ANALOG DEVICES ADA4857-1 Service Manual

Low Noise, High Speed Op Amp
ADA4857-1/ADA4857-2
NC = NO CONNECT
1PD 2FB 3–IN 4+IN
7 OUT
8 +V
S
6 NC 5 –V
S
ADA4857-1
TOP VIEW
(Not to S cale)
07040-001
FB
1
–IN
2
+IN
3
–V
S
4
PD
8
+V
S
7
OUT
6
NC
5
NC = NO CONNECT
ADA4857-1
TOP VIEW
(Not to Scale)
07040-002
1–IN1 2
+IN1
3NC 4–V
S2
11 NC
12 –V
S1
10 +IN2 9 –IN2
5
OUT2
6
+V
S2
7
PD2
8
FB2
FB1
PD1
+V
S1
OUT1
15
16
14
13
ADA4857-2
TOP VIEW
(Not to S cale)
NC = NO CONNECT
07040-003
Data Sheet

FEATURES

High speed
850 MHz, −3 dB bandwidth (G = +1, R 750 MHz, −3 dB bandwidth (G = +1, R
2800 V/µs slew rate Low distortion: −88 dBc @ 10 MHz (G = +1, R Low power: 5 mA/amplifier @ 10 V Low noise: 4.4 nV/√Hz Wide supply voltage range: 5 V to 10 V Power-down feature Available in 3 mm × 3 mm 8-lead LFCSP (single), 8-lead SOIC
(single), and 4 mm × 4 mm 16-lead LFCSP (dual)

APPLICATIONS

Instrumentation IF and baseband amplifiers Active filters ADC drivers DAC buffers
= 1 kΩ, LFCSP)
L
= 1 kΩ, SOIC)
L
= 1 kΩ)
L
Ultralow Distortion, Low Power,

CONNECTION DIAGRAMS

Figure 1. 8-Lead LFCSP (CP)
Figure 2. 8-Lead SOIC (R)

GENERAL DESCRIPTION

The ADA4857 is a unity-gain stable, high speed, voltage feedback amplifier with low distortion, low noise, and high slew rate. With a spurious-free dynamic range (SFDR) of −88 dBc @ 10 MHz, the ADA4857 is an ideal solution for a variety of applications, including ultrasounds, ATE, active filters, and ADC drivers. The Analog Devices, Inc., proprietary next-generation XFCB process and innovative architecture enables such high performance amplifiers.
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change with out notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Figure 3. 16-Lead LFCSP (CP)
The ADA4857 has 850 MHz bandwidth, 2800 V/µs slew rate, and settles to 0.1% in 15 ns. With a wide supply voltage range (5 V to 10 V), the ADA4857 is an ideal candidate for systems that require high dynamic range, precision, and speed.
The ADA4857-1 amplifier is available in a 3 mm × 3 mm, 8-lead LFCSP and a standard 8-lead SOIC. The ADA4857-2 is available in a 4 mm × 4 mm, 16-lead LFCSP. The LFCSP features an exposed paddle that provides a low thermal resistance path to the printed circuit board (PCB). This path enables more efficient heat transfer and increases reliability. The ADA4857 works over the extended industrial temperature range (−40°C to +125°C).
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
www.analog.com
ADA4857-1/ADA4857-2 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Connection Diagrams ...................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
±5 V Supply ................................................................................... 3
+5 V Supply ................................................................................... 4
Absolute Maximum Ratings ............................................................ 6
Thermal Resistance ...................................................................... 6
Maximum Power Dissipation ..................................................... 6
ESD Caution .................................................................................. 6
Pin Configurations and Function Descriptions ........................... 7
Typical Performance Characteristics ............................................. 9
Test Circuits ..................................................................................... 15
Applications Information .............................................................. 16
Power-Down Operation ............................................................ 16
Capacitive Load Considerations .............................................. 16
Recommended Values for Various Gains ................................ 16
Active Low-Pass Filter (LPF) .................................................... 17
Noise ............................................................................................ 18
Circuit Considerations .............................................................. 18
PCB Layout ................................................................................. 18
Power Supply Bypassing ............................................................ 18
Grounding ................................................................................... 18
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 20

