ANALOG DEVICES ADA4096-2 Service Manual

30 V, Micropower, Overvoltage Protection,

FEATURES

Input overvoltage protection, 32 V above and below
the supply rails Rail-to-rail input and output swing Low power: 60 μA per amplifier typical Unity-gain bandwidth
800 kHz typical @ V
550 kHz typical @ V
465 kHz typical @ V Single-supply operation: 3 V to 30 V Low offset voltage: 300 μV maximum High open-loop gain: 120 dB typical Unity-gain stable No phase reversal Qualified for automotive applications

APPLICATIONS

Battery monitoring Sensor conditioners Portable power supply control Portable instrumentation
= ±15 V
SY
= ±5 V
SY
= ±1.5 V
SY
Rail-to-Rail Input/Output Amplifier
ADA4096-2

PIN CONFIGURATIONS

OUTA
1
–INA
2
ADA4096-2
+INA
–V
NOTES
1. CONNECT THE EXPOSE D
Figure 2. 8-Lead LFCSP (CP-8-10)
TOP VIEW
3
(Not to Scale)
4
Figure 1. 8-Lead, MSOP (RM-8)
1OUTA
ADA4096-2
2–INA
TOP VIEW
(Not to Scale)
3+INA
4–V
PAD TO GROUND.
8
7
6
5
8
7
6
5
+V
OUTB
–INB
+INB
+V
OUTB
–INB
+INB
09241-001
09241-002

GENERAL DESCRIPTION

The ADA4096 operational amplifier features micropower operation and rail-to-rail input and output ranges. The extremely low power requirements and guaranteed operation from 3 V to 30 V make these amplifiers perfectly suited to monitor battery usage and to control battery charging. Their dynamic performance, including 27 nV/√Hz voltage noise density, recommends them for battery-powered audio applica­tions. Capacitive loads to 200 pF are handled without oscillation.
The ADA4096-2 has overvoltage protection inputs and diodes that allow the voltage input to extend 32 V above and below the supply rails, making this device ideal for robust industrial applications.
The ADA4096-2 features a unique input stage that allows the input voltage to exceed either supply safely without any phase reversal or latch-up; this is called overvoltage protection, or OVP.
The dual ADA4096-2 is available in 8-lead LFCSP (2 mm × 2 mm) and 8-lead MSOP packages. The ADA409x family is specified over the extended industrial temperature range (−40°C to +125°C) and is part of the growing selection of 30 V, low power op amps from Analog Devices, Inc. (see Table 1).
Table 1. Low Power, 30 V Operational Amplifiers
Op Amp Rail-to-Rail I/O PJFET Low Noise
Dual ADA4091-2 AD8682 AD8622 Quad ADA4091-4 AD8684 AD8624
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
ADA4096-2

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
Pin Configurations........................................................................... 1
General Description......................................................................... 1
Revision History ...............................................................................2
Specifications..................................................................................... 3
Electrical Specifications............................................................... 3
Absolute Maximum Ratings............................................................ 7
Thermal Resistance...................................................................... 7
ESD Caution.................................................................................. 7
Typical Performance Characteristics............................................. 8
±1.5 V Characteristics.................................................................. 8

REVISION HISTORY

7/11—Revision 0: Initial Version
±5 V Characteristics................................................................... 10
±15 V Characteristics ................................................................ 12
Comparative Voltage and Variable Voltage Graphs............... 14
Theory of Operation ......................................................................15
Input Stage................................................................................... 15
Phase Inversion........................................................................... 15
Input Overvoltage Protection................................................... 16
Comparator Operation.............................................................. 17
Outline Dimensions....................................................................... 18
Ordering Guide .......................................................................... 19
Automotive Products................................................................. 19
Rev. 0 | Page 2 of 20
ADA4096-2

