ANALOG DEVICES ADA4062-4 Service Manual

A
2
Low Power JFET-Input Op Amps

FEATURES

Low input bias current: 50 pA maximum Offset voltage
1.5 mV maximum for B grade (ADA4062-2 SOIC package)
2.5 mV maximum for A grade Offset voltage drift: 5 μV/°C typical Slew rate: 3.3 V/μs typical CMRR: 90 dB typical Low supply current: 165 μA typical High input impedance Unity-gain stable ±5 V to ±15 V dual-supply operation Packaging
8-lead SOIC, 8-lead MSOP, 10-lead LFCSP, 14-lead TSSOP, and
16-lead LFCSP packages

APPLICATIONS

Power controls and monitoring Active filters Industrial/process controls Body probe electronics Data acquisition Integrators Input buffering

GENERAL DESCRIPTION

The ADA4062-2 and ADA4062-4 are dual and quad JFET-input amplifiers with industry-leading performance. They offer lower power, offset voltage, drift, and ultralow bias current. The ADA4062-2 B grade (SOIC package) features a typical low offset voltage of 0.5 mV, an offset drift of 5 μV/°C, and a bias current of 2 pA.
The ADA4062 family is ideal for various applications, including process controls, industrial and instrumentation equipment, active filtering, data conversion, buffering, and power control and monitoring. With a low supply current of 165 μA per amplifier, they are well suited for lower power applications.
The ADA4062 family is also specified for the extended industrial temperature range of −40°C to +125°C. The ADA4062-2 is available in lead-free, 8-lead SOIC, 8-lead MSOP, and 10-lead LFCSP (1.6 mm × 1.3 mm × 0.55 mm) packages, while the ADA4062-4 is available in lead-free, 14-lead TSSOP and 16-lead LFCSP packages.
ADA4062-2/ADA4062-4

PIN CONFIGURATIONS

OUT A
1
ADA4062-2
–IN A
2
V–
TOP VIEW
3
(Not to Scale)
4
+IN A
Figure 1. 8-Lead Narrow-Body SOIC and 8-Lead MSOP
OUT 1
N A
–I
2
ADA4062-2
3
+IN A
C = NO CONNECT
N
TOP VIE W
(Not to Scal e)
4
V–
Figure 2. 10-Lead LFCSP
1
OUT A
2
–IN A
3
+IN A
+IN B
–IN B
OUT B
V+
ADA4062-4
TOP VIEW
4
(Not to Scale)
5
6
7
Figure 3. 14-Lead TSSOP
NC
OUT A
16
15
1
–IN A
V+
ADA4062-4
2
3
(Not to Scale)
4
TOP VIEW
5
6
–IN B
OUT B
+IN A
+IN B
NOTES
1. NC = NO CONNECT. . IT IS RECOMMENDED TO CONNECT THE EXPOSED PAD T O V–.
Figure 4. 16-Lead LFCSP
Table 1. Low Power Op Amps
Precision CMOS
Precision High Bandwidth
Single AD8663 AD8641 Dual AD8667 AD8642 AD8682 Quad AD8669 AD8643 AD8684
OUT D
14
7
OUT C
V+
8
OUT B
7
–IN B
6
5
+IN B
07670-001
V+
NC
9
10
OUT B
8
7
–IN B
6
5
NC
+IN B
14
OUT D
13
–IN D
12
+IN D
11
V–
10
+IN C
9
–IN C
8
OUT C
NC
13
12
11
10
9
8
–IN C
–IN D
+IN D
V–
+IN C
07670-065
07670-064
07670-068
High Bandwidth
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008–2010 Analog Devices, Inc. All rights reserved.
ADA4062-2/ADA4062-4

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Pin Configurations ........................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
Power Sequencing ........................................................................ 5