REVISION HISTORY

8/11—Rev. A to Rev. B
Changes to Table 1 Conditions ....................................................... 3
Changes to Table 2 Conditions ....................................................... 4
Changes to Typical Performance Characteristics Conditions .... 9
Changes to Figure 18 ...................................................................... 10
Changes to Figure 42 ...................................................................... 15
Changes to Table 9 .......................................................................... 16
Changes to Ordering Guide .......................................................... 20
11/08—Rev. 0 to Rev. A
Changes to Table 5 ............................................................................ 7
Changes to Table 7 ............................................................................ 8
Changes to Figure 32 ...................................................................... 13
Added Figure 44; Renumbered Sequentially .............................. 15
Changes to Layout .......................................................................... 15
Changes to Table 8 .......................................................................... 16
Added Active Low-Pass Filter (LFP) Section .............................. 17
Added Figure 48 and Figure 49; Renumbered Sequentially ..... 17
Changes to Grounding Section ..................................................... 18
Exposed Paddle Notation Added to Outline Dimensions ........ 19
Changes to Ordering Guide .......................................................... 20
5/08—Revision 0: Initial Ve r s ion
Rev. B | Page 2 of 20
Data Sheet ADA4857-1/ADA4857-2
f = 10 MHz, G = +1, V
= 2 V p-p (HD2)
−88 dBc
Common-Mode Rejection Ratio
VCM = ±1 V
−78
−86 dB
Output Overdrive Recovery Time
VIN = ±2.5 V, G = +2
10 ns

SPECIFICATIONS

±5 V SUPPLY

TA = 25°C, G = +2, RG = RF = 499 Ω, RS = 100 Ω for G = +1 (SOIC), RL = 1 kΩ to ground, PD = no connect, unless otherwise noted.
Table 1.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
–3 dB Bandwidth (LFCSP/SOIC) G = +1, V
G = +1, V
G = +2, V
Full Power Bandwidth G = +1, V
Bandwidth for 0.1 dB Flatness (LFCSP/SOIC) G = +2, V
Slew Rate (10% to 90%) G = +1, V
Settling Time to 0.1% G = +2, V
NOISE/HARMONIC PERFORMANCE
Harmonic Distortion f = 1 MHz, G = +1, V
f = 1 MHz, G = +1, V
f = 10 MHz, G = +1, V
f = 50 MHz, G = +1, V
f = 50 MHz, G = +1, V
Input Voltage Noise f = 100 kHz 4.4 nV/√Hz
Input Current Noise f = 100 kHz 1.5 pA/√Hz
DC PERFORMANCE
Input Offset Voltage ±2 ±4.5 mV
Input Offset Voltage Drift 2.3 µV/°C
Input Bias Current
−2 −3.3 µA Input Bias Current Drift 24.5 nA/°C Input Bias Offset Current 50 nA Open-Loop Gain V
OUT
PD (POWER-DOWN) PIN
PD Input Voltage Chip powered down ≥(VCC − 2) V Chip enabled ≤(VCC − 4.2) V Turn-Off Time 50% off PD to <10% of final V Turn-On Time 50% off PD to <10% of final V PD Pin Leakage Current Chip enabled 58 µA Chip powered down 80 µA
INPUT CHARACTERISTICS
Input Resistance Common mode 8 MΩ Differential mode 4 MΩ Input Capacitance Common mode 2 pF Input Common-Mode Voltage Range ±4 V
= 0.2 V p-p 650 850/750 MHz
OUT
= 2 V p-p 600/550 MHz
OUT
= 0.2 V p-p 400/350 MHz
OUT
= 2 V p-p, THD < −40 dBc 110 MHz
OUT
= 2 V p-p, RL = 150 Ω 75/90 MHz
OUT
= 4 V step 2800 V/µs
OUT
= 2 V step 15 ns
OUT
= 2 V p-p (HD2) −108 dBc
OUT
= 2 V p-p (HD3) −108 dBc
OUT
OUT
= 2 V p-p (HD3) −93 dBc
OUT
= 2 V p-p (HD2) −65 dBc
OUT
= 2 V p-p (HD3) −62 dBc
OUT
= −2.5 V to +2.5 V 57 dB
, VIN = 1 V, G = +2 55 µs
OUT
, VIN = 1 V, G = +2 33 ns
OUT
OUTPUT CHARACTERISTICS
Output Voltage Swing RL = 1 kΩ ±4 V
RL = 100 Ω ±3.7 V
Output Current 50 mA Short-Circuit Current Sinking and sourcing 125 mA Capacitive Load Drive 30% overshoot, G = +2 10 pF
Rev. B | Page 3 of 20
ADA4857-1/ADA4857-2 Data Sheet
Positive Power Supply Rejection
+VS = 4.5 V to 5.5 V, −VS = −5 V
−59
−62 dB
f = 50 MHz, G = +1, V
= 2 V p-p (HD2)
−69 dBc
PD Pin Leakage Current
Chip enable
8
µA
Parameter Conditions Min Typ Max Unit
POWER SUPPLY
Operating Range 4.5 10.5 V Quiescent Current 5 5.5 mA Quiescent Current (Power Down) PD ≥ VCC − 2 V 350 450 µA
Negative Power Supply Rejection +VS = 5 V, −VS = −4.5 V to −5.5 V −65 −68 dB

