Analog Devices AD9929 a Datasheet

CCD Signal Processor with

FEATURES

36 MSPS correlated double sampler (CDS) 12-bit 36 MHz A/D converter On-chip vertical driver for CCD image sensor On-chip horizontal driver for CCD image sensor 6 dB to 40 dB variable gain amplifier (VGA) Black level clamp with variable level control Complete on-chip timing generator Precision Timing core with 0.58 ns resolution 2-phase H-clock modes 4-phase vertical transfer clocks Electronic and mechanical shutter modes On-chip sync generator with external sync option 64-lead, plastic ball, 9 × 9 grid array Pb-free package

APPLICATION

Digital still cameras Digital video camcorders
Precision Timing™ Generator
AD9929

PRODUCT DESCRIPTION

The AD9929 is a highly integrated CCD signal processor for digital still camera and digital video camera applications. It includes a complete analog front end with A/D conversion, combined with a full-function, programmable timing generator. The AD9929 also includes horizontal and vertical clock drivers, which allow direct connection to the CCD image sensor.
The AD9929 is specified at pixel rates of up to 36 MHz. The analog front end includes black level clamping, a CDS, a VGA, and a 12-bit A/D converter. The timing generator provides all the necessary CCD clocks: RG-clock, H-clocks, V-clocks, sensor gate pulses, a substrate clock, and a substrate bias pulse. Oper­ation is programmed using a 3-wire serial interface.
The AD9929 is packaged in a 64-lead CSPBGA. It is specified over an operating temperature range of 25°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

REFT REFB
AD9929
CCDIN
VSUB
RG
H1, H2
V1, V2,
V3, V4
SUBCK
CDS VGA
HORIZONTAL
2
4
DRIVERS
VERTICAL
DRIVERS
6dB TO 40dB
INTERNAL CLOCKS
VREF
PRECISION
TIMING
GENERATOR
SYNC
GENERATOR
HD VD SYNC
Figure 1.
CLAMP
CLI
ADC
INTERNAL
REGISTERS
SL SCKS DI
12
DOUT
DCLK1 FD/DCLK2 MSHUT STROBE
04593-0-001
Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Anal og Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
AD9929
TABLE OF CONTENTS
Specifications..................................................................................... 3
Digital Specifications ................................................................... 4
Analog Specifications................................................................... 4
Timing Specifications .................................................................. 5
Vertical Driver Specifications ..................................................... 5
Terminology ...................................................................................... 7
Absolute Maximum Ratings............................................................ 8
Pin Configuration and Functional Descriptions.......................... 9
Equivalent Input Circuits ..............................................................10
System Overview ............................................................................ 18
Theory of Operation ...................................................................... 19
Modes of Operation ................................................................... 19
Horizontal and Vertical Counters ............................................ 19
CLI Input Clock Divider............................................................ 19
Gray Code Registers................................................................... 19
H1 and H2 Blanking .................................................................. 31
VGATE Masking of XV1 to XV4 and CLPOB Outputs............ 33
Vertical Timing Generation.......................................................... 34
Creating Vertical Sequences...................................................... 34
Special Vertical Sweep Mode Operation ................................. 39
Special Vertical Timing (SPATS).............................................. 40
V1 to V4 and SUBCK Output Polarities ..................................... 43
Timing Control............................................................................... 46
Electronic Shutter Timing Control.......................................... 46
VSG Timing ................................................................................ 48
VSUB Timing.............................................................................. 49
MSHUT Timing ......................................................................... 50
Strobe Timing............................................................................. 52
Digital I/O States for Different Operating Conditions.............. 53
Power Supply Sequencing ............................................................. 54
Serial Interface Timing .............................................................. 20
Analog Front End Description and Operation.......................22
Precision Timing, High Speed Timing Generation ............... 23
H Driver and RG Outputs......................................................... 23
Digital Data Outputs.................................................................. 26
External Synchronization (Master Mode)................................... 27
Horizontal and Vertical Synchronous Timing............................ 28
Special Note about the HDLEN Register ................................ 28
Horizontal Clamping and Blanking............................................. 29
Controlling CLPOB Clamp Pulse Timing .............................. 29
Controlling CLPOB Clamp Pulse Outputs............................. 30
REVISION HISTORY
Revision A
2/04—Data Sheet Changed from Rev. 0 to Rev. A
Replaced Figure....................................................................................21
1/04—Revision 0: Initial Version
Recommended Power-Up Supply Sequencing....................... 54
Recommended Power-Down Supply Sequencing ................. 54
Initial Start-Up Sequence.......................................................... 55
Standby Mode Operation.......................................................... 56
Shut-Down Mode Operation.................................................... 57
Applications Where the CLI Clock Frequency Changes
During Operation....................................................................... 58
Circuit Layout Information........................................................... 60
Outline Dimensions....................................................................... 62
Ordering Guide .......................................................................... 62
Rev. A | Page 2 of 64
AD9929

SPECIFICATIONS

Table 1.
Parameter Min Typ Max Unit
TEMPERATURE RANGE
Operating −25 +85 °C Storage −65 +150 °C
POWER SUPPLY VOLTAGE
AVDD (AFE Analog Supply) 2.7 3.0 3.6 V TCVDD (Timing Core Analog Supply) 2.7 3.0 3.6 V RGVDD (RG Driver) 2.7 3.0 3.6 V HVDD (H1 to H2 Drivers) 2.7 3.0 3.6 V DRVDD (Data Output Drivers) 2.7 3.0 3.6 V DVDD (Digital) 2.7 3.0 3.6 V
VERTICAL DRIVER SUPPLY VOLTAGE
VDD (Vertical Driver Input Logic Supply) 2.7 3.0 3.6 V VH1, VH2 (Vertical Driver High Supply) 11.5 15.0 16.0 V VM1, VM2 (Vertical Driver Mid Supply) −1.0 0.0 1.0 V VL (Vertical Driver Low Supply for 3 Level and 2 Level) −9.0 −7.5 −5.0 V
AFETG POWER DISSIPATION
36 MHz, Typ Supply Levels, 100 pF H1 to H2 Loading 180 mW Power from HVDD Only1 36 mW Power-down Mode (AFE and Digital in Standby Operation) 1 mW
VERTICAL DRIVER POWER DISSIPATION2 (6000 pF V1 to V4 Loading, 1000 pF SUBCK Loading)
Power from VDD <1.0 mW Power from VH1 23.0 mW Power from VH2 15.0 mW Power from VL 42.0 mW
MAXIMUM CLOCK RATE (CLI) AD9929 36 MHz
1
The total power dissipated by the HVDD supply may be approximated by using the equation:
Total HVDD Power = [C Actual HVDD power may be slightly different than the calculated value because of the stray capacitance inherent in the PCB layout/routing.
2
Vertical driver loads used when characterizing power consumption. Note: actual power depends on the V1 to V4 timing and number of SUBCKs.
V1, V2, V3, V4
× HVDD × Pixel Frequency] × HVDD × Number of H-Outputs Used.
LOAD
SUBCK
1V MAX
INPUT
1000 pF
6000 pF
INPUT SIGNAL CHARACTERISTICS DEFINED AS FOLLOWS:
500mV TYP
RESET
TRANSIENT
100mV MAX
OPTICAL
BLACK PIXEL
SIGNAL RANGE
04593-0-002
Rev. A | Page 3 of 64
AD9929

