ANALOG DEVICES ADA4937-1, ADA4937-2 Service Manual

Ultralow Distortion
www.BDTIC.com/ADI

FEATURES

Extremely low harmonic distortion
−112 dBc HD2 @ 10 MHz
−84 dBc HD2 @ 70 MHz
−77 dBc HD2 @ 100 MHz
−102 dBc HD3 @ 10 MHz
−91 dBc HD3 @ 70 MHz
−84 dBc HD3 @ 100 MHz Low input voltage noise: 2.2 nV/√Hz High speed
−3 dB bandwidth of 1.9 GHz, G = 1
Slew rate: 6000 V/μs, 25% to 75% Fast overdrive recovery of 1 ns
0.5 mV typical offset voltage Externally adjustable gain Differential-to-differential or single-ended-to-differential
oper
ation Adjustable output common-mode voltage Single-supply operation: 3.3 V to 5 V

APPLICATIONS

ADC drivers Single-ended-to-differential converters IF and baseband gain blocks Differential buffers Line drivers

GENERAL DESCRIPTION

The ADA4937 is a low noise, ultralow distortion, high speed differential amplifier. It is an ideal choice for driving high performance ADCs with resolutions up to 16 bits from dc to 100 MHz. The adjustable level of the output common mode allows the ADA4937 to match the input of the ADC. The internal common-mode feedback loop also provides exceptional output balance as well as suppression of even-order harmonic distortion products.
With the ADA4937, differential gain configurations are easily
ealized with a simple external feedback network of four
r resistors that determine the closed-loop gain of the amplifier.
The ADA4937 is fabricated using Analog Devices, Inc. proprietary silico
n-germanium (SiGe), complementary bipolar process, enabling it to achieve very low levels of distortion with an input voltage noise of only 2.2 nV/√Hz. The low dc offset and excellent dynamic performance of the ADA4937 make it well suited for a wide variety of data acquisition and signal processing applications.
Differential ADC Driver
ADA4937-1/ADA4937-2

FUNCTIONAL BLOCK DIAGRAMS

1–FB
2+IN
3–IN
4+FB
1–IN1 2+FB1 3+V
S1
4+V
S1
5–FB2 6+IN2
55
–60
–65
–70
–75
–80
–85
–90
–95
DISTORTION (dBc)
–100
–105
–110
–115
The ADA4937 is available in a Pb-free, 3 mm × 3 mm 16-lead LFCSP (ADA4937-1, single) or a Pb-free, 4 mm × 4 mm 24-lead LFCSP (ADA4937-2, dual). The pinout has been optimized to facilitate PCB layout and minimize distortion. The ADA4937-1 is specified to operate over the −40°C to +105°C temperature range, and the ADA4937-2 operates over −40°C to +85°C; both operate at 3.3 V and 5 V supplies.
HD2, VS=5.0V HD3, VS=5.0V HD2, VS=3.3V HD3, VS=3.3V
1 10 100
Figure 3. Harmonic Distortion vs. Frequency
S
S
S
S
–V
–V
–V
–V
14
13
15
16
ADA4937-1
5
6
S
S
+V
+V
12 PD
11 –OUT
10 +OUT
9V
8
7
S
S
+V
+V
Figure 1. ADA4937-1
S1
S1
–V
–V
–FB1
+IN1
24
ADA4937-2
7
–IN2
–OUT1
PD1
20
19
21
22
23
18 +OUT1 17 V 16 –V 15
14 13 –OUT2
9
8
11
12
10
S2
S2
UT2
+V
+V
OCM2
+FB2
V
+O
Figure 2. ADA4937-2
FREQUENCY (MHz)
–V PD2
OCM
OCM1
S2 S2
06591-001
06591-002
06591-003
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.
ADA4937-1/ADA4937-2
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Functional Block Diagrams............................................................. 1
Revision History ...............................................................................2
Specifications..................................................................................... 3
5 V Operation ............................................................................... 3
3.3 V Operation ............................................................................5
Absolute Maximum Ratings............................................................ 7
Thermal Resistance...................................................................... 7
ESD Caution.................................................................................. 7
Pin Configuration and Function Descriptions............................. 8
Typical Performance Characteristics............................................. 9
Test Circuits..................................................................................... 16
Operational Description................................................................ 17
Definition of Terms.................................................................... 17
Theory of Operation ......................................................................18
Analyzing an Application Circuit ............................................ 18
Setting the Closed-Loop Gain .................................................. 18
Estimating the Output Noise Voltage...................................... 18
Impact of Mismatches in the Feedback Networks................. 19
Calculating the Input Impedance for an Application
Circuit.......................................................................................... 19
Input Common-Mode Voltage Range in Single-Supply
Applications ................................................................................ 20
Setting the Output Common-Mode Voltage.......................... 20
Layout, Grounding, and Bypassing.............................................. 22
High Performance ADC Driving................................................. 23
3.3 V Operation.......................................................................... 25
Outline Dimensions....................................................................... 26
Ordering Guide .......................................................................... 26

