ANALOG DEVICES AD9854 Service Manual

CMOS 300 MSPS Quadrature

FEATURES

300 MHz internal clock rate FSK, BPSK, PSK, chirp, AM operation Dual integrated 12-bit digital-to-analog converters (DACs) Ultrahigh speed comparator, 3 ps rms jitter Excellent dynamic performance
80 dB SFDR at 100 MHz (±1 MHz) A 4× to 20× programmable reference clock multiplier Dual 48-bit programmable frequency registers Dual 14-bit programmable phase offset registers 12-bit programmable amplitude modulation and
on/off output shaped keying function Single-pin FSK and BPSK data interfaces PSK capability via input/output interface Linear or nonlinear FM chirp functions with single-pin
frequency hold function Frequency-ramped FSK <25 ps rms total jitter in clock generator mode
REFERENCE
CLOCK IN
DIFF/SINGLE
SELECT
FSK/BPSK/HOLD
DATA IN
BIDIRECT IONAL
INTERNAL /EXT ERNAL
I/O UPDATE CL OCK
REF CLK
BUFFER
SYSTEM
CLOCK
DEMUX
2
FREQUENCY
MODE SELECT
SYSTEM
CLOCK
INT
4× TO 20×
REF CLK
MULTIPLIER
MUX
3
DELTA
FREQUENCY
RATE TIMER
48 48 48 14
SYSTEM
CLOCK
DELTA
WORD
CK
Q
D
EXT
OUT
SYSTEM CLOCK
FREQUENCY
ACCUMULATOR
MUX
FREQUENCY
TUNING WORD 1
÷2
INTERNAL
PROGRAMMABLE
UPDATE CLOCK

FUNCTIONAL BLOCK DIAGRAM

48
48
ACC 1
48
MUX
FREQUENCY
TUNING WORD 2
PROGRAMMING REGISTERS
SYSTEM CLOCK
Automatic bidirectional frequency sweeping Sin(x)/x correction Simplified control interfaces
10 MHz serial 2- or 3-wire SPI compatible 100 MHz parallel 8-bit programming
3.3 V single supply Multiple power-down functions Single-ended or differential input reference clock Small, 80-lead LQFP or TQFP with exposed pad

APPLICATIONS

Agile, quadrature LO frequency synthesis Programmable clock generators FM chirp source for radar and scanning systems Test and measurement equipment Commercial and amateur RF exciters
DDS CORE
17
17
ACC 2
PHASE
ACCUMULATO R
MUX
FIRST 14-BIT
PHASE/OFFSET
WORD
READ WRITE SERIAL/
Figure 1.
14
AD9854
PHASE-TO -
SYSTEM
SECOND 14-BIT
PHASE/OFFSET
12
I
12
AMPLITUDE
CONVERTE R
Q
CLOCK
14
WORD
PARALLEL
SELECT
DIGITAL MULTIPLIERS
INV
SINC
FILTER
MUX
INV
SINC
FILTER
MUX
PROGRAMMABLE
AMPLIT UDE AND
RATE CONTROL
12
12
I AND Q 12-BIT
AM MODUL ATIO N
I/O PORT BUFFERS
6-BIT ADDRESS
OR SERIAL
PROGRAMMING
LINES
12
BUS
Complete DDS
AD9854
12
12-BIT
I
DAC
12-BIT Q DAC OR CONTROL
DAC
COMPARATOR
MASTER
RESET
SYSTEM
CLOCK
12
12-BIT DC
CONTROL
MUX
12
MUX
8-BIT
PARALLEL
LOAD
ANALOG OUT
DAC R
ANALOG OUT
ANALOG IN
CLOCK OUT
OSK
GND
+V
S
SET
0636-001
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved.
AD9854