DIGITAL SPECIFICATIONS

Table 2. RGVDD = HVDD = 2.7 V to 3.6 V, DVDD = DRVDD = 2.7 V to 3.6 V, CL = 20 pF, T
Parameter Symbol Min Typ Max Unit
LOGIC INPUTS
High Level Input Voltage V Low Level Input Voltage V High Level Input Current I Low Level Input Current I Input Capacitance C
2.1
IH
IL
IH
IL
IN
LOGIC OUTPUTS (Except H and RG)
High Level Output Voltage @ IOH = 2 mA V Low Level Output Voltage @ IOL = 2 mA V
2.2
OH
OL
RG and H-DRIVER OUTPUTS (H1 to H2)
High Level Output Voltage @ Max Current V Low Level Output Voltage @ Max Current V
VDD − 0.5
OH
OL
RG Maximum Output Current (Programmable) H1 and H2 Maximum Output Current (Programmable) Maximum Load Capacitance 100

ANALOG SPECIFICATIONS

Table 3. AVDD = 3.0 V, f
Parameter Min Typ Max Unit Notes
CDS
Allowable CCD Reset Transient Max Input Range before Saturation 1.0 Max CCD Black Pixel Amplitude
VARIABLE GAIN AMPLIFIER (VGA)
Max Output Range 2.0 Gain Control Resolution Gain Monotonicity Gain Range
Low Gain Max Gain
BLACK LEVEL CLAMP
Clamp Level Resolution Clamp Level
Min Clamp Level Max Clamp Level
A/D CONVERTER
Resolution 10 Differential Nonlinearity (DNL) No Missing Codes Full-Scale Input Voltage
VOLTAGE REFERENCE
Reference Top Voltage (REFT) Reference Bottom Voltage (REFB)
SYSTEM PERFORMANCE
Gain Accuracy
Low Gain (VGA Code = 22)
Max Gain (VGA Code = 994) Peak Nonlinearity, 500 mV Input Signal Total Output Noise Power Supply Rejection (PSR)
= 36 MHz, T
CLI
MIN
to T
, unless otherwise noted.
MAX
500
±100
mV See input signal characteristics in Table 1. V p–p mV
1024 Guaranteed
V p–p Steps
6 40
dB dB
255
0 255
Steps
LSB measured at ADC output.
LSB LSB LSB
±0.5 Guaranteed
2.0
Bits LSB
V
2.0
1.0
V V
6 40
0.1
0.3 40
Gain = (0.035 × Code) + 5.2 dB.
dB dB % 12 dB gain applied. LSB rms AC grounded input, 6 dB gain applied. dB Measured with step change on supply.
to T
MIN
, unless otherwise noted.
MAX
V
0.6 10 10 10
0.5 V
V
0.5 V
15 mA 30 mA pF
V
µA µA pF
V
Includes entire signal chain.
Rev. A | Page 4 of 64
AD9929

TIMING SPECIFICATIONS

Table 4. CL = 20 pF, AVDD = DVDD = DRVDD = 3.0 V, f
Parameter Symbol Min Typ Max Unit
MASTER CLOCK, CLI
CLI Clock Period t CLI High/Low Pulse Width 13.9 ns Delay from CLI Rising Edge to Internal Pixel Position 0 t
AFE CLAMP PULSES1
CLPOB Pulse Width 4 10 Pixels
AFE SAMPLE LOCATION1 (See Figure 17)
SHP Sample Edge to SHD Sample Edge TS1 20 25 Pixels
DATA OUTPUTS
Output Delay from DCLK1 Rising Edge (See Figure 19) tOD 9 ns Pipeline Delay from SHP/SHD Sampling (See Figure 70) 9 Cycles
SERIAL INTERFACE (See Figure 10 and Figure 11) tDV
Maximum SCK Frequency f SL to SCK Setup Time tLS 10 ns SCK to SL Hold Time tLH 10 ns SDATA Valid to SCK Rising Edge Setup tDS 10 ns SCK Falling Edge to SDATA Valid Hold tDH 10 ns SCK Falling Edge to SDATA Valid Read tOD 10 ns
1
Parameter is programmable.
= 36 MHz, unless otherwise noted.
CLI
27.8 ns
CONV
6 ns
CLIDLY
10 MHz
SCLK

VERTICAL DRIVER SPECIFICATIONS

Table 5. V1 to V4 load = no load, SUBCK load = no load, VDD = 3.0 V, VL = −7.5 V, VH1 = VH2 = +15.0 V, VM1 = VM2 = GND,
= 36 MHz, unless otherwise noted.
f
CLI
Parameter Symbol Min Typ Max Unit
LOGIC INPUTS
High Level Input Voltage VIH 0.8 (VDD) VDD V
Low Level Input Voltage VIL 0 0.3 (VDD) V Propagation Delays, Rise/Fall Times and Output Currents V1 and V3 Outputs (See Figure 43)
Delay Times
VL to VM1 t VM1 to VH1 t VH1 to VM1 t VM1 to VL t
Rise Times
VL to VM1 tR1 500 ns VM1 to VH1 tR2 500 ns
Fall Times
VH1 to VM1 tF1 500 ns VM1 to VL tF2 500 ns
Output Currents
V1 or V3 @ VL = −7.25 V 10.0 mA V1 or V3 @ VM1 = −0.25 V −5.0 mA V1 or V3 @ VM1 = +0.25 V 5.0 mA V1 or V3 @ VH1 = +14.75 V −7.2 mA
100 ns
PLM1
100 ns
PMH
50 ns
PHM
50 ns
PML1
Rev. A | Page 5 of 64
AD9929
Parameter Symbol Min Typ Max Unit
V2 and V4 Outputs (See Figure 43)
Delay Times
VL to VM2 t VM2 to VL t
Rise Times
VL to VM2 tR3 500 ns
Fall Times
VM2 to VL tF3 500 ns
Output Currents
V2 or V2 @ VL =−7.25 V 10.0 mA V2 or V4 @ VM2 = −0.25 V −5.0 mA
SUBCK Output (See Figure 44)
Delay Times
VL to VH2 t VH2 to VL t
Rise Times
VL to VH2 tR4 90 ns
Fall Times
VH2 to VL tF4 90 ns
Output Currents
SUBCK @ VL = −7.25 V 5.4 mA SUBCK @ VH2 = 14.75 V −4.0 mA
100 ns
PLM2
50 ns
PML2
100 ns
PLH
50 ns
PHL
Rev. A | Page 6 of 64
AD9929

