal 5. Can be an input or an output. 13 11 VDD Most Positive Power Supply Potential. 14 12 GND Ground (0 V) Reference. 15 13 A2 Logic Control Input. 16 14 A1 Logic Control Input.
Table 5. ADG1208 Truth Table
A2 A1 A0 EN ON SWITCH
X X X 0 NONE 0 0 0 1 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 1 8
16
A1
15
A2
14
GND
13
V
DD
12
S5
11
S6
10
S7
9
8
5713-002
Figure 4. ADG1208 Pin Configuration (LFCSP_VQ),
1
SS
2S1
3S2
4S3
Exposed Pad Tied to Substrate, V
Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
Most Negative Power Supply Potential. In single supply applications, it can be connected to ground.
A0
EN
A1
14
15
16
PIN 1 INDICATOR
ADG1208
TOP VIEW
(Not to Scale)
7
5
6
D
S4
S8
A2
13
12 GND
11 V
DD
10 S5
9S6
8
S7
05713-004
SS
Rev. 0 | Page 8 of 20
ADG1208/ADG1209
GND
A1
EN
1
A0
2
EN
3
V
SS
ADG1209
TOP VIEW
4
S1A
(Not to Scale)
5
S2A
6
S3A
7
S4A
8
DA DB
Figure 5. ADG1209 Pin Configuration (TSSOP)
16
A1
15
GND
14
V
DD
13
S1B
12
S2B
11
S3B
10
S4B
9
5713-003
Figure 6. ADG1209 Pin Configurations (LFCSP_VQ),
Table 6. ADG1209 Pin Function Descriptions
Pin Number
TSSOP LFCSP_VQ Mnemonic Description
1 15 A0 Logic Control Input. 2 16 EN
Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3 1 VSS
Most Negative Power Supply Potential. In single supply applications, it can be
connected to ground. 4 2 S1A Source Terminal 1A. Can be an input or an output. 5 3 S2A Source Terminal 2A. Can be an input or an output. 6 4 S3A Source Terminal 3A. Can be an input or an output. 7 5 S4A Source Terminal 4A. Can be an input or an output. 8 6 DA Drain Terminal A. Can be an input or an output. 9 7 DB Drain Terminal B. Can be an input or an output. 10 8 S4B Source Terminal 4B. Can be an input or an output. 11 9 S3B Source Terminal 3B. Can be an input or an output. 12 10 S2B Source Terminal 2B. Can be an input or an output. 13 11 S1B Source Terminal 1B. Can be an input or an output. 14 12 VDD Most Positive Power Supply Potential. 15 13 GND Ground (0 V) Reference. 16 14 A1 Logic Control Input.
Table 7. ADG1209 Truth Table
A1 A0 EN ON SWITCH PAIR
X X 0 NONE 0 0 1 1 0 1 1 2 1 0 1 3 1 1 1 4
1V
SS
2S1A
3S2A
4S3A
Exposed Pad Tied to Substrate, V
A0
14
16
15
PIN 1 INDICATOR
ADG1209
TOP VIEW
(Not to Scale)
7
5
6
DA
DB
S4A
13
8
S4B
12 V
DD
11 S1 B
10 S2B
9S3B
05713-005
SS
Rev. 0 | Page 9 of 20
ADG1208/ADG1209
TYPICAL PERFORMANCE CHARACTERISTICS
200
TA= 25°C
180
160
140
120
100
80
ON RESISTANCE (Ω)
60
40
20
0
–18 –15 –12 –9 –6 –3 12 1590631
VDD= +13.5V
=–13.5V
V
SS
VDD= +16.5V V