REVISION HISTORY

2/10—Rev. A to Rev. B
Added 16-Lead LFCSP Package........................................ Universal
Changes to Features Section, General Description Section, and
Table 1 ................................................................................................ 1
Changes to Offset Voltage Drift Parameter, Table 2 .................... 3
Changes to Table 4 ............................................................................ 5
Changes to Typical Performance Characteristics Layout ............ 6
Added Figure 6 and Figure 9; Renumbered Sequentially ........... 6
Changes to Figure 7, Figure 8, and Figure 10 ............................... 6
Changes to Figure 25 and Figure 28 ............................................... 9
Changes to Figure 37 and Figure 40 ............................................. 11
Changes to Figure 41 to Figure 46 ................................................ 12
Changes to Figure 47 and Figure 50 ............................................. 13
Changes to Figure 53 to Figure 58 ................................................ 14
Changes to Notch Filter Section and Micropower Instrumentation
Amplifier Section ............................................................................ 15
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 20
ESD Caution...................................................................................5
Typical Performance Characteristics ..............................................6
Applications Information .............................................................. 15
Notch Filter ................................................................................. 15
High-Side Signal Conditioning ................................................ 15
Micropower Instrumentation Amplifier ................................. 15
Phase Reversal ............................................................................ 16
Schematic ......................................................................................... 17
Outline Dimensions ....................................................................... 18
Ordering Guide .......................................................................... 20
7/09—Rev. 0 to Rev. A
Added ADA4062-4 ............................................................. Universal
Added 14-Lead TSSOP Package ....................................... Universal
Added 10-Lead LFCSP Package ....................................... Universal
Changes to Features Section and Table 1 ....................................... 1
Changes to Table 2 ............................................................................. 3
Changes to Thermal Resistance Section ........................................ 5
Changes to Figure 5, Figure 6, Figure 8, and Figure 9 .................. 6
Changes to Figure 37 and Figure 40............................................. 11
Changes to Figure 41 and Figure 44............................................. 12
Changes to Figure 47, Figure 48, Figure 50, and Figure 51....... 13
Added Figure 49 and Figure 52; Renumbered Sequentially ..... 13
Changes to Figure 57 and Figure 59............................................. 15
Changes to Phase Reversal Section and Figure 61 ..................... 16
Changes to Figure 63 ...................................................................... 17
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 19
10/08—Revision 0: Initial Version
Rev. B | Page 2 of 20
ADA4062-2/ADA4062-4

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS
B Grade (ADA4062-2, 8-Lead SOIC Only) 0.5 1.5 mV
−40°C TA ≤ +125°C 3 mV A Grade 0.75 2.5 mV
−40°C TA ≤ +125°C 5 mV
Offset Voltage Drift ∆VOS/∆T −40°C TA ≤ +125°C 5 μV/°C Input Bias Current IB 2 50 pA
−40°C TA ≤ +125°C 5 nA
Input Offset Current IOS 0.5 25 pA
−40°C TA ≤ +125°C 2.5 nA
Input Voltage Range −40°C ≤ TA ≤ +125°C −11.5 +15 V Common-Mode Rejection Ratio CMRR
B Grade (ADA4062-2, 8-Lead SOIC Only) VCM = −11.5 V to +11.5 V 80 90 dB
−40°C TA ≤ +125°C 80 dB A Grade VCM = −11.5 V to +11.5 V 73 90 dB
−40°C TA ≤ +125°C 70 dB
Large-Signal Voltage Gain AVO R
−40°C TA ≤ +125°C 72 dB
Input Resistance RIN 10 TΩ Input Capacitance, Differential Mode C Input Capacitance, Common Mode C
1.5 pF
INDM
4.8 pF
INCM
OUTPUT CHARACTERISTICS
Output Voltage High VOH R
−40°C TA ≤ +125°C 12.5 V
Output Voltage Low VOL R
−40°C TA ≤ +125°C −12.5 V
Short-Circuit Current ISC 20 mA Closed-Loop Output Impedance Z
f = 1 kHz, AV = 1 1 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR
B Grade (ADA4062-2, 8-Lead SOIC Only) VSY = ±4 V to ±18 V 80 90 dB
−40°C TA ≤ +125°C 80 dB A Grade VSY = ±4 V to ±18 V 74 90 dB
−40°C TA ≤ +125°C 70 dB
Supply Current per Amplifier ISY I
−40°C TA ≤ +125°C 260 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 10 kΩ, CL = 100 pF, AV = 1 3.3 V/μs Settling Time tS
Gain Bandwidth Product GBP RL = 10 kΩ, AV = 1 1.4 MHz Phase Margin ΦM R Channel Separation (ADA4062-2 Only) CS f = 1 kHz 135 dB Channel Separation (ADA4062-4 Only) CS f = 1 kHz 130 dB
= 10 kΩ, VO = −10 V to +10 V 76 83 dB
L
= 10 kΩ to VCM 13 13.5 V
L
= 10 kΩ to VCM −13.8 −13 V
L
= 0 mA 165 220 μA
O
To 0.1%, V
= 10 kΩ, AV = 1
R
L
= 10 kΩ, AV = 1 78 Degrees
L
= 10 V step, CL = 100 pF,
IN
3.5 μs
Rev. B | Page 3 of 20
ADA4062-2/ADA4062-4
Parameter Symbol Conditions Min Typ Max Unit
NOISE PERFORMANCE
Voltage Noise en p-p f = 0.1 Hz to 10 Hz 1.5 μV p-p Voltage Noise Density en f = 1 kHz 36 nV/√Hz Current Noise Density in f = 1 kHz 5 fA/√Hz
Rev. B | Page 4 of 20
ADA4062-2/ADA4062-4