TERMINOLOGY

Differential Nonlinearity (DNL)
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Thus every code must have a finite width. “No missing codes guaranteed to 12-bit resolution” indicates that all 4096 codes, respectively, must be present over all operating conditions.
Peak Nonlinearity
Peak nonlinearity, a full signal-chain specification, refers to the peak deviation of the output of the AD9929 from a true straight line. The point used as zero scale occurs 1/2 LSB before the first code transition. “Positive full scale” is defined as a level 1 and 1/2 LSB beyond the last code transition. The deviation is mea­sured from the middle of each particular output code to the true straight line. The error is then expressed as a percentage of the 2 V ADC full-scale signal. The input signal is always appro­priately gained up to fill the ADC’s full-scale range.
Total Output Noise
The rms output noise is measured using histogram techniques. The standard deviation of the ADC output codes is calculated in LSBs, and represents the rms noise level of the total signal chain at the specified gain setting. The output noise can be converted to an equivalent voltage, using the relationship 1 LSB = (ADC full scale/2 of the ADC. For the AD9929, 1 LSB is 0.5 mV.
Power Supply Rejection (PSR)
The PSR is measured with a step change applied to the supply pins. The PSR specification is calculated from the change in the data outputs for a given step change in the supply voltage.
N
codes) when N is the bit resolution
Rev. A | Page 7 of 64
AD9929
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter With Respect To Min Max Unit
VDD VDVSS VDVSS − 0.3 VDVSS + 4.0 V VL VDVSS VDVSS − 10.0 VDVSS + 0.3 V VH1, VH2 VDVSS VL –0.3 VL + 27.0 V VM1, VM2 VDVSS VL – 0.3 VL + 27.0 V AVDD AVSS −0.3 +3.9 V TCVDD TCVSS −0.3 +3.9 V HVDD HVSS −0.3 +3.9 V RGVDD RGVSS −0.3 +3.9 V DVDD DVSS −0.3 +3.9 V DRVDD DRVSS −0.3 +3.9 V RG Output RGVSS −0.3 RGVDD + 0.3 V H1 to H2 Output HVSS −0.3 HVDD + 0.3 V Digital Outputs DVSS −0.3 DVDD + 0.3 V Digital Inputs DVSS −0.3 DVDD + 0.3 V SCK, SL, SDATA DVSS −0.3 DVDD + 0.3 V REFT, REFB AVSS −0.3 AVDD + 0.3 V CCDIN AVSS −0.3 AVDD + 0.3 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Package Thermal Resistance
θJA = 61.0 °C/W
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulates on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. A | Page 8 of 64
AD9929
A
R
A

PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS

1 CORNE
INDEX ARE
Table 7. Pin Function Descriptions
Pin Mnemonic Type1 Description
D1 VD DIO
Vertical Sync Pulse (Input for Slave Mode, Output for Master Mode)
Horizontal Sync Pulse (Input for
D2 HD DIO
Slave Mode, Output for Master
Mode) B8 D0 DO Data Output A8 D1 DO Data Output A7 D2 DO Data Output B7 D3 DO Data Output A6 D4 DO Data Output B6 D5 DO Data Output B5 D6 DO Data Output A4 D7 DO Data Output B3 D8 DO Data Output A3 D9 DO Data Output B2 D10 DO Data Output A2 D11 DO Data Output A1 DCLK1 DO Data Clock Output B4 DRVSS P Data Output Driver Ground A5 DRVDD P Data Output Driver Supply
G9 SUBCK DO
D10 V1 DO
E9 V2 DO
G10 V3 DO
H9 V4 DO
H10 VH1 P
C10 VM1 P
F10 VM2 P
CCD Substrate Clock
(2 Level: VH2, VL)
CCD Vertical Transfer Clock
(3 Level: VH1, VM1, VL)
CCD Vertical Transfer Clock
(2 Level: VM2, VL)
CCD Vertical Transfer Clock
(3 Level: VH1, VM1, VL)
CCD Vertical Transfer Clock
(2 Level: VM2, VL)
Vertical Driver High Supply
(High Supply for V1 and V3)
Vertical Driver Midsupply
(Midsupply for V1 and V3)
Vertical Driver Midsupply
(Midsupply for V2 and V4) F9 VL P Vertical Driver Low Supply
E10 VH2 P
Vertical Driver High Supply for
SUBCK
1
AI = Analog Input, AO = Analog Output, DI = Digital Input,
DO = Digital Output, DIO = Digital Input/Output, P = Power.
12345678910
A B C D E F G H J K
Figure 2. Pin Configuration
AD9929
TOP VIEW
(Not to Scale)
Pin Mnemonic Type1 Description
B10 VDD P Vertical Driver Input Logic Supply J9 VDVSS P Vertical Driver Ground A9 VSUB DO CCD Substrate Bias G1 H1 DO CCD Horizontal Clock F1 H2 DO CCD Horizontal Clock E1 HVDD P H1 and H2 Driver Supply E2 HVSS P H1 and H2 Driver Ground F2 HVSS P H1 and H2 Driver Ground G2 HVSS P H1 and H2 Driver Ground H1 RG DO CCD Reset Gate Clock J1 RGVDD P RG Driver Supply H2 RGVSS P RG Driver Ground
C9
C1
K3 AVDD P Analog Supply for AFE J3 AVSS P Analog Ground for AFE J4 AVSS P Analog Ground for AFE J5 AVSS P Analog Ground for AFE J6 AVSS P Analog Ground for AFE J7 AVSS P Analog Ground for AFE J8 AVSS P Analog Ground for AFE K4 AVSS P Analog Ground for AFE K6 AVSS P Analog Ground for AFE J2 CLI DI Reference Clock Input K2 TCVDD P Analog Supply for Timing Core K1 TCVSS P Analog Ground for Timing Core K5 CCDIN AI CCD Input Signal K7 REFT AO Voltage Reference Top Bypass K8 REFB AO Voltage Reference Bottom Bypass K9 SDATA DI 3-Wire Serial Data Input K10 SL DI 3-Wire Serial Load Pulse J10 SCK DI 3-Wire Serial Clock D9 OUTCONT DI Output Control B1 MSHUT DO Mechanical Shutter Pulse C2 STROBE DO Strobe Pulse A10 DVDD P Digital Supply B9 DVSS P Digital Ground
04593-0-003
SYNC or VGATE
FD or DCLK2
DI DI DO DO
External System Sync Input VGATE Input
Field Designator Output DCLK2 Output
Rev. A | Page 9 of 64
AD9929
T