REVISION HISTORY

11/07—Rev. 0 to Rev. A
Added the ADA4937-2......................................................Universal
Changes to Features.......................................................................... 1
Changes to Specifications................................................................ 3
Changes to Figure 4.......................................................................... 7
Changes to Typical Performance Characteristics......................... 9
Inserted Figure 44........................................................................... 15
Added the Terminating a Single-Ended Input Section .............19
Changes to Table 10 and Table 11 ................................................ 21
Changes to Layout, Grounding, and Bypassing Section ........... 22
Inserted Figure 59, Figure 60, and Figure 61 ..............................22
Updated Outline Dimensions....................................................... 26
Changes to Ordering Guide.......................................................... 26
5/07—Revision 0: Initial Version
Rev. A | Page 2 of 28
ADA4937-1/ADA4937-2
www.BDTIC.com/ADI

SPECIFICATIONS

5 V OPERATION

TA = 25°C, +VS = 5 V, −VS = 0 V, V All specifications refer to single-ended input and differential outputs, unless otherwise noted.

±DIN to ±OUT Performance

Table 1.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
−3 dB Small Signal Bandwidth V Bandwidth for 0.1 dB Flatness V Large Signal Bandwidth V Slew Rate V Overdrive Recovery Time VIN = 0 V to 1.5 V step; G = 3.16 <1 ns
NOISE/HARMONIC PERFORMANCE See Figure 48 for distortion test circuit
Second Harmonic V V V Third Harmonic V V V IMD f1 = 70 MHz; f2 = 70.1 MHz; V Voltage Noise (RTI) f = 100 kHz 2.2 nV/√Hz Input Current Noise f = 100 kHz 4 pA/√Hz Noise Figure G = 4; RT = 136 Ω; RF = 200 Ω; RG = 37 Ω; f = 100 MHz 15 dB Crosstalk (ADA4937-2) f = 100 MHz −72 dB
INPUT CHARACTERISTICS
Offset Voltage V T Input Bias Current −30 −21 −10 μA T Input Offset Current −2 +0.5 +2 μA Input Resistance Differential 6 MΩ Common mode 3 MΩ Input Capacitance 1 pF Input Common-Mode Voltage 0.3 to 3.0 V CMRR ∆V