SS
SOURCE OR DRAIN VO LTAGE (V)
Figure 7. On Resistance as a Function of V
600
TA= 25°C
500
400
300
200
ON RESISTANCE (Ω)
VDD=+5.5V V
SS
= –5.5V
VDD= +4.5V V
VDD=+15V
= –15V
V
SS
= –16.5V
(VS) for Dual Supply
D
=–4.5V
SS
VDD=+5V
=–5V
V
SS
8
05713-030
250
200
150
100
ON RESISTANCE ( Ω)
50
0
–15 –10 –5 1005 15
TA= +125°C
TA= +85°C
TA= +25°C
TA= –40°C
TEMPERATURE (°C)
Figure 10. On Resistance as a Function of V
VDD= +15V
= –15V
V
SS
(VS) for Different
D
Temperatures, Dual Supply
600
500
400
300
200
ON RESISTANCE (Ω)
TA= +125°C
TA= –40°C
VDD= 12V V
SS
TA=+85°C
TA= +25°C
=0V
05713-033
100
0
–6 –4 –2 402 6
Figure 8. On Resistance as a Function of V
450
TA= 25°C
400
350
300
250
200
150
ON RESISTANCE (Ω)
100
50
0
02 4 6 12810 14
Figure 9. On Resistance as a Function of V
SOURCE OR DRAIN VOL TAGE (V)
(VS) for Dual Supply
D
VDD= 10.8V
=0V
V
SS
VDD= 12V
=0V
V
SS
VDD= 13.2V
=0V
V
SS
SOURCE OR DRAIN VO LTAGE (V)
(VS) for Single Supply
D
100
0
024 1068 12
05713-031
Figure 11. On Resistance as a Function of V
TEMPERATURE (°C)
(VS) for Different
D
05713-034
Temperatures, Single Supply
400
VDD = +15V
= –15V
V
SS
300
200
100
–100
LEAKAGE CURRENT (p A)
–200
–300
–400
05713-032
= +10V/–10V
V
BIAS
ID, S (ON) + +
ID (OFF) + –
IS (OFF) + –
0
ID, S (ON) – –
ID (OFF) – +
0 102030405060708090100110120
TEMPERATURE (° C)
IS (OFF) – +
05713-057
Figure 12. ADG1208 Leakage Currents as a Function of Temperature,
Dual Supply
Rev. 0 | Page 10 of 20
ADG1208/ADG1209
150
VDD = 12V V
= 0V
SS
V
= 1V/10V
BIAS
100
50
0
–50
LEAKAGE CURRENT ( pA)
–100
–150
0 102030405060708090100110120
ID, S (ON) + +
ID, S (ON) – –
ID (OFF) – +
TEMPERATURE (° C)
Figure 13. ADG1208 Leakage Currents as a Function of Temperature,
Single Supply
200
180
160
140
120
(µA)
100
DD
I
80
60
40
20
0
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
CHARGE INJECTION (pC)
0.2
0.1
0
–15 15
VDD=+15V
= –15V
V
SS
VDD= +12V
=0V
V
SS
0 2 4 6 8 10121416
Figure 14. I
MUX (SOURCE TO DRAIN)
=25°C
T
A
–10 –5 0 5 10
LOGIC, INX(V)
VDD=+5V V
= –5V
SS
vs. Logic Level
DD
VS(V)
VDD= +15V
= –15V
V
SS
IDDPER CHANNEL T
A
Figure 15. Source-to-Drain Charge Injection vs. Source Voltage
IS (OFF) + –
ID (OFF) + –
IS (OFF) – +
=25°C
VDD= +12V V
=0V
SS
6
DEMUX (DRAIN T O SOURCE)
=25°C
T
A
4
2
0
VDD= +15V
–2
CHARGE INJECTION (pC)
–4
–6
05713-058
= –15V
V
SS
–10 –5 0 5 10
–15 15
VDD=+5V V
SS
VS(V)
= –5V
VDD=+12V
=0V
V
SS
05713-041
Figure 16. Drain-to-Source Charge Injection vs. Source Voltage
350
300
250
200
150
TIME (ns)
100
50
0
–40