EQUIVALENT INPUT CIRCUITS

R
DVDD
DATA
HREE-
STATE
AVDD
AVSS AVSS
Figure 3. Circuit 1. CCDIN
04593-0-004
DRVDD
DOUT
RG, H1 H2
ENABLE
DVDD
330
DVSS
Figure 5. Circuit 3. Digital Inputs
HVDD OR
RGVDD
04593-0-006
OUTPUT
DVSS
Figure 4. Circuit 2. Digital Data Output
DRVSS
04593-0-005
HVSS OR
RGVSS
Figure 6. Circuit 4. H1 to H2, RG Drivers
04593-0-007
Rev. A | Page 10 of 64
AD9929
Table 8. Control Register Address Map
Bit
Address Content
0x00 (23:0) 24 000000 SW_RESET Software Reset = 000000 (Reset All Registers to Default ) 0x01 23 1 0 Unused
(22:21) 2 XSUBCKSUPPRESS
(20:18) 3 0 Unused Test Mode. Should Be Set = 0 17 1 1 HBLKMASK Masking Polarity for H1 During Blanking Period (0 = Low, 1 = High) 16 1 0 SYNCPOL External SYNC Active Polarity (0 = Active Low) (15:14) 2 0 Unused
13 1 0 XSUBCKMODE_HP
(12:10) 3 0 Unused
(9:8) 2 0 MSHUTPAT
7 1 0 MSHUT/VGATE_EN
6 1 0 Unused 5 1 1 CLPOB_CONT CLPOB Control (0 = CLPOB Off, 1 = CLPOB On) 4 1 1 CLPOB_MODE CLPOB CCD Region Control (See Table 19) (3:1) 3 0 Unused
0 1 0 VDMODE
0x02 (23:22) 2 0 Unused (21:16) 6 0x34 SHDLOC SHD Sample Location (15:14) 2 0 Unused (13:8) 6 0x18 SHPLOC SHP Sample Location (7:6) 2 0 DCLKPHASE DCLK Pulse Adjustment (5:0) 6 0x0B DOUTPHASE Data Output [11:0] Phase Adjustment 0x03 (23:17) 7 0x00 Unused 16 1 0 H1BLKRETIME Retimes the H1 HBLK to Internal Clock (15:14) 2 0 Unused (13:8) 6 0x00 H1POSLOC H1 Positive Edge Location (7:6) 2 0 Unused (5:0) 6 0x10 RGNEGLOC RG Negative Edge Location 0x04 (23:16) 8 0x80 REFBLACK Black Level Clamp 15 1 Unused
(14:12) 3 5 H2DRV
11 1 0 Unused
(10:8) 3 5 H1DRV
(7:3) 5 0x00 Unused
(2:0) 3 2 RGDRV
0x05 (23:10) 14 0x0000 Unused 9 1 0 AFESTBY AFE Standby (0 = Standby, 1 = Normal Operation) 8 1 0 DIGSTBY Digital Standby (0 = Standby, 1 = Normal Operation) (7:2) 6 00 Unused
1 1 0 OUTCONT_REG
0 1 1 OUTCONT_ENB
Width
Default Value Register Name Register Description
Suppress XSUBCK (00 = No Suppression, 01 = Suppress First XSUBCK After Last VSG Line Pulse, 10 = Suppress All XSUBCKs, Except Final XSUBCK, 11 = No Suppression)
High Precision Shutter Mode Operation (0 = Single Pulse, 1 = Multiple Pulse)
Selects MSHUT Pattern. (See Figure 51) (0 = Mshutpat0,1 = Mshutpat1,2 = Mshutpat2, 3 = Mshutpat3)
MSHUT Masking of VGATE Input (0 = MSHUT Does Not Mask VGATE, 1 = MSHUT Does Mask VGATE)
VD Synchronous/Asynchronous Mode Setting (0 = VD Synchronous, 1 = VD Asynchronous )
H2 Drive Strength (0 = Off, 1 = 4.3 mA, 2 = 8.6 mA, 3 = 12.9 mA, 4 = 17.2 mA, 5 = 21.5 mA, 6 = 25.8 mA, 7 = 30.1 mA)
H1 Drive Strength (0 = Off, 1 = 4.3 mA, 2 = 8.6 mA, 3 = 12.9 mA, 4 = 17.2 mA, 5 = 21.5 mA, 6 = 25.8 mA, 7 = 30.1 mA)
RG Drive Strength (0 = Off, 1 = 2.15 mA, 2 = 4.2 mA, 3 = 6.45 mA, 4 = 8.6 mA, 5 = 10.75 mA, 6 = 12.9 mA, 7 = 15.05 mA)
Internal OUTCONT Signal Control (0 = Digital Outputs Held at Fixed DC Level, 1 = Normal Operation)
External OUTCONT Signal Input Pin 43 Control (0 = Pin Enabled, 1 = Pin Disabled)
Rev. A | Page 11 of 64
AD9929
Bit
Address Content
0x0A 23 1 0 Unused 22 1 0 FDPOL FD Polarity Control (0 = Low, 1 = High) (21:16) 6 0x00 XVSGMASK XVSG Masking (See Table 25) (VD (15:12) 4 0 SYNCCNT External SYNC Setting SyncReg)1 (11:10) 2 0 SVREP_MODE Super Vertical Repetition Mode 9 1 0 HBLKEXT H Pulse Blanking Extend Control 8 1 0 HPULSECNT H Pulse Control During Blanking (7:4) 4 C SPATLOGIC SPAT Logic Setting (See Table 27) (3:2) 2 3 SVOS Second V Output Setting (10 = Ouput Repetition 1) 1 1 0 SPAT_EN SPAT Control (0 = SPAT Disable, 1 = SPAT Enable) 0 1 0 MODE Mode Control Bit (0 = Mode_A, 1 = Mode_B) 0x0B (23:22) 2 0 Unused 21 1 1 XSUBCK_EN XSUBCK Output Enable Control (0 = Disable, 1 = Enable) 20 1 1 XVSG_EN XVSG Output Enable Control (0 = Disable, 1 = Enable) (VD (19:17) 3 0 Unused SyncReg)1 16 1 0 STROBE_EN STROBE Output Control (0 = STROBE Output Held Low, 1 = STROBE Output Enabled) 15 1 0 Unused (14:12) 3 0 XSUBCKNUM_HP High Precision Shutter XSUBCLK Pulse Position/Number 11 1 0 Unused (10:0) 11 0x7FF XSUBCKNUM Total Number of XSUBCKs Per Field 0x0C (23:21) 3 0 Unused 20 1 0 MSHUTINIT MSHUT Initialize (1 = Forces MSHUT Low) (19:18) 2 0 Unused (VD 17 1 0 Unused SyncReg)1 16 1 0 MSHUTEN MSHUT Control (0 = MSHUT Held at Last State, 1 = MSHUT Output) 15 1 0 Unused (14:12) 3 0 MSHUTPOS_HP MSHUT Position during High Precision Operation 11 1 0 Unused (10:0) 11 0x000 MSHUTPOS MSHUT Position during Normal Operation 0x0D (23:17) 7 Unused 16 1 0 VSUBPOL VSUB Active Polarity (0 = Low, 1 = High) (VD (15:11) 5 Unused SyncReg)1 (10:0) 11 0x000 VSUBTOG VSUB Toggle Position. Active Starting Line in any Field. 0x0E (23:22) 2 0 Unused (21:20) 2 0 TESTMODE1 This Register Should Always Be Set = 0. (19:18) 2 0 Unused (VD 17 1 0 TESTMODE2 This Register Should Always Be Set = 0. SyncReg)1 16 1 0 TESTMODE3 This Register Should Always Be Set = 0. (15:10) 6 0x00 Unused (9:0) 10 0x000 VGAGAIN VGA Gain 0x0F (23:8) 16 0 Unused (7:0) 8 60 XVSGLEN_1 XVSGTOG_1 Pulse Width 0x17 (23:13) 11 Unused (12:0) 13 0x1FFF XV1SPAT_TOG1 XV1SPAT Toggle Position #1 (Mode_A Active) 0x18 (23:13) 11 Unused (12:0) 13 0x1FFF XV1SPAT_TOG2 XV1SPAT Toggle Position #2 (Mode_A Active) 0x19 (23:13) 11 Unused (12:0) 13 0x1FFF XV2SPAT_TOG1 XV2SPAT Toggle Position #1 (Mode_A Active) 0x1A (23:13) 11 Unused (12:0) 13 0x1FFF XV2SPAT_TOG2 XV2SPAT Toggle Position #2 (Mode_A active)
Width
Default Value Register Name Register Description
Rev. A | Page 12 of 64
AD9929
Bit
Address Content
Width
0x1B (23:13) 11 Unused (12:0) 13 0x1FFF XV3SPAT_TOG1 XV3SPAT Toggle Position #1 (Mode_A active) 0x1C (23:13)) 11 Unused (12:0 13 0x1FFF XV3SPAT_TOG2 XV3SPAT Toggle Position #2 (Mode_A active) 0x1D (23:13) 11 Unused (12:0) 13 0x1FFF XV4SPAT_TOG1 XV4SPAT Toggle Position #1 (Mode_A active) 0x1E (23:13) 11 Unused (12:0) 13 0x1FFF XV4SPAT_TOG2 XV4SPAT Toggle Position #2 (Mode_A Active) 0x1F (23:13) 11 Unused (12:0) 13 0x1FFF XV1SPAT_TOG1 XV1SPAT Toggle Position #1 (Mode_A Active) 0x20 (23:13) 11 Unused (12:0) 13 0x1FFF XV1SPAT_TOG2 XV1SPAT Toggle Position #2 (Mode_B Active) 0x21 (23:13) 11 Unused (12:0) 13 0x1FFF XV2SPAT_TOG1 XV2SPAT Toggle Position #1 (Mode_B Active) 0x22 (23:13) 11 Unused (12:0) 13 0x1FFF XV2SPAT_TOG2 XV2SPAT Toggle Position #2 (Mode_B Active) 0x23 (23:13) 11 Unused (12:0) 13 0x1FFF XV3SPAT_TOG1 XV3SPAT Toggle Position #1 (Mode_B Active) 0x24 (23:13) 11 Unused (12:0) 13 0x1FFF XV3SPAT_TOG2 XV3SPAT Toggle Position #2 (Mode_B Active) 0x25 (23:13) 11 Unused (12:0) 13 0x1FFF XV4SPAT_TOG1 XV4SPAT Toggle Position #1 (Mode_B Active) 0x26 (23:13) 11 Unused (12:0) 13 0x1FFF XV4SPAT_TOG2 XV4SPAT Toggle Position #2 (Mode_B Active) 0xD5 (23:4) 20 0x00000 Unused