OUTPUT CHARACTERISTICS
Output Voltage Swing Maximum ∆V Linear Output Current >100 mA Output Balance Error
= +VS/2, RT = 61.9 , RG = RF = 200 , G = 1, R
OCM
= 0.1 V p-p 1900 MHz
OUT, dm
= 0.1 V p-p 200 MHz
OUT, dm
= 2 V p-p 1700 MHz
OUT, dm
= 2 V p-p; 25% to 75% 6000 V/μs
OUT, dm
= 2 V p-p; 10 MHz −112 dBc
OUT, dm
= 2 V p-p; 70 MHz −84 dBc
OUT, dm
= 2 V p-p; 100 MHz −77 dBc
OUT, dm
= 2 V p-p; 10 MHz −102 dBc
OUT, dm
= 2 V p-p; 70 MHz −91 dBc
OUT, dm
= 2 V p-p; 100 MHz −84 dBc
OUT, dm
= 2 V p-p −91 dBc
OUT, dm
∆V
OS, dm
MIN
MIN
OUT, dm
OUT, cm
= V
to T
to T
/2; V
= V
OUT, dm
variation ±1 μV/°C
MAX
variation 0.01 μA/°C
MAX
/∆V
/∆V
DIN+
; ∆V
IN, cm
IN, cm
; single-ended output; RF = RG = 10 kΩ 0.9 4.1 V
OUT
; ∆V
OUT, dm
OUT, dm
= 2.5 V −2.5 ±0.5 +2.5 mV
DIN−
= ±1 V −69 −80 dB
= 1 V; 10 MHz;
see Figure 47 for test circuit
= 1 kΩ, unless otherwise noted.
L, dm
−61 dB
Rev. A | Page 3 of 28
ADA4937-1/ADA4937-2
www.BDTIC.com/ADI
V
to ±OUT Performance
OCM
Table 2.
Parameter Conditions Min Typ Max Unit
V
DYNAMIC PERFORMANCE
OCM
−3 dB Bandwidth 440 MHz Slew Rate VIN = 1.5 V to 3.5 V; 25% to 75% 1150 V/μs Input Voltage Noise (RTI) f = 100 kHz 7.5 nV/√Hz
V
INPUT CHARACTERISTICS
OCM
Input Voltage Range 1.2 3.8 V Input Resistance 8 10 12 kΩ Input Offset Voltage V Input Bias Current 0.5 μA V
CMRR ΔV
OCM
Gain ΔV
POWER SUPPLY
Operating Range 3.0 5.25 V Quiescent Current per Amplifier 38.0 39.5 42.0 mA T Powered down 0.02 0.3 0.5 mA Power Supply Rejection Ratio ΔV
POWER-DOWN (PD)
PD Input Voltage Enabled ≥2 V Turn-Off Time 1 μs Turn-On Time 200 ns PD Bias Current per Amplifier
Enabled Disabled
OPERATING TEMPERATURE RANGE −40 +85 °C
OS, cm
OUT, dm
OUT, cm
MIN
OUT, dm
= V
to T
; V
= V
OUT, cm
DIN+
/ΔV
; ΔV
OCM
OCM
/ΔV
; ΔV
OCM
OCM
variation 17 μA/°C
MAX
= +VS/2 2 7.1 mV
DIN−
= ±1 V −70 −75 dB
= ±1 V 0.97 0.98 1.00 V/V
/ΔVS; ΔVS = 1 V −70 −90 dB
Powered down ≤1 V
PD PD
= 5 V = 0 V
10 30 50 μA
−300 −200 −150 μA
Rev. A | Page 4 of 28
ADA4937-1/ADA4937-2
www.BDTIC.com/ADI

3.3 V OPERATION

TA = 25°C, +VS = 3.3 V, −VS = 0 V, V specifications refer to single-ended input and differential outputs, unless otherwise noted.