5713-035
0
–10
–20
–30
–40
–50
–60
–70
OFF ISOLATION (dB)
–80
–90
–100
–110
10k 100k 1M 10M 100M 1G
05713-040
VDD=+5V V
=–5V
SS
VDD=+12V V
=0V
SS
VDD= +15V V
= –15V
SS
–20 0 20 40 60 80 100 120
Figure 17. t
VDD= +15V V
=–15V
SS
T
=25°C
A
TEMPERATURE (°C)
Times vs. Temperature
ON/tOFF
FREQUENCY (Hz)
Figure 18. Off Isolation vs. Frequency
05713-052
5713-049
Rev. 0 | Page 11 of 20
ADG1208/ADG1209
20
VDD=+15V
= –15V
V
SS
= 25°C
T
0
A
10
LOAD = 10k
= 25°C
T
A
–20
–40
–60
CROSSTALK (d B)
–80
–100
–120
10k 1G
ADJACENT CHANNELS
NONADJACENT
CHANNELS
100k 1M 10M 100M
FREQUENCY (Hz)
Figure 19. ADG1208 Crosstalk vs. Frequency
0
–20
–40
–60
CROSST ALK (dB)
–80
–100
–120
10k 1G
ADJACENT CHANNELS
NONADJACENT
CHANNELS
100k 1M 10M 100M
FREQUENCY (Hz)
Figure 20. ADG1209 Crosstalk vs. Frequency
6.0
–6.5
–7.0
–7.5
–8.0
1
VDD=+5V,VSS=–5V,VS= +3.5Vrms
THD + N (%)
0.1
0.01
05713-042
VDD= +15V, VSS= –15V, VS=+5Vrms
10 100 1k 10k 100k
FREQUENCY (Hz)
05713-036
Figure 22. THD + N vs. Frequency
12
10
8
6
4
CAPACITANCE (pF)
2
0
–15 15
05713-053
VDD=+15V V
= –15V
SS
T
= 25°C
A
SOURCE/DRAIN ON
DRAIN OFF
SOURCE OFF
–10 –5 0 5 10
V
BIAS
(V)
05713-043
Figure 23. ADG1208 Capacitance vs. Source Voltage,
±15 V Dual Supply
12
10
8
6
VDD=12V V
=0V
SS
T
=25°C
A
SOURCE/DRAIN ON
DRAIN OFF
–8.5
ON RESPONSE (dB)
–9.0
–9.5
–10.0
10k 1G
100k 1M 10M 100M
FREQUENCY (Hz)
Figure 21. On Response vs. Frequency
05713-054
4
CAPACITANCE (pF)
2
0
01
246810
SOURCE OFF
V
(V)
BIAS
2
05713-045
Figure 24. ADG1208 Capacitance vs. Source Voltage,
12 V Single Supply
Rev. 0 | Page 12 of 20
ADG1208/ADG1209
12
10
8
VDD=+5V
6
V
=–5V
SS
= 25°C
T
A
4
CAPACITANCE (pF )
2
0
–5 5
4–3–2–101234
SOURCE/DRAIN ON
DRAIN OFF
SOURCE OFF
V
(V)
BIAS
Figure 25. ADG1208 Capacitance vs. Source Voltage, ±5 V Dual Supply
05713-055
8
7
6
5
4
3
CAPACITANCE (pF)
2
1
0
01
VDD= 12V
=0V
V
SS
T
= 25°C
A
SOURCE/DRAIN ON
DRAIN OFF
SOURCE OFF
246810
V
(V)
BIAS
2
Figure 27. ADG1209 Capacitance vs. Source Voltage, 12 V Single Supply
05713-047
8
7
6
5
4
3
CAPACITANCE (pF)
2
1
0
–15 15
VDD=+15V
= –15V
V
SS
T
= 25°C
A
SOURCE/DRAIN ON
DRAIN OFF
SOURCE OFF
–10 –5 0 5 10
V
(V)
BIAS
Figure 26. ADG1209 Capacitance vs. Source Voltage, ±15 V Dual Supply
8
7
6
5
4
VDD=+5V V
= –5V
SS
=25°C
T
A
3
CAPACITANCE (pF )
2
1
0
–5 5
4–3–2–101234
05713-046
SOURCE/DRAIN ON
DRAIN OFF
SOURCE OFF
V
(V)
BIAS
05713-056
Figure 28. ADG1209 Capacitance vs. Source Voltage, ±5 V Dual Supply
Rev. 0 | Page 13 of 20
ADG1208/ADG1209
TERMINOLOGY
RON
Ohmic resistance between D and S.