3 1 1 DCLK2SEL
2 1 0 DCLK1SEL
(1:0) 2 0 CLKDIV Input Clock Divider (0 = No Division, 1 = 1/2, 2 = 1/3, 3 = 1/4) 0xD6 (23:1) 23 0x000000 Unused 0 1 1 SLAVE_MODE Operating Mode ( 0 = Master Mode, 1 = Slave Mode)
1
This register defaults to VD synchronous mode type at power-up. VD sync type registers do not get updated until the first falling edge of VD is asserted after the
register has been programmed. VD sync type registers can be programmed to be asynchronous registers by setting VDMODE = 1 (Address 0x01).
Default Value Register Name Register Description
DCLK2 Selector (0 = Select Internal FD Signal To Be Output on FD/DCLK2 Pin 16, 1 = Select CLI To Be Output on FD/DCLK2 Pin 16)
DCLK1 Selector (0 = Select DLL Version for DCLK1 Output, 1 = Select CLI for DCLK1 Output)
Rev. A | Page 13 of 64
AD9929
Table 9. System Register Address Map (Address 0x14)
Bit
Register Content
Sys_Reg(0) (31:24) 8 NA System_Reg_addr System Register Address is (Address 0x14)
Sys_Reg(1) (31:23) 9 37 VTPLEN0 Vertical Sequence #0: Length Between Repetitions
Sys_Reg(2) (31:24) 8 12 XV2TOG1POS0 [7:0] Vertical Sequence #0: XV2 Toggle Position 1
Sys_Reg(3) (31:29) 3 19 XV3TOG2POS0 [2:0] Vertical Sequence #0: XV3 Toggle Position 2
Sys_Reg(4) 31 1 1 XV3STARTPOL1 Vertical Sequence #1: XV3 Start Polarity
Sys_Reg(5) (31:26) 6 96 XV2TOG2POS1 [5:0] Vertical Sequence #1: XV2Toggle Position 2
Sys_Reg(6) 31 1 38 XV4TOG1POS1 [0] Vertical Sequence #1: XV4 Toggle Position 1
Sys_Reg(7) (31:23) 9 29 XV1TOG2POS2 Vertical Sequence #2: XV1 Toggle Position 2
Sys_Reg(8) (31:28) 4 0 XV3TOG1POS2 [3:0] Vertical Sequence #2: XV3 Toggle Position 1
(23:0) 24 NA System_Number_N
22 1 0 XV1STARTPOL0 Vertical Sequence #0: XV1 Start Polarity 21 1 0 XV2STARTPOL0 Vertical Sequence #0: XV2 Start Polarity 20 1 1 XV3STARTPOL0 Vertical Sequence #0: XV3 Start Polarity 19 1 1 XV4STARTPOL0 Vertical Sequence #0: XV4 Start Polarity (18:10) 9 0 XV1TOG1POS0 Vertical Sequence #0: XV1 Toggle Position 1
(9:1) 9 19
0 1 0 XV2TOG1POS0 [8]
(23:15) 9 31 XV2TOG2POS0 Vertical Sequence #0: XV2 Toggle Position 2 (14:6) 9 0 XV3TOG1POS0 Vertical Sequence #0: XV3 Toggle Position 1 (5:0) 6
(28:20) 9 12 XV4TOG1POS0 Vertical Sequence #0: XV4 Toggle Position 1 (19:11) 9 31 XV4TOG2POS0 Vertical Sequence #0: XV4 Toggle Position 2 (10:2) 9 104 VTPLEN1 Vertical Sequence #1: Length Between Repetitions 1 1 0 XV1STARTPOL1 Vertical Sequence #1: XV1 Start Polarity 0 1 0 XV2STARTPOL1 Vertical Sequence #1: XV2 Start Polarity
30 1 1 XV4STARTPOL1 Vertical Sequence #1: XV4 Start Polarity (29:21) 9 18 XV1TOG1POS1 Vertical Sequence #1: XV1 Toggle Position 1 (20:12) 9 58 XV1TOG2POS1 Vertical Sequence #1: XV1 Toggle Position 2 (11:3) 9 47 XV2TOG1POS1 Vertical Sequence #1: XV2 Toggle Position 1 (2:0) 3
(25:17) 9 0 XV3TOG1POS1 Vertical Sequence #1: XV3 Toggle Position 1 (16:8) 9 76 XV3TOG2POS1 Vertical Sequence #1: XV3 Toggle Position 2 (7:0) 8
(30:22) 9 105 XV4TOG2POS1 Vertical Sequence #1: XV4 Toggle Position 2 (21:13) 9 57 VTPLEN2 Vertical Sequence #2: Length between Repetitions 12 1 0 XV1STARTPOL2 Vertical Sequence #2: XV1 Start Polarity 11 1 0 XV2STARTPOL2 Vertical Sequence #2: XV2 Start Polarity 10 1 1 XV3STARTPOL2 Vertical Sequence #2: XV3 Start Polarity 9 1 1 XV4STARTPOL2 Vertical Sequence #2: XV4 Start Polarity (8:0) 9 0 XV1TOG1POS2 Vertical Sequence #2: XV1 Toggle Position 1
(22:14) 9 19 XV2TOG1POS2 Vertical Sequence #2: XV2 Toggle Position 1 (13:5) 9 48 XV2TOG2POS2 Vertical Sequence #2: XV2 Toggle Position 2 (4:0) 5
(27:19) 9 29 XV3TOG2POS2 Vertical Sequence #2: XV3 Toggle Position 2 (18:10) 9 19 XV4TOG1POS2 Vertical Sequence #2: XV4 Toggle Position 1 (9:1) 9 48 XV4TOG2POS2 Vertical Sequence #2: XV4 Toggle Position 2 0 1 – Unused
Width
Default (Decimal)
Register Name Register Description
Number N Register Writes (0x000000 = Write All Registers)
XV1TOG2POS0 Vertical Sequence
XV3TOG2POS0 [8:3]
XV2TOG2POS1 [8:6]
XV4TOG1POS1 [8:1]
XV3TOG1POS2 [8:4]
#0: XV1 Toggle Position 2
Rev. A | Page 14 of 64
AD9929
Bit
Register Content
Width
Sys_Reg(9) (31:23) 9 89 VTPLEN3 Vertical Sequence #3: Length Between Repetitions
22 1 0 XV1STARTPOL3 Vertical Sequence #3: XV1 Start Polarity 21 1 0 XV2STARTPOL3 20 1 1 XV3STARTPOL3 Vertical Sequence #3: XV3 Start Polarity 19 1 1 XV4STARTPOL3 Vertical Sequence #3: XV4 Start Polarity (18:10) 9 0 XV1TOG1POS3 Vertical Sequence #3: XV1 Toggle Position 1 (9:1) 9 60 XV1TOG2POS3 Vertical Sequence #3: XV1 Toggle Position 2 0 1
Sys_Reg(10) (31:24) 8 30 XV2TOG1POS3 [7:0] Vertical Sequence #3: XV2 Toggle Position 1
(23:15) 9 90 XV2TOG2POS3 Vertical Sequence #3: XV2 Toggle Position 2 (14:6) 9 0 XV3TOG1POS3 Vertical Sequence #3: XV3 Toggle Position 1 (5:0) 6
Sys_Reg(11) (31:29) 3 60 XV3TOG2POS3 [2:0] Vertical Sequence #3: XV3 Toggle Position 2
(28:20) 9 30 XV4TOG1POS3 Vertical Sequence #3: XV4 Toggle Position 1 (19:11) 9 90 XV4TOG2POS3 Vertical Sequence #3: XV4 Toggle Position 2 (10:1) 10 0 HBLKHPOS H1 Pulse ON Position during Blanking Period 0 1 – Unused
Sys_Reg(12) (31:20) 12 2283 HDLEN
(19:10) 10 130 HLEN 10-Bit HL Counter Values (9:1) 9 100 OLEN 9-Bit OL Counter Value 0 1
Sys_Reg(13) (31:24) 8 0 BLLEN [7:0] 9-bit BL Counter Value
(23:16) 8 118 MSHUTLEN MSHUT Sequence Length (15:5) 11 1048 XVSGTOG_0 XVSGTOG_0 Toggle Position (4:0) 5
Sys_Reg(14) (31:26) 6 1198 XVSGTOG_1 [5:0] XVSG TOG_1 Toggle Position
(25:18) 8 60 XVSGLEN_0 XVSGTOG_0 Pulse Width (17:9) 9 19 XSUBCK1TOG1 XSUBCK1 1st Toggle Position (8:0) 9 88 XSUBCK1TOG2 XSUBCK1 2nd Toggle Position
Sys_Reg(15) (31:23) 9 19 XSUBCK2TOG1 XSUBCK2 1st Toggle Position