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage ±18 V Input Voltage ±VSY Differential Input Voltage ±VSY Input Current ±10 mA Output Short-Circuit Duration to GND Indefinite Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. It was measured using a standard 4-layer board.
Table 4. Thermal Resistance
Package Type θJA θ
8-Lead SOIC 120 45 °C/W 8-Lead MSOP 142 45 °C/W 10-Lead LFCSP 132 46 °C/W 14-Lead TSSOP 112 35 °C/W 16-Lead LFCSP 75 12 °C/W
Unit
JC

POWER SEQUENCING

The supply voltages of the op amps must be established simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA.

ESD CAUTION

Rev. B | Page 5 of 20
ADA4062-2/ADA4062-4

TYPICAL PERFORMANCE CHARACTERISTICS

TA = 25°C, unless otherwise noted.
70
VSY = ±5V V
= 0V
CM
BASED ON 600 OP AMPS
60
280
VSY = ±15V V
= 0V
CM
BASED ON 600 OP AM PS
240
50
40
30
20
NUMBER OF AMPLI FERS
10
0
–4 –3 –2 –1 0 1 2 43
VOS (mV)
Figure 5. Input Offset Voltage Distribution
40
ADA4062-2 ONLY V
= ±5V
SY
–40°C T BASED ON 200 OP AMP S
30
20
NUMBER OF AMPLIFERS
10
+125°C
A
200
160
120
80
NUMBER OF AMPLI FERS
40
0
–4 –3 –2 –1 0 1 2 43
07670-054
VOS (mV)
07670-003
Figure 8. Input Offset Voltage Distribution
40
30
20
NUMBER OF AMPLIFERS
10
ADA4062-2 ONLY V
= ±15V
SY
–40°C T BASED ON 200 OP AM PS
+125°C
A
0
20246810
TCVOS (µV/°C)
Figure 6. Input Offset Voltage Drift Distribution
NUMBER OF AMPLIF IERS
25
20
15
10
5
0
2 4 6 8 10 12 14 16
0
TCV
ADA4062-4 ONLY V
= ±5V
SY
–40°C T 125°C BASED ON 200 O P AMPS
(µV/°C)
OS
Figure 7. Input Offset Voltage Drift Distribution
07670-055
18
07670-070
Rev. B | Page 6 of 20
0
–2 0 2 4 6 8 10
TCVOS (µV/°C)
Figure 9. Input Offset Voltage Drift Distribution
25
20
15
10
NUMBER OF AMPLIF IERS
5
0
0 2 4 6 8 1012141618
TCVOS (µV/°C)
ADA4062-4 ONLY V
= ±15V
SY
–40°C T 125°C BASED ON 200 OP AMPS
Figure 10. Input Offset Voltage Drift Distribution
07670-005
07670-069
ADA4062-2/ADA4062-4
5
= ±5V
V
SY
4
3
2
1
0
(mV)
OS
V
–1
–2
–3
–4
–5
–4 –3 –2 –1 0 1 2 3 4 5
VCM (V)
Figure 11. Input Offset Voltage vs. Common-Mode Voltage
10000
VSY = ±5V
07670-056
5
VSY = ±15V
4
3
2
1
0
(mV)
OS
V
–1
–2
–3
–4
–5
–15 –12 –9 –6 –3 0 3 6 9 12 15
VCM (V)
Figure 14. Input Offset Voltage vs. Common-Mode Voltage
10000
VSY = ±15V
07670-006
1000
100
(pA)
B
I
10
1
0.1 –50 –25 0 25 50 75 100 125
TEMPERATURE (°C)
Figure 12. Input Bias Current vs. Temperature
3
VSY = ±5V
2
1
(pA)
B
I
0
–1
1000
100
(pA)
B
I
10
1
0.1 –50 –25 0 25 50 75 100 125
07670-012
TEMPERATURE (°C)
07670-009
Figure 15. Input Bias Current vs. Temperature
5
VSY = ±15V
4
3
(pA)
B
I
2
1
–2
3–2–1012345
VCM (V)
Figure 13. Input Bias Current vs. Common-Mode Voltage
07670-013
Rev. B | Page 7 of 20
0
–12–10–8–6–4 –2 0 2 4 6 810121416
VCM (V)
Figure 16. Input Bias Current vs. Common-Mode Voltage
07670-010
ADA4062-2/ADA4062-4
10
VSY = ±5V
10
VSY = ±15V
V+ – V
OH
1
OUTPUT VOLTAGE TO SUPPLY RAIL (V)
0.1
0.01 0.1 1 10 100
VOL – V–
LOAD CURRENT (mA)
Figure 17. Output Voltage to Supply Rail vs. Load Current
220
200
180
160
140
120
100
80
60
SUPPLY CURRENT/AM P (µA)
40
20
0
0 2 4 6 8 1012141618
SUPPLY VOLTAGE (±V)
+85°C
+125°C
+25°C
–40°C
Figure 18. Supply Current/Amp vs. Supply Voltage
2.0
1.5
1.0
V+ – V
VOL – V–
OH
VSY = ±5V R
= 10k
L
V+ – V
OH
1
OUTPUT VOLTAGE TO SUPPLY RAIL (V)
0.1
0.01 0.1 1 10 100
07670-014
VOL – V–
LOAD CURRENT (mA)
07670-011