ΔR
ON
Difference between the R
(Off)
I
S
Source leakage current when the switch is off.
(Off)
I
D
Drain leakage current when the switch is off.
, IS (On)
I
D
Channel leakage current when the switch is on.
(VS)
V
D
Analog voltage on terminals D, S.
(Off)
C
S
Channel input capacitance for off condition.
(Off)
C
D
Channel output capacitance for off condition.
, CS (On)
C
D
On switch capacitance.
C
IN
Digital input capacitance.
(EN)
t
ON
Delay time between the 50% and 90% points of the digital input and switch on condition.
of any two channels.
ON
t
TRANSITION
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
T
BBM
Off time measured between the 80% point of both switches when switching from one address state to another.
V
INL
Maximum input voltage for Logic 0.
V
INH
Minimum input voltage for Logic 1.
(I
INL
INH
)
I
Input current of the digital input.
I
DD
Positive supply current.
I
SS
Negative supply current.
Off Isolation
A measure of unwanted signal coupling through an off channel.
Charge Injection
A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth
The frequency at which the output is attenuated by 3 dB.
(EN)
t
OFF
Delay time between the 50% and 90% points of the digital input and switch off condition.
Rev. 0 | Page 14 of 20
On Response
The frequency response of the on switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.
ADG1208/ADG1209
V
VDDV
VDDV
VDDV
O
R
TEST CIRCUITS
V
SD
I
V
S
DS
05713-037
Figure 29. On Resistance
IS(OFF) ID(OFF)
SD
A A
S
Figure 30. Off Leakage
SD
NC
V
D
05713-038
NC = NO CONNECT
Figure 31. On Leakage
ID(ON)
A
V
D
05713-039
3V
ADDRESS DRIVE (V
0V
t
TRANSITI ON
OUTPUT
ADDRESS DRIVE (V
0V
OUTPUT
)
IN
3V
)
IN
50% 50%
90%
80% 80%
t
BBM
t
<20ns
r
t
< 20ns
f
V
t
TRANSITION
90%
IN
50
2.4V EN
1
SIMILAR CONNECTION FOR ADG1209.
Figure 32. Address to Output Switching Times, t
V
IN
50
2.4V EN
A0
A1
A2
TRANSITION
A0
A1
A2
V
V
DD
ADG1208
GND
V
V
DD
ADG1208
GND
SS
SS
S2–S7
1
SS
SS
S2–S7
1
S1
S8
D
S1
S8
D
OUTPUT
OUTPUT
300
V
S1
V
S8
300
35pF
05713-022
V
S
35pF
1
SIMILAR CONNECTI ON FO R ADG1209.
Figure 33. Break-Before-Make Delay, t
BBM
05713-023
SS
3V
ENABLE D
IVE (VIN)
0V
UTPUT
t
(EN)
ON
50% 50%
0.9V
O
t
(EN)
OFF
0.9V
O
Figure 34. Enable Delay, t
V
IN
50
1
SIMILAR CONNECTI ON FOR ADG1209.
(EN), t
OFF
(EN)
ON
Rev. 0 | Page 15 of 20
V
DD
A0
A1
A2
ADG1208
EN
GND
V
SS
S2–S8
S1
1
D
OUTPUT
300
V
S
35pF
05713-024
ADG1208/ADG1209
VINV
VDDV
V
V
V
V
V
V
SS
V
V
DD
3V
A0
SS
A1
A2
GND
1
DS
C 1nF
V
OUT
L
05713-025
OUT
Q
INJ=CL
× ΔV
OUT
ΔV
OUT
ADG1208
R
S
V
S
EN
V
IN
1
SIMILAR CONNECTION F OR ADG1209.