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS, VSY = ±1.5 V

VSY = ±1.5 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 35 300 μV
0°C TA ≤ +125°C 450 μV
−40°C TA ≤ +125°C 900 μV
Offset Voltage Drift ∆VOS/∆T −40°C ≤ TA ≤ +125°C 1 μV/°C
Input Bias Current IB ±10 ±15 nA
−40°C TA ≤ +125°C ±16 nA
Input Offset Current IOS ±0.1 ±1.5 nA
−40°C TA ≤ +125°C ±3 nA
Input Voltage Range −1.5 +1.5 V
Common-Mode Rejection Ratio CMRR VCM = 0 V to ±1.5 V 63 77 dB
−40°C TA ≤ +125°C 58 dB
Large Signal Voltage Gain AVO RL = 10 kΩ, VO = −1.4 V to +1.4 V 92 94 dB
−40°C TA ≤ +125°C 84 dB R
−40°C TA ≤ +125°C 77 dB
MATCHING CHARACTERISTICS
Offset Voltage TA = 25°C 100 300 μV
OUTPUT CHARACTERISTICS
Output Voltage High VOH RL = 10 kΩ to GND 1.48 1.49 V
−40°C TA ≤ +125°C 1.45 V R
−40°C to +125°C 1.40 V
Output Voltage Low VOL RL = 10 kΩ to GND −1.49 −1.48 V
−40°C TA ≤ +125°C −1.45 V R
−40°C TA ≤ +125°C −1.40 V Short-Circuit Limit ISC Source/sink ±10 mA Closed-Loop Impedance Z
POWER SUPPLY
Power Supply Rejection Ratio PSRR VSY = 3 V to 36 V 100 dB
−40°C TA ≤ +125°C 90 dB Supply Current per Amplifier ISY VO = VSY/2 40 μA
−40°C TA ≤ +125°C 80 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ, CL = 30 pF 0.25 V/μs Gain Bandwidth Product GBP VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 501 kHz Unity-Gain Crossover UGC VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 465 kHz Phase Margin ΦM 51 Degrees
−3 dB Closed-Loop Bandwidth −3 dB AV = 1, VIN = 5 mV p-p 97 kHz
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 0.7 μV p-p Voltage Noise Density en f = 1 kHz 27 nV/√Hz Current Noise Density in f = 1 kHz 0.2 pA/√Hz
f = 100 kHz, AV = 1 102 Ω
OUT
= 2 kΩ, VO = −1.3 V to +1.3 V 86 92 dB
L
= 2 kΩ to GND 1.45 1.46 V
L
= 2 kΩ to GND −1.48 −1.47 V
L
Rev. 0 | Page 3 of 20
ADA4096-2

ELECTRICAL SPECIFICATIONS, VSY = ±5 V

VSY = ±5.0 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.
Table 3.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 35 300 μV
−40°C TA ≤ +125°C 500 μV Offset Voltage Drift ∆VOS/∆T 1 μV/°C Input Bias Current IB ±10 ±15 nA
−40°C TA ≤ +125°C ±19 nA Input Offset Current IOS ±1.5 ±2 nA
−40°C TA ≤ +125°C ±3 nA Input Voltage Range −5 +5 V Common-Mode Rejection Ratio CMRR VCM = −5 V to +5 V 73 86 dB
−40°C TA ≤ +125°C 68 dB V
−40°C TA ≤ +125°C 85 dB Large Signal Voltage Gain AVO RL = 10 kΩ, VO = ±4.8 V 102 111 dB
−40°C TA ≤ +125°C 99 dB R
−40°C TA ≤ +125°C 88 dB
MATCHING CHARACTERISTICS
Offset Voltage TA = 25°C 100 300 μV
OUTPUT CHARACTERISTICS
Output Voltage High VOH RL = 10 kΩ to GND 4.96 4.97 V
−40°C TA ≤ +125°C 4.95 V R
−40°C TA ≤ +125°C 4.70 V Output Voltage Low VOL RL = 10 kΩ to GND −4.98 −4.97 V
−40°C TA ≤ +125°C −4.95 V R
−40°C TA ≤ +125°C −4.75 V Short-Circuit Limit ISC Source/sink ±10 mA Closed-Loop Impedance Z
f = 100 kHz, AV = 1 71 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR VSY = 3 V to 36 V 100 dB
−40°C TA ≤ +125°C 90 dB Supply Current per Amplifier ISY VO = VSY/2 47 55 μA
−40°C TA ≤ +125°C 75 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ, CL = 30 pF 0.3 V/μs Gain Bandwidth Product GBP VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 595 kHz Unity-Gain Crossover UGC VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 550 kHz Phase Margin ΦM 52 Degrees
−3 dB Closed-Loop Bandwidth −3 dB AV = 1, VIN = 5 mV p-p 114 kHz
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 0.7 μV p-p Voltage Noise Density en f = 1 kHz 27 nV/√Hz Current Noise Density in f = 1 kHz 0.2 pA/√Hz
= −3 V to +3 V 91 103 dB
CM
= 2 kΩ, VO = ±4.7 V 94 103 dB
L
= 2 kΩ to GND 4.80 4.90 V
L
= 2 kΩ to GND −4.90 −4.80 V
L
Rev. 0 | Page 4 of 20
ADA4096-2