+5 V SUPPLY

TA = 25°C, G = +2, RF = RG = 499 Ω, RS = 100 Ω for G = +1 (SOIC), RL = 1 kΩ to midsupply, PD = no connect, unless otherwise noted.
Table 2.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
–3 dB Bandwidth (LFCSP/SOIC) G = +1, V G = +1, V G = +2, V Full Power Bandwidth G = +1, V Bandwidth for 0.1 dB Flatness (LFCSP/SOIC) G = +2, V Slew Rate (10% to 90%) G = +1, V Settling Time to 0.1% G = +2, V
NOISE/HARMONIC PERFORMANCE
Harmonic Distortion f = 1 MHz, G = +1, V f = 1 MHz, G = +1, V f = 10 MHz, G = +1, V f = 10 MHz, G = +1, V
f = 50 MHz, G = +1, V Input Voltage Noise f = 100 kHz 4.4 nV/√Hz Input Current Noise f = 100 kHz 1.5 pA/√Hz
DC PERFORMANCE
Input Offset Voltage ±1 ±4.2 mV Input Offset Voltage Drift 4.6 µV/°C Input Bias Current
−1.7 −3.3 µA Input Bias Current Drift 24.5 nA/°C Input Bias Offset Current 50 nA Open-Loop Gain V
OUT
PD (POWER-DOWN) PIN
PD Input Voltage Chip powered down ≥(VCC − 2) V Chip enabled ≤(VCC − 4.2) V Turn-Off Time 50% off PD to <10% of fin al V Turn-On Time 50% off PD to <10% of final V
= 0.2 V p-p 595 800/750 MHz
OUT
= 2 V p-p 500/400 MHz
OUT
= 0.2 V p-p 360/300 MHz
OUT
= 2 V p-p, THD < −40 dBc 95 MHz
OUT
= 2 V p-p, RL = 150 Ω 50/40 MHz
OUT
= 2 V step 1500 V/µs
OUT
= 2 V step 15 ns
OUT
= 2 V p-p (HD2) −92 dBc
OUT
= 2 V p-p (HD3) −90 dBc
OUT
= 2 V p-p (HD2) −81 dBc
OUT
= 2 V p-p (HD3) −71 dBc
OUT
OUT
= 2 V p-p (HD3) −55 dBc
OUT
= 1.25 V to 3.75 V 57 dB
, VIN = 1 V, G = +2 38 µs
OUT
, VIN = 1 V, G = +2 30 ns
OUT
Chip powered down 30 µA
INPUT CHARACTERISTICS
Input Resistance Common mode 8 MΩ Differential mode 4 MΩ Input Capacitance Common mode 2 pF Input Common-Mode Voltage Range 1 to 4 V Common-Mode Rejection Ratio VCM = 2 V to 3 V −76 −84 dB
Rev. B | Page 4 of 20
Data Sheet ADA4857-1/ADA4857-2
Output Current
50 mA
Parameter Conditions Min Typ Max Unit
OUTPUT CHARACTERISTICS
Overdrive Recovery Time G = +2 15 ns Output Voltage Swing RL = 1 kΩ 1 to 4 V
RL = 100 Ω 1.1 to 3.9 V
Short-Circuit Current Sinking and sourcing 75 mA Capacitive Load Drive 30% overshoot, G = +2 10 pF
POWER SUPPLY
Operating Range 4.5 10.5 V Quiescent Current 4.5 5 mA Quiescent Current (Power Down) PD ≥ VCC − 2 V 250 350 µA Positive Power Supply Rejection +VS = 4.5 V to 5.5 V, −VS = 0 V −58 −62 dB Negative Power Supply Rejection +VS = 5 V, −VS = −0.5 V to +0.5 V −65 −68 dB
Rev. B | Page 5 of 20
ADA4857-1/ADA4857-2 Data Sheet
Power Dissipation
See Figure 4
( )
( )
L
S
SS
D
R
V
IVP
2
4/
+×=
0
0.5
1.0
1.5
2.0
2.5
3.0
–40–30 –20–10 0 10 20 30 40
50 60 70 80 90 100 110 120
07040-004
AMBIENT T E M P E RATURE (°C)
MAXIMUM POWER DISSIPATION (W)
ADA4857-1 (SOIC)
ADA4857-1 (LFCSP )
ADA4857-2 (LFCSP )