Figure 20. Output Voltage to Supply Rail vs. Load Current
200
190
180
170
160
150
140
130
SUPPLY CURRENT/AM P (µA)
120
110
100
–50 –25 0 25 50 75 100 125 150
07670-146
VSY = ±15V
= ±5V
V
SY
TEMPERATURE (° C)
07670-149
Figure 21. Supply Current/Amp vs. Temperature
2.0
1.5
1.0
V+ – V
VOL – V–
OH
V
SY
R
L
= ±15V
= 10k
0.5
OUTPUT VOTL AGE TO SUPPLY RAIL (V)
0
–50 –25 1250 25 50 75 100
TEMPERATURE
(°C)
Figure 19. Output Voltage to Supply Rail vs. Temperature
07670-018
Rev. B | Page 8 of 20
0.5
OUTPUT VOTLAGE TO SUPPLY RAIL (V)
0
–50 –25 1250 25 50 75 100
TEMPERATURE (°C)
Figure 22. Output Voltage to Supply Rail vs. Temperature
07670-015
ADA4062-2/ADA4062-4
120
100
80
60
40
20
GAIN (dB)
0
–20
–40
–60
1k 10k 100k 1M 10M 100M
PHASE
GAIN
FREQUENCY (Hz)
Figure 23. Open-Loop Gain and Phase vs. Frequency
50
AV = +100
40
30
AV = +10
20
10
GAIN (dB)
AV = +1
0
VSY = ±5V
VSY = ±5V
120
100
80
60
40
20
0
–20
–40
–60
120
100
80
60
40
20
GAIN (dB)
PHASE (Degrees)
07670-019
0
–20
–40
–60
1k 10k 100k 1M 10M 100M
PHASE
GAIN
FREQUENCY (Hz)
VSY = ±15V
120
100
80
60
40
20
0
–20
–40
–60
PHASE (Degrees)
07670-016
Figure 26. Open-Loop Gain and Phase vs. Frequency
50
AV = +100
40
30
AV = +10
20
10
GAIN (dB)
AV = +1
0
VSY = ±15V
–10
–20
10 10 0 1k 10k 100k 1M 10M 100M
FREQUENCY (Hz)
Figure 24. Closed-Loop Gain vs. Frequency
1000
VSY = ±5V
100
AV = +100
()
10
AV = +10
OUT
Z
1
AV = +1
0.1 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 25. Output Impedance vs. Frequency
–10
–20
10 10 0 1k 10k 100k 1M 10M 100M
07670-020
FREQUENCY (Hz)
07670-017
Figure 27. Closed-Loop Gain vs. Frequency
1000
VSY = ±15V
100
AV = +100
()
10
AV = +10
OUT
Z
1
AV = +1
0.1 100 1k 10k 100k 1M 10M
07670-021
FREQUENCY (Hz)
07670-018
Figure 28. Output Impedance vs. Frequency
Rev. B | Page 9 of 20
ADA4062-2/ADA4062-4
100
90
80
70
60
50
CMRR (dB)
40
30
20
10
0
100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
VSY = ±5V
Figure 29. CMRR vs. Frequency
120
100
80
60
PSRR+
40
PSRR (dB)
20
0
PSRR–
07670-025
VSY = ±5V
100
90
80
70
60
50
CMRR (dB)
40
30
20
10
0
100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
VSY = ±15V
Figure 32. CMRR vs. Frequency
140
120
100
80
60
PSRR (dB)
40
20
0
PSRR–
VSY = ±15V
PSRR+
07670-022
–20
10 100
1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 30. PSRR vs. Frequency
60
VSY = ±5V A
= +1
V
R
= 10k
L
50
40
30
OVERSHOOT (%)
20
10
0
10 100 1000 10000
CL (pF)
Figure 31. Small-Signal Overshoot vs. Load Capacitance
–20
10 100
07670-026
1k 10k 100k 1M 10M
FREQUENCY (Hz)
07670-023
Figure 33. PSRR vs. Frequency
60
VSY = ±15V A
= +1
V
R
= 10k
L
50
40
30
OVERSHOOT (%)
20
10
0
10 100 1000 10000
07670-030
CL (pF)
07670-027
Figure 34. Small-Signal Overshoot vs. Load Capacitance
Rev. B | Page 10 of 20
ADA4062-2/ADA4062-4
VSY = ±5V V
= 4V p-p
IN
A
= +1
V
R
= 10k
L
C
= 100pF
L
VOLTAGE (1V/DIV )
TIME (4µs/DIV)
Figure 35. Large-Signal Transient Response
VSY = ±5V V
= 100mV p-p
IN
A
= +1
V
R
= 10k
L
C
= 100pF
L
VOLTAGE (20mV/DIV)
VSY = ±15V V
= 20V p-p
IN
A
= +1
V
R
= 10k
L
C
= 100pF
L
VOLTAGE (5V/DIV)
07670-031
TIME (10µs/DIV)
07670-028
Figure 38. Large-Signal Transient Response
VSY = ±15V V
= 100mV p-p
IN
A
= +1
V
R
= 10k
L
C
= 100pF
L
VOLTAGE (20mV/DIV)
TIME (10µs/DIV)
Figure 36. Small-Signal Transient Response
4
2
0
INPUT VOLTAGE (V)
INPUT
OUTPUT
TIME (2µs/DIV)
VSY = ±5V A
=–10
V
