ANALOG DEVICES ADF4151 Service Manual

Fractional-N/Integer-N PLL Synthesizer
ADF4151
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
Trademarks and registered trademarks are the property of their respective owners.
Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
MUXOUT
CP
OUT
LD
SW
REF
IN
CLK
DATA
LE
AV
DD
xSDV
DD
DV
DD
V
P
A
GND
CE CP
GND
SD
GNDDGND
R
SET
RFIN+
RF
IN
PHASE
COMPARATOR
FL
O
SWITCH
CHARGE
PUMP
10-BIT R
COUNTER÷2DIVIDER
×2
DOUBLER
FUNCTION
LATCH
DATA REGISTER
INTEGER
REG
N COUNTER
FRACTION
REG
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
MODULUS
REG
MULTIPLEXER
LOCK
DETECT
ADF4151
10265-001
Data Sheet

FEATURES

Fractional-N synthesizer and integer-N synthesizer RF bandwidth to 3.5 GHz
3.0 V to 3.6 V power supply
1.8 V logic compatibility Separate charge pump supply (V
voltage (up to 5.5 V) in 3 V systems Programmable dual-modulus prescaler of 4/5 or 8/9 Programmable RF output phase 3-wire serial interface Analog and digital lock detect Switched bandwidth fast lock mode Cycle slip reduction

APPLICATIONS

Wireless infrastructure (W-CDMA, TD-SCDMA, WiMax, GSM,
PCS, DCS, DECT) Test equipment Wireless LANs, CATV equipment Clock generation
) allows extended tuning
P

GENERAL DESCRIPTION

The ADF4151 allows implementation of fractional-N or integer-N phase-locked loop (PLL) frequency synthesizers if used with an external voltage controlled oscillator (VCO), loop filter, and external reference frequency.
The ADF4151 is used with external VCO parts and is footprint and software compatible with the ADF4350. The part consists of a low noise digital phase frequency detector (PFD), a precision charge pump, and a programmable reference divider. There is a Σ-Δ based fractional interpolator to allow programmable fractional-N division. The INT, FRAC, and MOD registers define an overall N divider [N = (INT + (FRAC/MOD))]. The RF output phase is programmable for applications that require a particular phase relationship between the output and the reference. The ADF4151 also features cycle slip reduction circuitry, leading to faster lock times without the need for modifications to the loop filter.
Control of all the on-chip registers is through a simple 3-wire interface. The device operates with a power supply ranging from 3.0 V to 3.6 V that can be powered down when not in use.
The ADF4151 is available in a 5 mm × 5 mm package.
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of thi rd parties that may result from its use. Specifications subject to change with out notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
www.analog.com
ADF4151 Data Sheet

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Timing Characteristics ................................................................ 5
Absolute Maximum Ratings ............................................................ 6
Transistor Count ........................................................................... 6
ESD Caution .................................................................................. 6
Pin Configuration and Function Descriptions ............................. 7
Typical Performance Characteristics ............................................. 9
Circuit Description ......................................................................... 11
Reference Input Section ............................................................. 11
RF N Divider ............................................................................... 11
INT, FRAC, MOD, and R Counter Relationship.................... 11
INT N Mode ................................................................................ 11
R Counter .................................................................................... 11
Phase Frequency Detector (PFD) and Charge Pump ............ 11
MUXOUT and Lock Detect ...................................................... 12
Input Shift Registers ................................................................... 12
Program Modes .......................................................................... 12
Register Maps .............................................................................. 13
Register 0 ..................................................................................... 17
Register 1 ..................................................................................... 17
Register 2 ..................................................................................... 17
Register 3 ..................................................................................... 19
Register 4 ..................................................................................... 19
Register 5 ..................................................................................... 19
Initialization Sequence .............................................................. 19
RF Synthesizer—A Worked Example ...................................... 20
Modulus ....................................................................................... 20
Reference Doubler and Reference Divider ............................. 20
12-Bit Programmable Modulus ................................................ 20
Cycle Slip Reduction for Faster Lock Times ........................... 21
Spurious Optimization and Fast lock ...................................... 21
Fast Lock Timer and Register Sequences ................................ 21
Fast Lock—An Example ............................................................ 22
Fast Lock—Loop Filter Topology ............................................. 22
Spur Mechanisms ....................................................................... 22
Spur Consistency and Fractional Spur Optimization ........... 23
Phase Resync ............................................................................... 23
Applications Information .............................................................. 24
Direct Conversion Modulator .................................................. 24
Interfacing ................................................................................... 25
PCB Design Guidelines for Chip Scale Package .................... 25
Outline Dimensions ....................................................................... 26
Ordering Guide .......................................................................... 26