(22:14:) 9 88 XSUBCK2TOG2 XSUBCK2 2nd Toggle Position (13:2) 12 2243 CLPTOG1 (1:0) 2
Sys_Reg(16) (31:22) 10 2278 CLPTOG2 [10:0]
(21:18) 4 9 VDRISE VD Toggle Position 1 (17:8) 10 120 HDRISE HD Toggle Position 2 (7:0) 8 – Unused
1
Register value must be a gray code number (see Gray Code Registers section).
Default (Decimal)
Register Name Register Description
Vertical Sequence #3: XV2 Start Polarity
XV2TOG1POS3 [8]
XV3TOG2POS3 [8:3]
1
BLLEN [8]
XVSGTOG_1 [10:6]
1
CLPOB Toggle Position 1 (Gray Code Number)
1
CLPTOG2 [11]
1
CLPOB Toggle Position 2 (Gray Code Number)
12-bit Gray Code HD Counter Value (Gray Code Number)
Rev. A | Page 15 of 64
AD9929
Table 10. Mode_A Register Map (Address 0x15)
Register Content
Mode_Reg(0) (31:24) 8 NA Mode_A_addr Mode_A Address Is (Address 0x15) (23:0) 24 NA Mode_A_Number_N Number N Register Writes (0x000000 = Write All Registers ) Mode_Reg(1) (31:21) 11 262 VDLEN VD Counter Value (20:9) 12 1139 HDLASTLEN1 Number of Pixels in Last Line (Gray Code Number) 8 1 1 XVSGSEL1 7 1 0 XVSGSEL2 (6:0) 7 0 XVSGACTLINE XVSG Active Line Mode_Reg(2) 31 1 0 SUBCKSEL Select one of two SUBCK patterns (30:28) 3 0 VTPSEQPTR0 Vertical Transfer Sequence Region 0 (27:25) 3 0 VTPSEQPTR1 Vertical Transfer Sequence Region 1 (24:22) 3 0 VTPSEQPTR2 Vertical Transfer Sequence Region 2 (21:19) 3 0 VTPSEQPTR3 Vertical Transfer Sequence Region 3 (18:16) 3 0 VTPSEQPTR4 Vertical Transfer Sequence Region 4 15 1 1 CLPEN0 CLPOB Output Control 1 14 1 0 CLPEN1 CLPOB Output Control 2 13 1 0 CLPEN2 CLPOB Output Control 3 12 1 0 CLPEN3 CLPOB Output Control 4 11 1 0 CLPEN4 CLPOB Output Control 5 (10:3) 8 0 SCP1 Sequence Change Position 1 (2:0) 3 SCP2 Mode_Reg(3) (31:27) 5 0 SCP2 Sequence Change Position 2 (26:19) 8 0 SCP3 Sequence Change Position 3 (18:11) 8 0 SCP4 Sequence Change Position 4 (10:9) 2 0 VTPSEL0 Vertical Pattern Selection 0 (8:7) 2 0 VTPSEL1 Vertical Pattern Selection 1 (6:5) 2 0 VTPSEL2 Vertical Pattern Selection 2 (4:3) 2 0 VTPSEL3 Vertical Pattern Selection 3 (2:0) 3 3 VTPREP0 Number of Vertical Pulse Repetitions for Pattern 0 Mode_Reg(4) (31:29) 3 0 VTPREP1 Number of Vertical Pulse Repetitions for Pattern 1 (28:26) 3 0 VTPREP2 Number of Vertical Pulse Repetitions for Pattern 2 (25:23) 3 0 VTPREP3 Number of Vertical Pulse Repetitions for Pattern 3 (22:12) 11 0 SVREP0 Vertical Sweep Repetition Number for CCD Region 0 (11:1) 11 0 SVREP3 Vertical Sweep Repetition Number for CCD Region 3 0 1 Unused Mode_Reg(5) (31:19) 13 988 XV1SPAT_TOG3 XV1SPAT Toggle Position 3 (18:6) 13 1138 XV1SPAT_TOG4 XV1SPAT Toggle Position 4 (5:0) 6 XV2SPAT_TOG3 Mode_Reg(6) (31:25) 7 1078 XV2SPAT_TOG3 XV2SPAT Toggle Position 3 (24:12) 13 1168 XV2SPAT_TOG XV2SPAT Toggle Position 4 (11:0) 12 XV3SPAT_TOG3 Mode_Reg(7) 31 1 958 XV3SPAT_TOG3 XV3SPAT Toggle Position 3 (30:18) 13 1138 XV3SPAT_TOG4 XV3SPAT Toggle Position 4 (17:5) 13 988 XV4SPAT_TOG3 XV4SPAT Toggle Position 3 (4:0) 5 XV4SPAT_TOG4 Mode_Reg(8) (31:24) 8 1228 XV4SPAT_TOG4 XV4SPAT Toggle Position 4 (23:11) 13 1392 SECONDVPOS Second V Pattern Output Position (10:9) 2 3 VPATSECOND Selected Second V-Pattern Group for VSG Active Line (8:0) 9 Unused
Bit Width
1
Register value must be a gray code number (see Gray Code Registers section).
Default (Decimal) Register Name Register Description
XVSG1 Sequence Selector (See XVSG2 Sequence Selector (See
Table 35)
Table 35)
Rev. A | Page 16 of 64
AD9929
Table 11. Mode_B Register Map (Address 0x16)
Bit
Register Content
Width
Mode_Reg(0) (31:24) 8 NA Mode_B_addr Mode_B Address is (Address 0x16) (23:0) 24 NA Mode_B_Number_N Number N Register Writes (0x000000 = Write All Registers) Mode_Reg(1) (31:21) 11 262 VDLEN VD Counter Value (20:9) 12 1139 HDLASTLEN1 Number of Pixels in Last Line (Gray Code Number) 8 1 1 XVSGSEL1 XVSG1 Sequence Selector (See Table 35) 7 1 0 XVSGSEL2 XVSG2 Sequence Selector (See Table 35) (6:0) 7 0 XVSGACTLINE XVSG Active Line Mode_Reg(2) 31 1 0 SUBCKSEL Select One of Two SUBCK Patterns (30:28) 3 0 VTPSEQPTR0 Vertical Transfer Sequence Region 0 (27:25) 3 0 VTPSEQPTR1 Vertical Transfer Sequence Region 1 (24:22) 3 0 VTPSEQPTR2 Vertical Transfer Sequence Region 2 (21:19) 3 0 VTPSEQPTR3 Vertical Transfer Sequence Region 3 (18:16) 3 0 VTPSEQPTR4 Vertical Transfer Sequence Region 4 15 1 1 CLPEN0 CLPOB Output Control 1 14 1 0 CLPEN1 CLPOB Output Control 2 13 1 0 CLPEN2 CLPOB Output Control 3 12 1 0 CLPEN3 CLPOB Output Control 4 11 1 0 CLPEN4 CLPOB Output Control 5 (10:3) 8 0 SCP1 Sequence Change Position 1 (2:0) 3 SCP2 Mode_Reg(3) (31:27) 5 0 SCP2 Sequence Change Position 2 (26:19) 8 0 SCP3 Sequence Change Position 3 (18:11) 8 0 SCP4 Sequence Change Position 4 (10:9) 2 0 VTPSEL0 Vertical Pattern Selection 0 (8:7) 2 0 VTPSEL1 Vertical Pattern Selection 1 (6:5) 2 0 VTPSEL2 Vertical Pattern Selection 2 (4:3) 2 0 VTPSEL3 Vertical Pattern Selection 3 (2:0) 3 3 VTPREP0 Number of VTP0 Pulse Repetitions for Pattern 0 Mode_Reg(4) (31:29) 3 0 VTPREP1 Number of VTP1 Pulse Repetitions for Pattern 1 (28:26) 3 0 VTPREP2 Number of VTP2 Pulse Repetitions for Pattern 2 (25:23) 3 0 VTPREP3 Number of VTP0 Pulse Repetitions for Pattern 3 (22:12) 11 0 SVREP0 Vertical Sweep Repetition Number for CCD Region 0 (11:1) 11 0 SVREP3 Vertical Sweep Repetition Number for CCD Region 3 0 1 – Unused Mode_Reg(5) (31:19) 13 988 XV1SPAT_TOG3 XV1SPAT Toggle Position 3 (18:6) 13 1138 XV1SPAT_TOG4 XV1SPAT Toggle Position 4 (5:0) 6 XV2SPAT_TOG3 Mode_Reg(6) (31:25) 7 1078 XV2SPAT_TOG3 XV2SPAT Toggle Position 3 (24:12) 13 XV2SPAT_TOG4 XV2SPAT Toggle Position 4 (11:0) 12 XV3SPAT_TOG3 Mode_Reg(7) 31 1 958 XV3SPAT_TOG3 XV3SPAT Toggle Position 3 (30:18) 13 1138 XV3SPAT_TOG4 XV3SPAT Toggle Position 4 (17:5) 13 988 XV4SPAT_TOG3 XV4SPAT Toggle Position 3 (4:0) 5 XV4SPAT_TOG4 Mode_Reg(8) (31:24) 8 1228 XV4SPAT_TOG4 XV4SPAT Toggle Position 4 (23:11) 13 1392 SECONDVPOS Second V Pattern Output Position (10:9) 2 3 VPATSECOND Selected Second V-Pattern Group for VSG Active Line (8:0) 9 – Unused
1
Register value must be a gray code number (See Gray Code Registers section).
Default (Decimal) Register Name Register Description
Rev. A | Page 17 of 64
AD9929