Figure 37. Negative Overload Recovery
07670-032
TIME (10µs/DIV)
07670-029
Figure 39. Small-Signal Transient Response
4
2
0
0
OUTPUT VOLTAGE (V)
–2
–4
–6
07670-036
INPUT VOLTAGE (V )
INPUT
OUTPUT
TIME (2µs/DIV)
VSY = ±15V
=–10
A
V
0
–5
–10
–15
–20
OUTPUT VOLTAGE (V)
07670-033
Figure 40. Negative Overload Recovery
Rev. B | Page 11 of 20
ADA4062-2/ADA4062-4
2
0
INPUT
VSY = ±5V A
=–10
V
2
0
INPUT
VSY = ±15V A
=–10
V
INPUT VOLTAGE (V)
–2
VOLTAGE (1V/DIV)
INPUT
OUTPUT
VSY = ±5V
= 100pF
C
L
= 10k
R
L
OUTPUT
TIME (2µs/DIV)
Figure 41. Positive Overload Recovery
ERROR BAND
TIME (2µs/DIV)
Figure 42. Positive Settling Time to 0.1%
4
2
0
–2
+20mV
0V
–20mV
–2
15
10
OUTPUT VOLTAGE (V)
07670-037
INPUT VOLTAGE (V)
OUTPUT
TIME (2µs/DIV)
5
OUTPUT VOLTAGE (V)
0
–5
07670-034
Figure 44. Positive Overload Recovery
INPUT
+100mV
OUTPUT
VOLTAGE (5V/DIV)
VSY = ±15V
= 100pF
C
L
= 10k
R
L
07670-075
TIME (2µs/DIV)
ERROR BAND
0V
–100mV
07670-077
Figure 45. Positive Settling Time to 0.1%
VOLTAGE (1V/DIV)
INPUT
OUTPUT
ERROR BAND
TIME (2µs/DIV)
Figure 43. Negative Settling Time to 0.1%
VSY = ±5V
= 100pF
C
L
= 10k
R
L
+20mV
0V
–20mV
07670-076
Rev. B | Page 12 of 20
VOLTAGE (5V/DIV)
INPUT
OUTPUT
ERROR BAND
TIME (2µs/DIV)
Figure 46. Negative Settling Time to 0.1%
VSY = ±15V
= 100pF
C
L
= 10k
R
L
+100mV
0V
–100mV
07670-078
ADA4062-2/ADA4062-4
1000
VSY = ±5V
1000
VSY = ±15V
100
VOLTAGE NOISE DENSITY (nV/Hz)
10
1101001k
FREQUENCY (Hz)
Figure 47. Voltage Noise Density
VSY = ±5V
INPUT NOISE VOLTAGE (0.5µV/DIV)
TIME (1s/ DIV)
07670-044
Figure 48. 0.1 Hz to 10 Hz Noise
0
VSY = ±5V V
IN
–20
R
= 10k
L
ADA4062-2 ONLY
–40
–60
= 5V p-p
100k
1k
R
L
100
VOLTAGE NOISE DENSI TY (nV/ Hz)
10
1101001k
07670-043
FREQUENCY (Hz)
07670-040
Figure 50. Voltage Noise Density
VSY = ±15V
INPUT NOISE VOLTAGE (0.5µV/DIV)
TIME (1s/ DIV)
07670-041
Figure 51. 0.1 Hz to 10 Hz Noise
0
VSY = ±15V V
IN
–20
R
= 10k
L
ADA4062-2 ONLY
–40
–60
= 10V p-p
100k
1k
R
L
–80
–100
–120
CHANNEL SEPARATION (dB)
–140
–160
100 1k 10k 100k
FREQUENCY (Hz)
Figure 49. Channel Separation vs. Frequency (ADA4062-2 Only)
07670-049
Rev. B | Page 13 of 20
–80
–100
–120
CHANNEL SEPARATION (dB)
–140
–160
100 1k 10k 100k
FREQUENCY (Hz)
Figure 52. Channel Separation vs. Frequency (ADA4062-2 Only)
07670-046
ADA4062-2/ADA4062-4
0
VSY = ±5V V
= 5V p-p
IN
–20
R
= 10k
L
ADA4062-4 ONLY
–40
–60
–80
–100
–120
CHANNEL SEPARATIO N (dB)
–140
–160
100 1k 10k 100k
FREQUENCY (Hz)
100k
R
L
Figure 53. Channel Separation vs. Frequency (ADA4062-4 Only)
100
VS = ±5V f = 1kHz
= 10k
R
L
10
1
0.1
THD + N (%)
1k
0
VSY = ±15V V
= 10V p-p
IN
–20
R
= 10k
L
ADA4062-4 ONLY
–40
–60
–80
–100
–120
CHANNEL SEPARATION (dB)
–140
–160
100 1k 10k 100k
07670-067
FREQUENCY (Hz)
100k
1k
R
L
07670-066
Figure 56. Channel Separation vs. Frequency (ADA4062-4 Only)
10
1
0.1
THD + N (%)
0.01
0.001
0.001 0.01 0.1 1 10
AMPLITUDE (V rms)
Figure 54. THD + N vs. Amplitude
1
VSY = ±5V V
= 0.5V rms
IN
R
= 10k
L
0.1
THD + N (%)
0.01
0.001 10 100 1k 10k 100k
FREQUENCY (Hz)
Figure 55. THD + N vs. Frequency
0.01
VS = ±15V f = 1kHz R
= 10k
L
0.001
0.001 0.01 0.1 1 10
07670-071
AMPLITUDE (V rms)
07670-072
Figure 57 THD + N vs. Amplitude
1
VS = ±15V V
= 2V rms
IN
R
= 10k
L
0.1
THD + N (%)
0.01
0.001 100 1k 10k 100k 1M
07670-073
FREQUENCY (Hz)
7670-074
Figure 58. THD + N vs. Frequency
Rev. B | Page 14 of 20
ADA4062-2/ADA4062-4
V