±DIN to ±OUT Performance

Table 3.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
−3 dB Small Signal Bandwidth V Bandwidth for 0.1 dB Flatness V Large Signal Bandwidth V Slew Rate V Overdrive Recovery Time VIN = 0 V to 1.0 V step; G = 3.16 <1 ns
NOISE/HARMONIC PERFORMANCE See Figure 48 for distortion test circuit
Second Harmonic V V V Third Harmonic V V V IMD f1 = 70 MHz; f2 = 70.1 MHz; V Voltage Noise (RTI) f = 100 kHz 2.2 nV/√Hz Input Current Noise f = 100 kHz 4 pA/√Hz Noise Figure G = 4; RT = 136 Ω; RF = 200 Ω; RG = 37 Ω; f = 100 MHz 15 dB Crosstalk (ADA4937-2) f = 100 MHz −72 dB
INPUT CHARACTERISTICS
Offset Voltage V T Input Bias Current −50 −20 −10 μA T Input Resistance Differential 6 MΩ Common mode 3 MΩ Input Capacitance 1 pF Input Common-Mode Voltage 0.3 to 1.2 V CMRR ∆V
OUTPUT CHARACTERISTICS
Output Voltage Swing Maximum ∆V Linear Output Current 95 mA Output Balance Error
= +VS/2, RT = 61.9 , RG = RF = 200 , G = 1, R
OCM
= 0.1 V p-p 1800 MHz
OUT, dm
= 0.1 V p-p 200 MHz
OUT, dm
= 2 V p-p 1300 MHz
OUT, dm
= 2 V p-p; 25% to 75% 4000 V/μs
OUT, dm
= 2 V p-p; 10 MHz −113 dBc
OUT, dm
= 2 V p-p; 70 MHz −85 dBc
OUT, dm
= 2 V p-p; 100 MHz −77 dBc
OUT, dm
= 2 V p-p; 10 MHz −95 dBc
OUT, dm
= 2 V p-p; 70 MHz −77 dBc
OUT, dm
= 2 V p-p; 100 MHz −71 dBc
OUT, dm
= 2 V p-p −87 dBc
OUT, dm
∆V
OS, dm
MIN
MIN
OUT, dm
OUT, cm
= V
to T
to T
/2; V
= V
OUT, dm
variation ±1 μV/°C
MAX
variation 0.01 μA/°C
MAX
/∆V
/∆V
DIN+
; ∆V
IN, cm
IN, cm
; single-ended output; RF = RG = 10 kΩ 0.8 2.5 V
OUT
; ∆V
OUT, dm
OUT, dm
= +VS/2 −2.5 ±0.5 +2.5 mV
DIN−
= ±1 V −67 −80 dB
= 1 V; f = 10 MHz;
see Figure 47 for test circuit
= 1 kΩ, unless otherwise noted. All
L, dm
−61 dB
Rev. A | Page 5 of 28
ADA4937-1/ADA4937-2
www.BDTIC.com/ADI
V
to ±OUT Performance
OCM
Table 4.
Parameter Conditions Min Typ Max Unit
V
DYNAMIC PERFORMANCE
OCM
−3 dB Bandwidth 440 MHz Slew Rate VIN = 0.9 V to 2.4 V; 25% to 75% 900 V/μs Input Voltage Noise (RTI) f = 100 kHz 7.5 nV/√Hz
V
INPUT CHARACTERISTICS
OCM
Input Voltage Range 1.2 2.1 V Input Resistance 10 kΩ Input Offset Voltage V Input Bias Current 0.5 μA V
CMRR ∆V
OCM
Gain ∆V
POWER SUPPLY
Operating Range 3.0 5.25 V Quiescent Current per Amplifier 36 38 40 mA T Powered down 0.02 0.2 0.5 mA Power Supply Rejection Ratio ∆V
POWER-DOWN (PD)
PD Input Voltage Enabled ≥2 V Turn-Off Time 1 μs Turn-On Time 200 ns PD Bias Current per Amplifier
Enabled Disabled
OPERATING TEMPERATURE RANGE −40 +105 °C
OS, cm
OUT, dm
OUT, cm
MIN
OUT, dm
= V
to T
; V
= V
OUT, cm
DIN+
/∆V
; ∆V
OCM
OCM
/∆V
; ∆V
OCM
OCM
variation 17 μA/°C
MAX
= 1.67 V 2 7.1 mV
DIN−
= ±1 V −70 −75 dB
= ±1 V 0.97 0.98 1.00 V/V
/∆VS; ∆VS = 1 V −70 −90 dB
Powered down ≤1 V
PD PD
= 3.3 V = 0 V
10 20 30 μA
−200 −120 −100 μA
Rev. A | Page 6 of 28
ADA4937-1/ADA4937-2
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 5.
Parameter Rating
Supply Voltage 5.5 V Power Dissipation See Figure 4 Storage Temperature Range −65°C to +125°C Operating Temperature Range
ADA4937-1 −40°C to +105°C
ADA4937-2 −40°C to +85°C Lead Temperature (Soldering, 10 sec) 300°C Junction Temperature 150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the device (including exposed pad) soldered to a high thermal conductivity 2s2p circuit board, as described in EIA/JESD 51-7.
Table 6. Thermal Resistance
Package Type θJA Unit
16-Lead LFCSP (Exposed Pad) 95 °C/W 24-Lead LFCSP (Exposed Pad) 67 °C/W