SYSTEM OVERVIEW

Figure 7 shows the typical system block diagram for the AD9929. The CCD output is processed by the AD9929’s AFE circuitry, which consists of a CDS, VGA, black level clamp, and an A/D converter. The digitized pixel information is sent to the digital image processor chip, which performs post-processing and compression. To operate the CCD, all CCD timing para­meters are programmed into the AD9929 from the system microprocessor through the 3-wire serial interface. From the system master clock, CLI, provided by the image processor or external crystal, the AD9929 generates all of the CCDs hori­zontal and vertical clocks and all internal AFE clocks. External synchronization is provided by a SYNC pulse from the
CCD
CCDIN
SUBCK
V1 V2 V3 V4
VERTICAL
DRIVER
AD9929
XVSG1 XVSG2
XSUBCK
microprocessor, which resets internal counters and resyn­chronizes the VD and HD outputs.
The H-drivers for H1 to H2, and RG are included in the AD9929, allowing these clocks to be directly connected to the CCD. An H-drive voltage of up to 3.6 V is supported. The AD9929 also includes the CCD vertical driver circuits for creating the V1 to V4, and SUBCK outputs that allow direct connection to the CCD. The AD9929 also provides program­mable MSHUT and STROBE outputs, which may be used to trigger mechanical shutter and strobe (flash) circuitry.
XV1 XV2 XV3 XV4
TIMING
GENERATOR
DOUT [11:0]
DCLK1
FD
HD, VD
VGATE
CLI
DIGITAL
IMAGE
PROCESSING
ASIC
H1 H2
RG
VSUB
SYNC
SERIAL
Figure 7. Typical System Block Diagram, Master Mode
INTERFACE
µP
OUTCONT
MSHUT
STROBE
04593-0-008
Rev. A | Page 18 of 64
AD9929

THEORY OF OPERATION

MODES OF OPERATION

Slave and Master Mode Operation

The AD9929 can be operated in either slave or master mode. It defaults to slave mode operation at power-up. The SLAVE_MODE register (Address 0xD6) can be used to configure the AD9929 into master mode by setting SLAVE_MODE = 0.