REVISION HISTORY

12/11—Rev. A to Rev. B
Changes to Normalized 1/f Noise Parameter, Table 1 ................. 4
11/11—Rev. 0 to Rev. A
Changes to Figure 28 ...................................................................... 23
10/11—Revision 0: Initial Version
Rev. B | Page 2 of 28
Data Sheet ADF4151
Fractional-N Mode
Input Capacitance, CIN
5.0 pF
Low Power Sleep Mode
1
µA

SPECIFICATIONS

AVDD = DVDD = SD temperature range is −40°C to +85°C.
Table 1.
Parameter
REFIN CHARACTERISTICS
Input Frequency 10 250 MHz For f < 10 MHz, ensure slew rate > 21 V/µs
Input Sensitivity 0.7 AVDD V p-p Biased at AVDD/21
Input Capacitance 10 pF
Input Current ±60 µA
RF INPUT CHARACTERISTICS For lower frequencies, ensure slew rate > 400 V/µs
RF Input Frequency (RFIN) 0.5 3.5 GHz −10 dBm ≤ RF input power ≤ +5 dBm
Prescaler Output Frequency 750 MHz
MAXIMUM PFD FREQUENCY
Low Spur Mode 26 MHz Low Noise Mode 32 MHz
Integer-N Mode 32 MHz
CHARGE PUMP
ICP Sink/Source R
High Value 4.5 mA Low Value 0.281 mA R
Range 2.7 10 kΩ
SET
ICP Leakage 1 nA VCP = VP/2
Sink and Source Matching 2 % 0.5 V ≤ VCP ≤ VP − 0.5 V
ICP vs. VCP 1.5 % 0.5 V ≤ VCP ≤ VP − 0.5 V
ICP vs. Temperature 2 % VCP = VP/2
LOGIC INPUTS
Input High Voltage, V
Input Low Voltage, V
Input Current, I
= 3.3 V ± 10%; VP = AVDD to 5.5 V; A
VDD
GND
= D
= 0 V; TA = T
GND
B Version
Unit Conditions/Comments Min Typ Max
1.5 V
INH
0.6 V
INL
±1 µA
INH/IINL
MIN
to T
, unless otherwise noted. Operating
MAX
= 5.1 kΩ
SET
LOGIC OUTPUTS
Output High Voltage, VOH DVDD − 0.4 V CMOS output chosen
Output High Current, IOH 500 µA
Output Low Voltage, VO 0.4 V IOL = 500 µA
POWER SUPPLIES
AVDD 3.0 3.6 V
DVDD, SD
VP AVDD 5.5 V
DIDD + AI
VPI
DD
AVDD
VDD
2
40 50 mA
DD
2
2 mA VP = 5 V
Rev. B | Page 3 of 28
ADF4151 Data Sheet
B Version
Parameter
NOISE CHARACTERISTICS
Normalized In-Band Phase Noise
Floor (PN
Normalized 1/f Noise (PN
SYNTH
)3
)4 −118 dBc/Hz 10 kHz offset. Normalized to 1 GHz (ABP = 3 ns)
1_f
Normalized In-Band Phase Noise
Floor (PN
Normalized 1/f Noise (PN
Spurious Signals Due to PFD
Frequency
1
AC coupling ensures AVDD/2 bias.
2
TA = 25°C; AVDD = DVDD = 3.6 V; prescaler = 4/5; f
3
The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider
value) and 10 log F
4
The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency (fRF)
and at a frequ ency offset (f) is given by PN = P
5
Spurious measured on EVAL-ADF4151EB1Z with RF buffer between VCO output and RF input by-passed, using a Rohde & Schwarz FSUP signal source analyzer.
SYNTH
5
)3
)4 −115 dBc/Hz 10 kHz offset; normalized to 1 GHz (ABP = 6 ns);
1_f
. PN
= PN
PFD
SYNTH
– 10 log f
TOT
−221 dBc/Hz PLL loop BW = 500 kHz (ABP = 3 ns)
−220 dBc/Hz PLL loop BW = 500 kHz (ABP = 6 ns);
−107 dBc PFD = 25 MHz
= 130 MHz; f
REFIN
– 20 log N
PFD
+ 10 log(10 kHz/f) + 20 log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in ADIsimPLL
1_f
= 26 MHz; fRF = 1.742 GHz.
PFD
Unit Conditions/Comments Min Typ Max
low noise mode
low noise mode
Rev. B | Page 4 of 28
Data Sheet ADF4151
CLK
DATA
LE
LE
DB31 (MSB) DB30
DB1 (LSB)
(CONTROL BIT C2)
DB2 (LSB)
(CONTROL BIT C3)
DB0 (LSB)
(CONTROL BIT C1)
t
1
t
2
t
3
t
7
t
6
t
4
t
5
10265-002