ELECTRICAL SPECIFICATIONS, VSY = ±15 V

VSY = ±15.0 V, VCM = VSY/2, VO = 0.0 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 35 300 μV
−40°C TA ≤ +125°C 500 μV Offset Voltage Drift ∆VOS/∆T 1 μV/°C Input Bias Current IB ±3 ±10 nA
−40°C TA ≤ +125°C ±15 nA Input Offset Current IOS ±0.1 ±1.5 nA
−40°C TA ≤ +125°C ±3 nA Input Voltage Range −15 +15 V Common-Mode Rejection Ratio CMRR VCM = −15 V to +15 V 82 95 dB
−40°C TA ≤ +125°C 75 dB V
−40°C TA ≤ +125°C 89 dB Large Signal Voltage Gain AVO RL = 10 kΩ, VO = ±14.7 V 110 120 dB
−40°C TA ≤ +125°C 105 dB R
−40°C TA ≤ +125°C 90 dB Input Capacitance
Differential Mode CDM 2.5 pF Common Mode CCM 7 pF
MATCHING CHARACTERISTICS
Offset Voltage TA = 25°C 100 300 μV
OUTPUT CHARACTERISTICS
Output Voltage High VOH R
−40°C TA ≤ +125°C 14.90 V R
−40°C TA ≤ +125°C 12.0 V Output Voltage Low VOL RL = 10 kΩ to GND −14.96 −14.80 V
−40°C TA ≤ +125°C −14.75 V R
−40°C TA ≤ +125°C −14.0 V Short-Circuit Limit ISC Source/sink ±10 mA Closed-Loop Impedance Z
f = 100 kHz, AV = 1 40 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR VSY = 3 V to 36 V 100 dB
−40°C TA ≤ +125°C 90 dB Supply Current per Amplifier ISY VO = VSY/2 60 75 μA
−40°C TA ≤ +125°C 100 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ, CL = 30 pF 0.4 V/μs Settling Time tS To 0.1%, 10 V step 23.4 μs Gain Bandwidth Product GBP VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 786 kHz Unity-Gain Crossover UGC VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 800 kHz Phase Margin ΦM 60 Degrees
−3 dB Closed-Loop Bandwidth −3 dB AV = 1, VIN = 5 mV p-p 152 kHz Channel Separation CS f = 1 kHz 100 dB
= −13 V to +13 V 95 107 dB
CM
= 2 kΩ, VO = ±11 V 100 112 dB
L
= 10 kΩ to GND 14.92 14.94 V
L
= 2 kΩ to GND 14.0 14.3 V
L
= 2 kΩ to GND −14.75 −14.65 V
L
Rev. 0 | Page 5 of 20
ADA4096-2
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 0.7 μV p-p Voltage Noise Density en f = 1 kHz 27 nV/√Hz Current Noise Density in f = 1 kHz 0.2 pA/√Hz
Rev. 0 | Page 6 of 20
ADA4096-2

ABSOLUTE MAXIMUM RATINGS

Table 5.
Parameter Rating
Supply Voltage 36 V Input Voltage
Operating Condition −V ≤ VIN ≤ +V Overvoltage Condition1 (−V) − 32 V ≤ VIN ≤ (+V) + 32 V
Differential Input Voltage2 ±VSY Input Current ±5 mA Output Short-Circuit Duration to
GND
Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Te mperature (Soldering,
60 sec)
1
Performance not guaranteed during overvoltage conditions.
2
Limit the input current to ±5 mA.
Indefinite
300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the device soldered on a 4-layer JEDEC standard printed circuit board (PCB) with zero airflow. The exposed pad is soldered to the application board.
Table 6. Thermal Resistance
Package Type θJA θJC Unit
8-Lead MSOP (RM-8) 142 45 °C/W 8-Lead LFCSP (CP-8-10) 76 43 °C/W

ESD CAUTION

Rev. 0 | Page 7 of 20
ADA4096-2

TYPICAL PERFORMANCE CHARACTERISTICS

TA = 25°C, unless otherwise noted.