Maximum Power Dissipation

The maximum safe power dissipation in the ADA4937 package is limited by the associated rise in junction temperature (T the die. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4937. Exceeding a junction temperature of 150°C for an extended period can result in changes in the silicon devices, potentially causing failure.
) on
J
The power dissipated in the package (P quiescent power dissipation and the power dissipated in the package due to the load drive. The quiescent power is the voltage between the supply pins (V
) times the quiescent current (IS).
S
The power dissipated due to the load drive depends upon the particular application. The power due to load drive is calculated by multiplying the load current by the associated voltage drop across the device. RMS voltages and currents must be used in these calculations.
Airflow increases heat dissipation, effectively reducing θ addition, more metal directly in contact with the package leads/exposed pad from metal traces, through holes, ground, and power planes reduces θ
.
JA
Figure 4 shows the maximum safe power dissipation in the
ackage vs. the ambient temperature for the single 16-lead
p LFCSP (95°C/W) and the dual 24-lead LFCSP (67°C/W) on a JEDEC standard 4-layer board.
3.5
3.0
2.5
2.0
1.5
1.0
MAXIMUM POWER DISSIPATION (W)
0.5
0
–40 90
Figure 4. Maximum Power Dissipation vs. Temperature for a 4-Layer Board
ADA4937-1
–30–20–100 1020304050607080
ADA4937-2
AMBIENT TEMPERATURE (°C)

ESD CAUTION

) is the sum of the
D
JA
. In
06591-004
Rev. A | Page 7 of 28
ADA4937-1/ADA4937-2
+
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