APPLICATIONS INFORMATION

NOTCH FILTER

A notch filter rejects a specific interfering frequency and can be implemented using a single op amp. Figure 59 shows a 60 Hz notch filter that uses the twin-T network with the ADA4062-x configured as a voltage follower. The ADA4062-x works as a buffer that provides high input resistance and low output impedance. The low bias current (2 pA typical) and high input resistance (10 TΩ typical) of the ADA4062-x enable large resistors and small capacitors to be used.
Alternatively, different combinations of resistor and capacitor values can be used to achieve the desired notch frequency. However, the major drawback to this circuit topology is the need to ensure that all the resistors and capacitors be closely matched. If they are not closely matched, the notch frequency offset and drift cause the circuit to attenuate at a frequency other than the ideal notch frequency.
Therefore, to achieve the desired performance, 1% or better component tolerances are usually required. In addition, a notch filter requires an op amp with a bandwidth of at least 100× to 200× the center frequency. Hence, using the ADA4062-x with a bandwidth of 1.4 MHz is excellent for a 60 Hz notch filter. Figure 60 shows the frequency response of the notch filter. At 60 Hz, the notch filter has about 50 dB attenuation of signal.
+V
SY
R1
804k
IN
C1
3.3nF
1
f
=
O
2 R
1 C1
R1 = R2 = 2R3
C3
C1 = C2 =
2
Figure 59. Notch Filter Circuit
20
10
0
–10
–20
–30
GAIN (dB)
–40
–50
–60
–70
–80
10 100 1k
Figure 60. Frequency Response of the Notch Filter
R2
804k
C3
6.6nF
R3 402k
C2
3.3nF
FREQUENCY (Hz)
ADA4062-x
–V
SY
V
O
07670-060
07670-057