±1.5 V CHARACTERISTICS

180
160
140
120
100
80
60
NUMBER OF AMPLI FIERS
40
20
0
–200
–175
–75
–150
–125
–100
–50
0
–25
VOS (µV)
255075
Figure 3. Input Offset Voltage Distribution
25
ADA4096-2 V
= ±1.5V
SY
T
= –40°C TO +125°C
A
20
15
10
NUMBER OF AMPLI FIERS
5
0
–2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2. 0 2.5
TCVOS (µV/°C)
Figure 4. Offset Voltage Drift Distribution
30
20
10
0
(nA)
B
I
–10
–20
–30
–40
–1.5 –1.0 –0.5 0 0. 5 1.0 1. 5
Figure 5. Input Bias Current vs. V
T
= +25°C
A
T
VCM (V)
= –40°C
A
and Temperature
CM
100
T
A
ADA4096-2 V
= ±1.5V
SY
T
= 25°C
A
125
150
ADA4096-2 V
= ±1.5V
SY
T
= +125°C
A
= +85°C
TA = 0°C
175
200
MORE
09241-003
09241-004
09241-005
10k
1k
100
TO RAIL (mV)
OUT
V
10
1
0.001 0.01 0.1 1 10 100
SOURCING
SINKING
LOAD CURRENT (mA)
Figure 6. Dropout Voltage vs. Load Current
140
120
100
80
60
40
GAIN (dB)
20
0
–20
–40
–60
100 1k 10k 100k 1M 10M
GAIN
FREQUENCY (Hz)
PHASE
ADA4096-2 V
SY
T
= 25°C
A
Figure 7. Open-Loop Gain and Phase vs. Frequency
50
G = +100
40
30
G = +10
20
10
G = +1
0
–10
–20
CLOSED-LOOP GAIN (dB)
–30
–40
–50
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 8. Closed-Loop Gain vs. Frequency
ADA4096-2 V
= ±1.5V
SY
T
= 25°C
A
= ±1.5V
ADA4096-2 V
= ±1.5V
SY
T
= 25°C
A
200
150
100
50
0
–50
–100
PHASE (Degrees)
09241-008
09241-006
09241-007
Rev. 0 | Page 8 of 20
ADA4096-2
10k
ADA4096-2 V
= ±1.5V
SY
T
= 25°C
A
1k
100
G = +100
()
10
OUT
Z
G = +10
1
0.1
0.01 10 100 1k 10k 100k 1M 10M
G = +1
FREQUENCY (Hz)
Figure 9. Output Impedance vs. Frequency
120
100
80
60
40
PSRR (dB)
20
0
PSRR–
PSRR+
ADA4096-2 V
SY
T
A
= ±1.5V
= 25°C
09241-009
0.08
0.06
0.04
0.02
0
(V)
OUT
–0.02
V
–0.04
–0.06
–0.08
–0.10
0 5 10 15 20 25 30
TIME (µs)
Figure 12. Small Signal Transient Response
1.6
1.4
1.2
1.0
(V)
0.8
OUT
V
0.6
0.4
0.2
ADA4096-2 V
= ±1.5V
SY
T
= 25°C
A
R
= 10k
L
C
= 100pF
L
G = +1
ADA4096-2 V
= ±1.5V
SY
T
= 25°C
A
R
= 10k
F
R
= 100
S
09241-011
–20
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 10. PSRR vs. Frequency
09241-052
0
0 20406080100
TIME (µs)
09241-055
Figure 13. Positive Overload Recovery
2.0
1.5
1.0
0.5
(V)
0
OUT
V
–0.5
–1.0
–1.5
–2.0
0 20406080100120
TIME (µs)
ADA4096-2 V
= ±1.5V
SY
T
= 25°C
A
R
= 10k
L
C
= 100pF
L
G = +1
Figure 11. Large Signal Transient Response
09241-010
0.2 ADA4096-2 V
= ±1.5V
SY
0
T
= 25°C
A
R
= 10k
F
–0.2
R
= 100
S
–0.4
–0.6
(V)
OUT
–0.8
V
–1.0
–1.2
–1.4
–1.6
0 20406080100
TIME (µs)
Figure 14. Negative Overload Recovery
09241-056
Rev. 0 | Page 9 of 20
ADA4096-2