Figure 35. Charge Injection
V
0.1µF
DD
V
SS
0.1µF
V
DD
SS
S
50
D
GND
NETWO RK
ANALYZER
50
V
OUT
R
L
50
V
S
NETWORK
ANALYZER
V
OUT
R
L
50
V
S
0.1µF
DD
V
S1
S2
SS
0.1µF
V
DD
SS
D
R 50
GND
0.1µF
V
OFF ISOLATION = 20 log
Figure 36. Off Isolation
V
DD
V
SS
0.1µF
NETWORK
V
DD
SS
S
ANALYZER
50
D
R
L
GND
INSERTION LOSS = 20 log
50
V
WITH SWITCH
OUT
WITHOUT SWITCH
V
OUT
Figure 37. Bandwidth
OUT
V
S
05713-026
CHANNEL-TO- CHANNEL CROSSTALK = 20 lo g
Figure 38. Channel-to-Channel Crosstalk
V
DD
SS
0.1µF
V
DD
V
S
V
OUT
IN
IN
S
0.1µF
V
SS
D
GND
05713-027
Figure 39. THD + Noise
V
OUT
V
AUDIO PRECI SION
R
L
10k
S
R
S
V
S
Vp-p
V
OUT
05713-028
05713-029
Rev. 0 | Page 16 of 20
ADG1208/ADG1209
R
OUTLINE DIMENSIONS
5.10
5.00
4.90
0.15
0.05
4.50
4.40
4.30
PIN 1
16
0.65
BSC
COPLANARITY
COMPLIANT TO JEDEC STANDARDS MO-153-AB
0.10
0.30
0.19
9
81
1.20 MAX
SEATING PLANE
6.40
BSC
0.20
0.09 8°
0.75
0.60
0.45
Figure 40. 16-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-16)
Dimensions shown in millimeters
PIN 1
INDICATO
1.00
0.85
0.80
4.00
12° MAX
SEATING PLANE
BSC SQ
TOP
VIEW
0.80 MAX
0.65 TYP
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC
0.30
0.23
0.18
3.75
BSC SQ
0.20 REF
0.60 MAX
0.65 BSC
0.05 MAX
0.02 NOM
COPLANARITY
0.75
0.60
0.50
0.08
Figure 41. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
4 mm × 4 mm Body, Very Thin Quad
(CP-16-4)
Dimensions shown in millimeters
0.60 MAX
13
12
EXPOSED
(BOTTOM VIEW)
9
8
PAD
16
1
4
5
1.95 BSC
PIN 1 INDICATOR
2.25
2.10 SQ
1.95
0.25 MIN
ORDERING GUIDE
Model Temperature Range Package Description Package Option
ADG1208YRUZ1 ADG1208YRUZ-REEL71 ADG1208YCPZ-REEL1 ADG1208YCPZ-REEL7 ADG1209YRUZ1 ADG1209YRUZ-REEL71 ADG1209YCPZ-REEL ADG1209YCPZ-REEL7
1
Z = Pb-free part.
40°C to +125°C
40°C to +125°C
40°C to +125°C
1
40°C to +125°C
40°C to +125°C
40°C to +125°C
1
40°C to +125°C
1
40°C to +125°C
16-Lead Thin Shrink Small Outline Package [TSSOP] RU-16 16-Lead Thin Shrink Small Outline Package [TSSOP] RU-16 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-16-4 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-16-4 16-Lead Thin Shrink Small Outline Package [TSSOP] RU-16 16-Lead Thin Shrink Small Outline Package [TSSOP] RU-16 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-16-4 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-16-4
Rev. 0 | Page 17 of 20
ADG1208/ADG1209
NOTES
Rev. 0 | Page 18 of 20
ADG1208/ADG1209
NOTES
Rev. 0 | Page 19 of 20
ADG1208/ADG1209
NOTES
©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05713-0-4/06(0)
Rev. 0 | Page 20 of 20
Loading...