Slave Mode Operation

While operating in slave mode, VD, HD, and VGATE are pro­vided externally from the image processor. VGATE is input active high on Pin 45.
Unlike master mode operation, there is a 7 CLI clock cycle delay from the falling edge of HD to when the 12-bit gray code H counter is reset to 0 (See Figure 62).

Master Mode Operation

While operating in master mode, VD and HD are outputs and the SYNC/VGATE pin is configured for an external SYNC input. Master mode is selected by setting register SLAVE_MODE (Address 0x06) = 0.

HORIZONTAL AND VERTICAL COUNTERS

Figure 8 and Figure 9 show the horizontal and vertical counter dimensions for the AD9929. All internal horizontal and vertical clocking is programmed using these dimensions to specify line and pixel locations.

CLI INPUT CLOCK DIVIDER

The AD9929 provides the capability of dividing the CLI input clock using Register CLKDIV (Address 0xD5). The following procedure must be followed to reset the AFE and digital circuits when CLKDIV is reprogrammed back to 0 from CLKDIV = 1, 2, or 3. The DCLK1 output becomes unstable if this procedure isn’t followed.
Step 1: CLKDIV = 1, 2, or 3 (CLI divided by setting value) Step 2: CLKDIV = 0 (CLI reprogrammed for no division) Step 3: DIGSTBY = AFESTBY = 0 Step 4: DIGSTBY = AFESTBY = 1
MAX VD LENGTH IS 2048 LINES
MAXIMUM FIELD DIMENSIONS
12-BIT HORIZONTAL COUNTER = 4096 PIXELS MAX
11-BIT VERTICAL COUNTER = 2048 LINES MAX
Figure 8. Horizontal and Vertical Counters

GRAY CODE REGISTERS

See Table 12 for a list of the AD9929 registers requiring gray code values. The following is an example of applying a gray code number for HDLEN using a line length of 1560 pixels:
HDLEN = (1560–4) = 1556 HDLEN Register section).
Where 1556
= Address 0x51E
10
The gray code value of Address 0x51E would be programmed in the 12-bit HDLEN register.
Table 12. AD9929 Gray Code Registers
Register Name Register Type
HDLEN System_Reg(12) CLPOBTOG1 System_Reg(15) CLPOBTOG2 System_Reg(16) HDLASTLEN Mode_Reg(1)
(see Special Note about the
10
04593-0-009
VD
HD
CLI
MAX HD LENGTH IS 4095 PIXELS
Figure 9. Maximum VD/HD Dimensions
04593-0-010
Rev. A | Page 19 of 64
AD9929
S
A

SERIAL INTERFACE TIMING

All of the internal registers of the AD9929 are accessed through a 3-wire serial interface. The 3-wire interface consists of a clock (SCK), serial load (SL), and serial data (SDATA).
The AD9929 has three different register types that are confi­gured by the 3-wire serial interface. As described in Table 13, the three register types are control registers, system registers, and mode registers.
Table 13. Types of Serial Interface Registers
Register Address Number of Registers
Control
0x00 to 0xD6
System 0x14
Mode_A 0x15
Mode_B 0x16

Registers

Control Register Serial Interface
The control register 3-wire interface timing requirements are shown in Figure 10. Control data must be written into the device one address at a time due to the noncontiguous address spacing for the control registers. This requires writing 8 bits of address data followed by 24 bits of configuration data between each active low period of SL for each address. The SL signal must be kept high for at least one full SCK cycle between successive writes to control registers.
System Register Serial Interface
There are seventeen 32-bit system registers that are accessed sequentially at Address 0x14, beginning with Sys_Reg [0]. When
24-Bit Registers at Each Address. Not All Addresses Are Used. See Table 8.
Seventeen 32-Bit System Registers at Address 0x14. See Table 9.
Eight 32-bit Mode_A Registers at Address 0x15. See Table 10.
Eight 32-Bit Mode_B Registers at Address 0x16. See Table 11.
writing to the system registers, SDATA contains the 8-bit Address 0x14, followed by Number Writes N [23:0], followed by the Sys_Reg [31:0] data, as shown in Figure 5. The system register map is listed in Table 9.
The value of the Number Writes N [23:0] word determines one of two options when writing to the system registers. If Number Writes N[23:0] = 0x000000, the device enters a mode where it expects all 17 Sys_Reg [31:0] data-words to be clocked in before SL is asserted high. If the Number Writes N [23:0] is decoded as some number N other than 0x000000, then the device expects N number of registers to be programmed, where N equals the value of Number Writes N [23:0]. For example: if Number Writes N[23:0] = 0x000004, the device would expect data to be provided for Sys_Reg [3:0]. In all cases, the system registers are written beginning with Sys_Reg [0], regardless of the value of Number Writes N [23:0]. Note that SL can be brought high or low during access to system registers, as shown in Figure 11.
Mode_A and Mode_B Register Serial Interface
There are eight 32-bit Mode_A and eight 32-bit Mode_B registers that get accessed sequentially at Address 0x15 and Address 0x16, respectively. Mode_A and Mode_B registers are written to in exactly the same way as the system registers, as explained previously. The mode registers are listed in Table 10 and Table 11.
To change operation between Mode_A and Mode_B, set the 1-bit mode register (Address 0x0A). The desired Mode_A (Address 0x15) or Mode_B (Address 0x16) data must be programmed into the Mode_A or Mode_B registers before changing the mode bit.
DAT
SCK
SL
A7 A4 A3 A2 A1 A0
t
DS
1234567891011 29303132
t
NOTES
1. SDATA BITS ARE INTERNALLY LATCHED ON THE RISING EDGES OF SCK.
2. SYSTEM UPDATE OF LOADED REGISTERS OCCURS ON SL RISING EDGE.
3. THIS TIMING PATTERN MUST BE WRITTEN FOR EACH REGISTER WRITE WITH SL REMAINING HIGH FOR AT LEAST ONE FULL SCK PERIOD BEFORE ASSERTING SL LOW AGAIN FOR THE NEXT REGISTER WRITE.
A5A6 D22 D21 D3 D2 D1
t
DH
LS
Figure 10. 3-Wire Serial Interface Timing for Control Registers
Rev. A | Page 20 of 64
D23
....
....
D0
t
LH
04593-0-011
Loading...
+ 44 hidden pages