±5 V CHARACTERISTICS

250
200
150
100
NUMBER OF AMPLI FIERS
50
ADA4096-2 V
= ±5V
SY
T
= 25°C
A
10k
ADA4096-2 V
= ±5V
SY
= 25°C
T
A
1k
100
TO RAIL (mV)
OUT
V
10
SOURCING
SINKING
0
–200
–175
–75
–150
–125
–100
–50
0
–25
VOS (µV)
255075
100
125
150
Figure 15. Input Offset Voltage Distribution
40
ADA4096-2 V
= ±5V
SY
35
T
= –40°C TO +125°C
A
30
25
20
15
NUMBER OF AMPLI FIERS
10
5
0
–2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2. 0 2.5
TCVOS (µV/°C)
Figure 16. Offset Voltage Drift Distribution
30
ADA4096-2 V
= ±5V
SY
20
10
0
= +85°C
T
A
–10
(nA)
B
I
–20
T
= +25°C
–30
–40
–50
5–4–3–2–1012345
A
T
A
= –40°C
T
A
= 0°C
Figure 17. Input Bias Current vs. V
VCM (V)
T
= +125°C
A
and Temperature
CM
175
200
1
0.001 0.01 0.1 1 10 100
MORE
09241-015
LOAD CURRENT (mA)
09241-023
Figure 18. Dropout Voltage vs. Load Current
140
120
100
80
60
40
GAIN (dB)
20
0
–20
–40
–60
100 1k 10k 100k 1M 10M
09241-016
GAIN
FREQUENCY (Hz)
PHASE
ADA4096-2 V
SY
= 25°C
T
A
= ±5V
200
150
100
50
0
–50
–100
PHASE (Degrees)
09241-020
Figure 19. Open-Loop Gain and Phase vs. Frequency
50
G = +100
40
30
G = +10
20
10
G = +1
0
–10
–20
CLOSED-LOOP GAIN (dB)
–30
–40
–50
10 100 1k 10k 100k 1M 10M
09241-050
FREQUENCY (Hz)
ADA4096-2
= ±5V
V
SY
= 25°C
T
A
09241-024
Figure 20. Closed-Loop Gain vs. Frequency
Rev. 0 | Page 10 of 20
ADA4096-2
10k
ADA4096-2
= ±5V
V
SY
= 25°C
T
A
1k
100
G = +100
()
10
OUT
Z
G = +10
1
0.1
0.01 10 100 1k 10k 100k 1M 10M
G = +1
FREQUENCY (Hz)
Figure 21. Output Impedance vs. Frequency
140
120
100
80
60
PSRR (dB)
40
20
0
PSRR–
PSRR+
ADA4096-2 V
SY
T
A
= ±5V
= 25°C
09241-021
0.08
0.06
0.04
0.02
0
(V)
OUT
–0.02
V
–0.04
–0.06
–0.08
–0.10
0 5 10 15 20 25 30
TIME (µs)
Figure 24. Small Signal Transient Response
6
5
4
(V)
3
OUT
V
2
1
ADA4096-2
= ±5V
V
SY
= 25°C
T
A
R
= 10k
L
= 100pF
C
L
G = +1
ADA4096-2
= ±5V
V
SY
= 25°C
T
A
= 10k
R
F
= 100
R
S
09241-018
–20
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 22. PSRR vs. Frequency
09241-053
0
0 20406080100
TIME (µs)
09241-057
Figure 25. Positive Overload Recovery
6
4
2
(V)
0
OUT
V
–2
–4
–6
0 50 100 150 200 250 300 350 400
TIME (µs)
Figure 23. Large Signal Transient Response
ADA4096-2 V
= ±5V
SY
T
= 25°C
A
R
= 10k
L
C
= 100pF
L
G = +1
09241-017
1
ADA4096-2 V
= ±5V
SY
= 25°C
T
A
0
= 10k
R
F
= 100
R
S
–1
(V)
–2
OUT
V
–3
–4
–5
0 20406080100
TIME (µs)
Figure 26. Negative Overload Recovery
09241-058
Rev. 0 | Page 11 of 20
ADA4096-2