TIMING CHARACTERISTICS

AVDD1, AVDD2 = DVDD = SD Operating temperature range is −40°C to +85°C.
Table 2.
Parameter Limit (B Version) Unit Test Conditions/Comments
t1 20 ns min LE setup time t2 10 ns min DATA to CLK setup time t3 10 ns min DATA to CLK hold time t4 25 ns min CLK high duration t5 25 ns min CLK low duration t6 10 ns min CLK to LE setup time t7 20 ns min LE pulse width
= 3.3 V ± 10%; VP = AVDD to 5 . 5 V; A
VDD
GND
= D
= 0 V; TA = T
GND
MIN
to T
, unless otherwise noted.
MAX
Figure 2. Timing Diagram
Rev. B | Page 5 of 28
ADF4151 Data Sheet
Peak Temperature
260°C

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 3.
Parameter Rating
AVDD1, AVDD2 to GND1 −0.3 V to +3.9 V AVDD1, AVDD2 to DVDD −0.3 V to +0.3 V VP to AVDD1, AVDD2 −0.3 V to +5.8 V Digital I/O Voltage to GND1 −0.3 V to VDD + 0.3 V Analog I/O Voltage to GND1 −0.3 V to VDD + 0.3 V REFIN to GND1 −0.3 V to VDD + 0.3 V Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +125°C Maximum Junction Temperature 150°C LFCSP θJA Thermal Impedance
(Paddle-Soldered) 27.3°C/W
Reflow Soldering
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TRANSISTOR COUNT

36685 (CMOS) and 967 (bipolar)