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage 11 V
Common-Mode Input Voltage −VS + 0.7 V to +VS − 0.7 V Differential Input Voltage ±VS Exposed Paddle Voltage −VS Storage Temperature Range −65°C to +125°C Operating Temperature Range −40°C to +125°C Lead Temperature (Soldering, 10 sec) 300°C Junction Temperature 150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, θJA is specified for device soldered in circuit board for surface-mount packages.
Table 4.
Package Type θJA θJC Unit
8-Lead SOIC 115 15 °C/W 8-Lead LFCSP 94.5 34.8 °C/W 16-Lead LFCSP 68.2 19 °C/W

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation for the ADA4857 is limited by the associated rise in junction temperature (T the die. At approximately 150°C, which is the glass transition temperature, the properties of the plastic change. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4857. Exceeding a junction temperature of 175°C for an extended period can result in changes in silicon devices, potentially causing degradation or loss of functionality.
) on
J
The power dissipated in the package (P quiescent power dissipation and the power dissipated in the die due to the ADA4857 drive at the output. The quiescent power is the voltage between the supply pins (V quiescent current (I
= Quiescent Power + (Total Drive PowerLoad Power)
P
D
( )
D
).
S
V
V
IVP
SS
 
OUTS
×+×=
R
2
L
RMS output voltages should be considered. If R to −V
, as in single-supply operation, the total drive power is
S
V
× I
. If the rms signal levels are indeterminate, consider the
S
OUT
worst case, when V
= VS/4 for RL to midsupply.
OUT
In single-supply operation with R case is V
= VS/2.
OUT
Airflow increases heat dissipation, effectively reducing θ In addition, more metal directly in contact with the package leads and exposed paddle from metal traces, through holes, ground, and power planes reduces θ
Figure 4 shows the maximum power dissipation in the package vs. the ambient temperature for the SOIC and LFCSP packages on a JEDEC standard 4-layer board. θ
Figure 4. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

ESD CAUTION

) is the sum of the
D
) times the
S
 
 
L
2
V
OUT
R
L
is referenced
L
referenced to −VS, the worst
.
JA
values are approximations.
JA
.
JA
Rev. B | Page 6 of 20
Loading...
+ 14 hidden pages