±15 V CHARACTERISTICS

250
200
150
100
NUMBER OF AMPLI FIERS
50
ADA4096-2 V
= ±15V
SY
T
= 25°C
A
10k
ADA4096-2 V
= ±15V
SY
= 25°C
T
A
1k
100
TO RAIL (mV)
OUT
V
10
SOURCING
SINKING
0
–200
–175
–75
–150
–125
–100
–50
0
–25
VOS (µV)
255075
100
125
Figure 27. Input Offset Voltage Distribution
35
ADA4096-2 V
= ±15V
SY
T
= –40°C TO +125°C
30
A
25
20
15
10
NUMBER OF AMPLI FIERS
5
0
–2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2. 0 2.5
TCVOS (µV/°C)
Figure 28. Offset Voltage Drift Distribution
40
ADA4096-2 V
= ±15V
30
SY
20
T
= +25°C
A
= +85°C
A
VCM (V)
10
0
–10
(nA)
B
I
–20
–30
–40
–50
–60
–15 –10 –5 0 5 10 15
= 0°C
T
A
T
= –40°C
A
T
Figure 29. Input Bias Current vs. V
= +125°C
T
A
and Temperature
CM
150
175
200
1
0.001 0.01 0.1 1 10 100
MORE
09241-027
LOAD CURRENT (mA)
09241-034
Figure 30. Dropout Voltage vs. Load Current
140
120
100
80
60
40
GAIN (dB)
20
0
–20
–40
–60
100 1k 10k 100k 1M 10M
09241-028
GAIN
FREQUENCY (Hz)
ADA4096-2 V
SY
= 25°C
T
A
PHASE
= ±15V
200
150
100
50
0
–50
–100
PHASE (Degrees)
09241-030
Figure 31. Open-Loop Gain and Phase vs. Frequency
50
G = +100
40
30
G = +10
20
10
G = +1
0
–10
CLOSED-LOOP GAIN (dB)
–20
–30
–40
10 100 1k 10k 100k 1M 10M
09241-051
FREQUENCY (Hz)
ADA4096-2 V
= ±15V
SY
= 25°C
T
A
09241-036
Figure 32. Closed-Loop Gain vs. Frequency
Rev. 0 | Page 12 of 20
ADA4096-2
10k
ADA4096-2
= ±15V
V
SY
= 25°C
T
A
1k
100
()
10
G = +100
OUT
Z
G = +10
1
0.1
0.01 10 100 1k 10k 100k 1M 10M
G = +1
FREQUENCY (Hz)
Figure 33. Output Impedance vs. Frequency
120
100
80
60
PSRR–
40
PSRR (dB)
20
0
PSRR+
ADA4096-2 V
SY
T
A
= ±15V
= 25°C
09241-035
0.08
0.06
0.04
0.02
0
(V)
OUT
–0.02
V
–0.04
–0.06
–0.08
–0.10
0 5 10 15 20 25 30
TIME (µs)
Figure 36. Small Signal Transient Response
16
14
12
10
(V)
8
OUT
V
6
4
2
ADA4096-2
= ±15V
V
SY
= 25°C
T
A
R
= 10k
L
= 100pF
C
L
G = +1
ADA4096-2
= ±15V
V
SY
= 25°C
T
A
= 10k
R
F
= 100
R
S
09241-032
–20
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 34. PSRR vs. Frequency
15
10
5
(V)
0
OUT
V
–5
–10
–15
0 50 100 150 200 250 300 350 400
TIME (µs)
ADA4096-2 V T R C G = +1
Figure 35. Large Signal Transient Response
= ±15V
SY
= 25°C
A
= 10k
L
= 100pF
L
0
0 20406080100
09241-054
TIME (µs)
09241-059
Figure 37. Positive Overload Recovery
0
ADA4096-2 V
= ±15V
SY
–2
= 25°C
T
A
R
= 10k
F
= 100
R
–4
S
–6
(V)
–8
OUT
V
–10
–12
–14
–16
0 20406080100
09241-031
TIME (µs)
09241-060
Figure 38. Negative Overload Recovery
Rev. 0 | Page 13 of 20
ADA4096-2

COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS

0.5
0.4
0.3
0.2
0.1
0
NOISE (µV)
–0.1
–0.2
–0.3
–0.4
–10 –8 –6 –4 –2 0 2 4 6 8 10
TIME (s)
Figure 39. Input Voltage Noise, 0.1 Hz to 10 Hz Bandwidth
80
ADA4096-2
= ±15V
V
SY
= 25°C
T
A
–90
–100
ADA4096-2 V
= ±15V
SY
= 25°C
T
A
09241-039
70
ADA4096-2 T
= 25°C
A
=
R
60
L
50
40
30
20
10
SUPPLY CURRENT PER AMPLIFIER (µA)
0
0332282420161284
SUPPLY VOLTAGE (V)
6
09241-043
Figure 42. Supply Current vs. Supply Voltage
100
ADA4096-2 V
= ±15V
SY
T
= 25°C
A
–110
–120
CHANNEL SEPARATIO N (dB)
–130
–140
20 100 1k 10k 50k
FREQUENCY (Hz)
=
V
IN
10V p-p
10k
2k
Figure 40. Channel Separation vs. Frequency
1k
09241-040
(nV/ Hz)
n
e
10
0.1 1k100101
FREQUENCY (Hz)
Figure 43. Voltage Noise Density
09241-044
120
110
100
90
80
70
CMRR (dB)
60
50
40
30
20
100 1k 10k 100k 1M 10M
V
SY
= ±1.5V
V
SY
= ±5V
VSY = ±15V
FREQUENCY (Hz)
ADA4096-2 T
Figure 41. CMRR vs. Frequency
= 25°C
A
09241-041
50
ADA4096-2 V
= ±15V
SY
T
= 25°C
A
R
= 2k
L
40
G = +1 V
= 100mV p-p
IN
30
20
OVERSHOOT (%)
10
0
0.01 10.1
Figure 44. Overshoot vs. Load Capacitance
C
LOAD
OS–
OS+
(nF)
09241-100
Rev. 0 | Page 14 of 20
ADA4096-2
V
T

THEORY OF OPERATION

INPUT STAGE

CC
R2R1
I1
Q5
V
+IN
–IN
D3
OVP
OVP
EE
D1
D4
D2
Q3
Q1 Q2
Q4
I2
R3 R4
Figure 45. Simplified Schematic
Figure 45 shows a simplified schematic of the ADA4096-2. The input stage comprises two differential pairs (Q1 to Q4 and Q5 to Q8) operating in parallel. When the input common-mode voltage approaches V
− 1.5 V, Q1 to Q4 shut down as I1 reaches
CC
its minimum voltage compliance. Conversely, when the input common-mode voltage approaches V
+ 1.5 V, Q5 to Q8 shut
EE
down as I2 reaches its minimum voltage compliance. This topology allows for maximum input dynamic range because the amplifier can function with its inputs at 200 mV outside the rail (at room temperature).
As with any rail-to-rail input amplifier, V
mismatch between
OS
the two input pairs determines the CMRR of the amplifier. If the input common-mode voltage range is kept within 1.5 V of each rail, transitions between the input pairs are avoided, thus improving the CMRR by approximately 10 dB (see Table 3 and Table 4).
Q6
R5
D6
Q11
Q8Q7
C1
Q9
Q12
Q13
Q10
I3
C2
Q14
D8
×1
D7Q15
Although phase inversion persists for only as long as the inputs are saturated, it can be detrimental to applications where the amplifier is part of a closed-loop system. The ADA4096-2 is free from phase inversion over the entire common-mode voltage range, as well as the overvoltage protected range stated in the Absolute Maximum Ratings section, Table 5. Figure 46 shows the ADA4096-2 in a unity-gain configuration with the input signal at ±40 V and the amplifier supplies at ±10 V.
1
R7
D10 Q20
Q18D9
Q17
R6
Q16
D11
T
Q19
OU
09241-045

PHASE INVERSION

Some single-supply amplifiers exhibit phase inversion when the input signal extends beyond the common-mode voltage range of the amplifier. When the input devices become saturated, the inverting and noninverting inputs exchange functions, causing the output to move in the opposing direction.
Rev. 0 | Page 15 of 20
CH1 10.0V CH2 10.0V M2. 00ms A CH1 –3.6V
T 34.20%
Figure 46. No Phase Reversal
09241-046
ADA4096-2