HIGH-SIDE SIGNAL CONDITIONING

Many applications require the sensing of signals near the positive rail. The ADA4062-x can be used in high-side current sensing applications. Figure 61 shows a high-side signal conditioning circuit using the ADA4062-x. The ADA4062-x has an input common-mode range that includes the positive supply (−11.5 V ≤ V
≤ +15 V). In the circuit, the voltage drop across a low value
CM
resistor, such as the 0.1 Ω shown in Figure 61, is amplified by a factor of 5 using the ADA4062-x.
+15
100k
500k
Figure 61. High-Side Signal Conditioning
0.1
100k
500k
+15V
ADA4062-x
–15V
R
L
V
O
07670-058

MICROPOWER INSTRUMENTATION AMPLIFIER

The ADA4062-2 is a dual amplifier and is perfectly suited for applications that require lower supply currents. For supply voltages of ±15 V, the supply current per amplifier is 165 μA typical. The ADA4062-2 also offers a typical low offset voltage drift of 5 μV/°C and a very low bias current of 2 pA, which make it well suited for instrumentation amplifiers.
Figure 62 shows the classic 2-op-amp instrumentation amplifier with four resistors using the ADA4062-2. The key to high CMRR for this instrumentation amplifier are resistors that are well matched to both the resistive ratio and relative drift. For true difference amplification, matching of the resistor ratio is very important, where R3/R4 = R1/R2. Assuming perfectly matched resistors, the gain of the circuit is 1 + R2/R1, which is approximately
100. Tighter matching of two op amps in one package, as is the case with the ADA4062-2, offers a significant boost in performance over the classical 3-op-amp configuration. Overall, the circuit only requires about 330 μA of supply current.
R3
10.1k
+15V
R4
1M
1/2
R1
10.1k
ADA4062-2
V1
V2
VO = 100(V2 – V1) TYPICAL: 0.5mV < V2 – V1< 135mV TYPICAL: –13.8V < V USE MATCHED RESIS TORS
–15V
< +13.5V
O
Figure 62. Micropower Instrumentation Amplifier
R2
1M
+15V
1/2
ADA4062-2
–15V
V
O
07670-059
Rev. B | Page 15 of 20
ADA4062-2/ADA4062-4
T

PHASE REVERSAL

Phase reversal occurs in some amplifiers when the input common­mode voltage range is exceeded. When the voltage driving the input to these amplifiers exceeds the maximum input common­mode voltage range, the output of the amplifiers changes polarity. Most JFET input amplifiers have phase reversal if either input exceeds the input common-mode range.
For the ADA4062-x, the output does not phase reverse if one or both of the inputs exceeds the input voltage range but remains within the positive supply rail and 0.5 V above the negative supply rail. In other words, for an application with a supply voltage of ±15 V, the input voltage can be as high as +15 V without any output phase reversal. However, when the voltage of the inputs is driven beyond −14.5 V, phase reversal occurs due to saturation of the input stage leading to forward biasing of the gate-drain diode. Phase reversal in ADA4062-x can be prevented by using a Schottky diode to clamp the input terminals to each other. In the simple buffer circuit in Figure 63, D1 protects the op amp against phase reversal, and R limits the input current that flows into the op amp.
+V
SY
R
IN5711
D1
ADA4062-x
–V
SY
10k
Figure 63. Phase Reversal Solution Circuit
V
O
07670-053
V
IN
V
OUT
AGE (5V/DIV)
VOL
TIME (40µs/DIV)
Figure 64. No Phase Reversal
VSY = ±15V
07670-063
Rev. B | Page 16 of 20
ADA4062-2/ADA4062-4
V

SCHEMATIC

+
OUT
IN
Figure 65. Simplified Schematic of the ADA4062-x
+IN
V–
07670-062
Rev. B | Page 17 of 20
ADA4062-2/ADA4062-4