ESD CAUTION

Time at Peak Temperature 40 sec
1
GND = A
GND
= D
GND
= 0 V.
Rev. B | Page 6 of 28
Data Sheet ADF4151
1
CLK
2
DATA
3
LE
4
CE
5
SW
6 7
24 23
NC
22 21 20 19 18 17
8
SDV
DD
ADF4151
TOP VIEW
(Not to Scale)
9
A
GND
10
11
REF
IN
12
D
GND
13
DV
DD
141516
3231302928
SD
GND
27
26
25
PIN 1 INDICATOR
V
P
CP
OUT
CP
GND
MUXOUT
R
SET
NC
RF
IN
+
RF
IN
NC
NC NC
D
GND
LD
A
GND
A
GND
A
GND
NC
AV
DD
2
AV
DD
2
AV
DD
1
NOTES
1. NC = NO CONNE CT. DO NOT CONNECT TO THIS PIN.
2. THE LFCSP HAS AN EXPO S E D P ADDLE THAT MUST BE CONNECTED TO GND.
10265-003
5
SW
Fast Lock Switch. Make a connection to this pin from the loop filter when using the fast lock mode.
8
CP
Charge Pump Ground. This is the ground return pin for CP
.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 CLK Serial Clock Input. Data is clocked into the 32-bit shift register on the CLK rising edge. This input is a high
impedance CMOS input.
2 D ATA Serial Data Input. The serial data is loaded, MSB first, with the three LSBs as the control bits. This input is a high
impedance CMOS input.
3 LE Load Enable, CMOS Input. When LE goes high, the data stored in the shift register is loaded into the register
that is selected by the three LSBs.
4 CE Chip Enable. A logic low on this pin powers down the device and puts the charge pump into three-state
mode. Taking the pin high powers up the device depending on the status of the power-down bits.
6 VP Charge Pump Power Supply. This pin should be greater than or equal to AVDD. In systems where AVDDx is 3 V, it
can be set to 5.5 V and used to drive a VCO with a tuning range of up to 5.5 V.
7 CP
9, 11, 18,
Charge Pump Output. When enabled, this provides ±ICP to the external loop filter. The output of the loop filter
OUT
GND
A
Analog Ground. This is a ground return pin for AVDD1 and AVDD2.
GND
is connected to V
to drive the external VCO.
TUNE
21 10 AVDD1 Analog Power Supply. This pin ranges from 3.0 V to 3.6 V. Decoupling capacitors to the analog ground plane
12, 13, 19,
are to be placed as close as possible to this pin. AV
NC No connect. Do not connect to this pin.
DD
20, 23, 24 14 RFIN+ Input to the RF Input. This small signal input is ac-coupled to the external VCO. 15 RFIN− Complementary Input to the RF Input. This pin must be decoupled to the ground plane with a small bypass
16, 17 AVDD2 Analog Power Supply. This pin ranges from 3.0 V to 3.6 V. Decoupling capacitors to the analog ground plane
capacitor, typically 100 pF.
are to be placed as close as possible to this pin. AV
Rev. B | Page 7 of 28
DD
OUT
must have the same value as DVDD.
x must have the same value as DVDD.
ADF4151 Data Sheet
SET
CP
R
I
22.95
=
28
DVDD
Digital Power Supply. This pin should be the same voltage as AVDD. Decoupling capacitors to the ground plane
Multiplexer Output. This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference
Pin No. Mnemonic Description
22 R
25 LD Lock Detect Output Pin. This pin outputs a logic high to indicate PLL lock; a logic low output indicates loss of PLL
26, 27 D
29 REFIN Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and a dc equivalent input resistance
30 MUXOUT
31 SD 32 SDVDD Power Supply Pin for the Digital Σ-Δ Modulator. Should be the same voltage as AVDDx. Decoupling capacitors
EP The exposed pad must be connected to GND.
Connecting a resistor between this pin and GND sets the charge pump output current. The nominal voltage
SET
bias at the R
pin is 0.49 V. The relationship between ICP and R
SET
SET
is
where:
R
= 5.1 kΩ.
SET
= 4.5 mA.
I
CP
lock.
Digital Ground. Ground return path for DVDD.
GND
should be placed as close as possible to this pin.
of 100 kΩ. This input can be driven from a TTL or CMOS crystal oscillator, or it can be ac-coupled.
frequency to be accessed externally.
Digital Sigma-Delta (Σ-Δ) Modulator Ground. Ground return path for the Σ-Δ modulator.
GND
to the ground plane are to be placed as close as possible to this pin.
Rev. B | Page 8 of 28
Data Sheet ADF4151
0
–40
–35
–30
–25
–20
–15
–10
–5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
POWER (dBm)
FREQUENCY ( GHz)
–40°C
+25°C
+85°C
10265-004
6.0
–6.0
–5.5
–5.0
–4.5
–4.0
–3.5
–3.0
–2.5
–2.0
–1.5
–1.0
–0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.04.54.0
I
CP
(mA)
VCP (V)
0.28mA
0.28mA
0.56mA
0.56mA
1.13mA
1.13mA
2.25mA
2.25mA
4.5mA
4.5mA
SOURCE SINK
10265-005
–90
–100
–99
–98
–97
–96
–95
–94
–93
–92
–91
2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.702.69
PHASE NOISE (dBc/Hz)
FREQUENCY ( GHz)
LOW NOISE MODE
LOW SP UR M ODE
10265-006
6.0
–6.0
–5.5
–5.0
–4.5
–4.0
–3.5
–3.0
–2.5
–2.0
–1.5
–1.0
–0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.04.54.0
I
CP
MISMATCH ( %)
V
CP
(V)
ICP = 0.28mA ICP = 0.56mA ICP = 1.13mA ICP = 2.25mA ICP = 4.5mA
10265-007

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. RF Input Sensitivity
Figure 5. Charge Pump Output Characteristics, VP = 5 V, Selected ICP Values
Between 0.28 mA (Min) and 4.5 mA (Max), R
= 5.1 kΩ
SET
Figure 6. In-Band Phase Noise Measured at 10 kHz Offset
for Low Noise Mode and Low Spur Mode,
PFD = 25 MHz, PLL Loop Bandwidth = 50 kHz
Figure 7. Charge Pump Output Mismatch vs. VCP , Selected ICP Values Between
0.28 mA (Min) and 4.5 mA (Max), R
= 5.1 kΩ
SET
Rev. B | Page 9 of 28
Loading...
+ 19 hidden pages