INPUT OVERVOLTAGE PROTECTION

The ADA4096-2 inputs are protected from input voltage excursions up to 32 V outside each rail. This feature is of particular importance in applications with power supply sequencing issues that could cause the signal source to be active before the supplies to the amplifier.
Figure 47 shows the input current limiting capability of the
ADA4096-2 (green curves) compared to using a 5 kΩ series
resistor (red curves).
7
6
5
4
3
2
1
0
–1
–2
–3
INPUT BIAS CURRENT (mA)
–4
–5
–6
–7
–48 –40 –32 –24 –16 –8 0 8 16 24 32 40 48
= –15V
EE
V
VIN (V)
Figure 47. Input Current Limiting Capability
= +15V
= 0V
EE
CC
V
V
LOW RDSON SERIES FET
5k SERIES RESISTOR
09241-047
Figure 47 was generated with the ADA4096-2 in a buffer configu­ration with the supplies connected to GND (or ±15 V) and the positive input swept until it exceeds the supplies by 32 V. In general, input current is limited to 1 mA during positive overvoltage con­ditions and 200 A during negative undervoltage conditions. For example, at an overvoltage of 20 V, the ADA4096-2 input current is limited to 1 mA, providing a current limit equivalent to a series 20 k resistor. Figure 47 also shows that the current limiting circuitry is active whether the amplifier is powered or not.
Note that Figure 47 represents input protection under abnormal conditions only. The correct amplifier operation input voltage range (IVR) is specified in Table 2 to Table 4 .
Rev. 0 | Page 16 of 20
ADA4096-2

COMPARATOR OPERATION

Although op amps are quite different from comparators, occasionally an unused section of a dual or a quad op amp may be pressed into service as a comparator; however, this is not recommended for any rail-to-rail output op amps. For rail­to-rail output op amps, the output stage is generally a ratioed current mirror with bipolar or MOSFET transistors. With the part operating open loop, the second stage increases the current drive to the ratioed mirror to close the loop, but it cannot, which results in an increase in supply current. With the op amp configured as a comparator, the supply current can be significantly higher (see Figure 48).
500
400
V
= HIGH
OUT
300
V
= LOW
200
100
SUPPLY CURRENT PER AMPLIFIER (µA)
0
0332282420161284
OUT
BUFFER
SUPPLY VOLTAGE (V)
6
09241-048
Figure 48. Comparator Supply Current
Rev. 0 | Page 17 of 20
ADA4096-2

OUTLINE DIMENSIONS

3.20
3.00
2.80
3.20
3.00
2.80
PIN 1
IDENTIFIER
0.95
0.85
0.75
0.15
0.05
COPLANARITY
0.10
8
1
COMPLIANT TO JEDEC STANDARDS MO-187-AA
0.65 BSC
5
4
0.40
0.25
5.15
4.90
4.65
1.10 MAX
15° MAX
6° 0°
0.23
0.09
0.80
0.55
0.40
10-07-2009-B
Figure 49. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
1.70
1.60
5
4
BOTTOM VIEW
1.50
EXPOSED
PAD
0.50 BSC
8
1
P I (
1.10
1.00
0.90
I N R
1
N
R
O
C
I
A
T
D
)
5
1
.
0
PIN 1 INDEX
AREA
2.00
BSC SQ
TOP VIEW
0.425
0.350
0.275
0.60
0.55
0.50
SEATING
PLANE
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
0.30
0.25
0.20
0.05 MAX
0.02 NOM
0.20 REF
Figure 50. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]
2 mm × 2 mm Body, Ultra Thin, Dual Lead
(CP-8-10)
Dimensions shown in millimeters
Rev. 0 | Page 18 of 20
063009-A
ADA4096-2

ORDERING GUIDE

1, 2
Model
ADA4096-2ARMZ −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A2T ADA4096-2ARMZ-R7 −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A2T ADA4096-2ARMZ-RL −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A2T ADA4096-2ACPZ-R7 −40°C to +125°C 8-Lead Frame Chip Scale Package [LFCSP_UD] CP-8-10 A4 ADA4096-2ACPZ-RL −40°C to +125°C 8-Lead Frame Chip Scale Package [LFCSP_UD] CP-8-10 A4 ADA4096-2WARMZ-R7 −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A2T ADA4096-2WARMZ-RL −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A2T
1
Z = RoHS Compliant Part.
2
W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADA4096-2W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.
Temperature Range Package Description Package Option Branding
Rev. 0 | Page 19 of 20
ADA4096-2
NOTES
©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09241-0-7/11(0)
Rev. 0 | Page 20 of 20
Loading...