OUTLINE DIMENSIONS

3.20
3.00
2.80
8
5
3.20
3.00
2.80
PIN 1
IDENTIFIER
0.95
0.85
0.75
0.15
0.05
COPLANARITY
1
0.65 BSC
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 66. 8-Lead Mini Small Outline Package [MSOP]
5.00 (0.1968)
4.80 (0.1890)
5.15
4.90
4.65
4
15° MAX
6° 0°
0.23
0.09
0.40
0.25
1.10 MAX
(RM-8)
Dimensions shown in millimeters
0.80
0.55
0.40
100709-B
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-AA
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 67. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
0.40
BSC
0.05 MAX
0.02 NOM
(CP-10-10)
0.55
0.40
0.30
9
1
46
BOTTOM VIEW
N
I
1
P
E
I
R
F
I
E
N
T
D
I
0.35
0.30
0.25
033007-A
0.20 DIA TYP
0.60
0.55
0.50
SEATING
PLANE
1.30
1.60
TOP VI EW
0.20 BSC
Figure 68. 10-Lead Lead Frame Chip Scale Package [LFCSP_UQ]
1.30 mm × 1.60 mm, Body, Ultra Thin Quad
Dimensions shown in millimeters
Rev. B | Page 18 of 20
ADA4062-2/ADA4062-4
4.50
4.40
4.30
PIN 1
1.05
1.00
0.80
0.15
0.05
COPLANARITY
0.10
5.10
5.00
4.90
14
1
0.65 BSC
0.30
0.19
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
8
6.40 BSC
7
1.20
0.20
MAX
0.09
SEATING PLANE
8° 0°
0.75
0.60
0.45
061908-A
Figure 69. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
PIN 1
INDICATOR
0.80
0.75
0.70
SEATING
PLANE
3.10
3.00 SQ
2.90
0.50
BSC
0.50
0.40
0.30
0.05 MAX
0.02 NOM
0.20 REF
0.30
0.23
0.18
13
12
9
8
BOTTOM VIEWTOP VIEW
COPLANARITY
0.08
1
P
N
I
D
C
I
A
N
I
16
1
EXPOSED
PAD
5
FORPROPERCONNECTIONOF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
1.75
1.60 SQ
1.45
4
0.20 MIN
R
O
T
COMPLIANTTOJEDEC STANDARDS MO-220-WEED-6.
01-13-2010-D
Figure 70. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
3 mm × 3 mm Body, Very Very Thin Quad
(CP-16-22)
Dimensions shown in millimeters
Rev. B | Page 19 of 20
ADA4062-2/ADA4062-4

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option Branding
ADA4062-2ARMZ −40°C to +125°C 8-Lead MSOP RM-8 A25 ADA4062-2ARMZ-RL −40°C to +125°C 8-Lead MSOP RM-8 A25 ADA4062-2ARMZ-RL7 −40°C to +125°C 8-Lead MSOP RM-8 A25 ADA4062-2ARZ −40°C to +125°C 8-Lead SOIC_N R-8 ADA4062-2ARZ-R7 −40°C to +125°C 8-Lead SOIC_N R-8 ADA4062-2ARZ-RL −40°C to +125°C 8-Lead SOIC_N R-8 ADA4062-2BRZ −40°C to +125°C 8-Lead SOIC_N R-8 ADA4062-2BRZ-R7 −40°C to +125°C 8-Lead SOIC_N R-8 ADA4062-2BRZ-RL −40°C to +125°C 8-Lead SOIC_N R-8 ADA4062-2ACPZ-R2 −40°C to +125°C 10-Lead LFCSP_UQ CP-10-10 J ADA4062-2ACPZ-RL −40°C to +125°C 10-Lead LFCSP_UQ CP-10-10 J ADA4062-2ACPZ-R7 −40°C to +125°C 10-Lead LFCSP_UQ CP-10-10 J ADA4062-4ARUZ −40°C to +125°C 14-Lead TSSOP RU-14 ADA4062-4ARUZ-RL −40°C to +125°C 14-Lead TSSOP RU-14 ADA4062-4ACPZ-R2 −40°C to +125°C 16-Lead LFCSP_WQ CP-16-22 A2K ADA4062-4ACPZ-R7 −40°C to +125°C 16-Lead LFCSP_WQ CP-16-22 A2K ADA4062-4ACPZ-RL −40°C to +125°C 16-Lead LFCSP_WQ CP-16-22 A2K
1
Z = RoHS Compliant Part.
©2008–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07670-0-2/10(B)
Rev. B | Page 20 of 20
Loading...