S
S
S
1–FB
2+IN
ADA4937-1
3–IN
(Not to Scale)
4+FB
–V
–V
15
16
PIN 1 INDICATO R
TOP VIEW
5
6
S
S
+V
+V
S
–V
–V
14
13
–IN1
12 PD
11 –OUT
10 +OUT
9V
OCM
8
7
S
S
+V
+V
06591-005
FB1 +V +V
FB2
+IN2
S1 S1
1 2 3
ADA4937-2
4 5 6
+IN1
24
PIN 1 INDICATOR
TOP VIEW
(Not to Scale)
7
–IN2
–OUT1
–VS1–VS1–FB1
PD1
20
19
21
22
23
18
+OUT1
17
V
OCM1
–V
16
S2
–V
15
S2
14
PD2
13
–OUT2
9
8
11
12
10
S2
S2
CM2
+V
+V
O
+FB2
V
+OUT2
06591-006
Figure 5. ADA4937-1 Pin Configuration
Figure 6. ADA4937-2 Pin Configuration
Table 7. ADA4937-1 Pin Function Descriptions
Pin No. Mnemonic Description
1 −FB Negative Output for Feedback Component Connection. 2 +IN Positive Input Summing Node. 3 −IN Negative Input Summing Node. 4 +FB Positive Output for Feedback Component Connection. 5 to 8 +VS Positive Supply Voltage. 9 V
Output Common-Mode Voltage.
OCM
10 +OUT Positive Output for Load Connection. 11 −OUT Negative Output for Load Connection. 12
PD
Power-Down Pin.
13 to 16 −VS Negative Supply Voltage.
Table 8. ADA4937-2 Pin Function Descriptions
Pin No. Mnemonic Description
1 −IN1 Negative Input Summing Node 1. 2 +FB1 Positive Output Feedback Pin 1. 3, 4 +VS1 Positive Supply Voltage 1. 5 −FB2 Negative Output Feedback Pin 2. 6 +IN2 Positive Input Summing Node 2. 7 −IN2 Negative Input Summing Node 2. 8 +FB2 Positive Output Feedback Pin 2. 9, 10 +VS2 Positive Supply Voltage 2. 11 V
Output Common-Mode Voltage 2.
OCM2
12 +OUT2 Positive Output 2. 13 −OUT2 Negative Output 2. 14
PD2
Power-Down Pin 2.
15, 16 −VS2 Negative Supply Voltage 2. 17 V
Output Common-Mode Voltage 1.
OCM1
18 +OUT1 Positive Output 1. 19 −OUT1 Negative Output 1. 20
PD1
Power-Down Pin 1.
21, 22 −VS1 Negative Supply Voltage 1. 23 −FB1 Negative Output Feedback Pin 1. 24 +IN1 Positive Input Summing Node 1.
Rev. A | Page 8 of 28
ADA4937-1/ADA4937-2
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

TA = 25°C, +VS = 5 V, −VS = 0 V, V noted. Refer to Figure 46 for test setup.
6
OUT, dm
= 2 V p-p, V
= +VS /2, RT = 61.9 , RG = RF = 200 , G = 1, R
OCM
6
= 1 kΩ, unless otherwise
L, dm
3
0
–3
–6
–9
–12
NORMALIZ ED CLOSED-L OOP GAI N (dB)
G = +1, RF = 200 G = +2, R
= 402
F
G = +5, R
= 402
–15
1 10 100 1000
F
FREQUENCY (MHz )
Figure 7. Small Signal Frequency Response for Various Gains,
V
= 100 mV p-p
OUT, dm
6
VS = 3.3V
VS = 5.0V
3
0
–3
–6
–9
CLOSED-LOOP GAIN (dB)
–12
3
0
–3
–6
–9
–12
NORMALIZ ED CLOSED- LOOP G AIN (dB)
6591-075
G = +1, RF = 200 G = +2, R
= 402
F
G = +5, R
= 402
–15
1 10 100 1000
F
FREQUENCY (MHz)
06591-076
Figure 10. Large Signal Frequency Response for Various Gains
6
VS = 3.3V
VS = 5.0V
3
0
–3
–6
–9
CLOSED-LOOP GAIN (dB)
–12
–15
1 10 100 1000
FREQUENCY (MHz)
Figure 8. Small Signal Frequency Response for Various Supplies,
= 100 mV p-p
V
OUT, dm
6
+105°C +25°C –40°C
3
0
–3
–6
CLOSED-LOOP GAIN (dB)
–9
–12
1 10 100 1000
FREQUENCY (MHz)
Figure 9. Small Signal Frequency Response for Various Temperatures,
= 100 mV p-p
V
OUT, dm
06591-008
06591-009
Rev. A | Page 9 of 28
–15
1 10 100 1000
FREQUENCY (MHz)
Figure 11. Large Signal Frequency Response for Various Supplies
6
+105°C +25°C –40°C
3
0
–3
–6
CLOSED-LOOP GAIN (dB)
–9
–12
1 10 100 1000
FREQUENCY (MHz)
Figure 12. Large Signal Frequency Response for Various Temperatures
06591-011
06591-012
Loading...
+ 19 hidden pages