TABLE OF CONTENTS

Features.............................................................................................. 1
Programming the AD9854............................................................ 32
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
General Description ......................................................................... 4
Specifications..................................................................................... 5
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
Explanation of Test Levels........................................................... 8
ESD Caution.................................................................................. 8
Pin Configuration and Function Descriptions............................. 9
Typical Performance Characteristics ........................................... 12
Typical Applications....................................................................... 16
Theory of Operation ...................................................................... 19
Modes of Operation ................................................................... 19
Using the AD9854 .......................................................................... 29
MASTER RESET........................................................................ 32
Parallel I/O Operation............................................................... 34
Serial Port I/O Operation.......................................................... 34
General Operation of the Serial Interface................................... 36
Instruction Byte.......................................................................... 37
Serial Interface Port Pin Descriptions..................................... 37
Notes on Serial Port Operation ................................................ 37
MSB/LSB Transfers......................................................................... 38
Control Register Description.................................................... 38
Power Dissipation and Thermal Considerations....................... 40
Thermal Impedance................................................................... 40
Junction Temperature Considerations .................................... 40
Evaluation of Operating Conditions........................................ 41
Thermally Enhanced Package Mounting Guidelines................ 41
Evaluation Board............................................................................ 42
Internal and External Update Clock ........................................ 29
On/Off Output Shaped Keying (OSK) .................................... 29
I and Q DACs.............................................................................. 30
Control DAC............................................................................... 30
Inverse Sinc Function ................................................................31
REFCLK Multiplier.................................................................... 31
Evaluation Board Instructions.................................................. 42
General Operating Instructions ............................................... 42
Using the Provided Software .................................................... 44
Support ........................................................................................ 44
Outline Dimensions....................................................................... 52
Ordering Guide .......................................................................... 52
Rev. E | Page 2 of 52
AD9854

REVISION HISTORY

7/07—Rev. D to Rev. E
Changed AD9854ASQ to AD9854ASVZ ....................... Universal
Changed AD9854AST to AD9854ASTZ.........................Universal
Changes to General Description .....................................................4
Changes to Table 1 Endnotes...........................................................7
Changes to Absolute Maximum Ratings Section..........................8
Changes to Power Dissipation Section.........................................40
Changes to Thermally Enhanced Package Mounting
Guidelines Section......................................................................41
Changes to Figure 64 ......................................................................47
Changes to Outline Dimensions ...................................................52
Changes to Ordering Guide...........................................................52
11/06—Rev. C to Rev. D
Changes to General Description Section .......................................4
Changes to Endnotes in the Power Supply Parameter .................7
Changes to Absolute Maximum Ratings Section..........................8
Added Endnotes to Table 2..............................................................8
Changes to Figure 50 ......................................................................29
Changes to Power Dissipation Section.........................................39
Changes to Figure 68 ......................................................................45
Updated Outline Dimensions........................................................51
Changes to Ordering Guide...........................................................51
9/04—Rev. B to Rev. C
Updated Format.................................................................. Universal
Changes to Table 1 ............................................................................4
Changes to Footnote 2......................................................................7
Changes to Explanation of Test Levels Section .............................8
Changes to Theory of Operation Section ....................................17
Changes to Single Tone (Mode 000) Section...............................17
Changes to Ramped FSK (Mode 010) Section............................18
Changes to Basic FM Chirp Programming Steps Section.........23
Changes to Figure 50 ......................................................................27
Changes to Evaluation Board Operating Instructions Section.40 Changes to Filtered IOUT1 and the Filtered IOUT2 Section ...41
Changes to Using the Provided Software Section.......................42
Changes to Figure 68 ......................................................................45
Changes to Figure 69 ......................................................................46
Updated Outline Dimensions........................................................50
Changes to Ordering Guide...........................................................50
3/02—Rev. A to Rev. B
Updated Format ................................................................. Universal
Renumbered Figures and Tables ...................................... Universal
Changes to General Description Section.......................................1
Changes to Functional Block Diagram .......................................... 1
Changes to Specifications Section ..................................................4
Changes to Absolute Maximum Ratings Section .........................7
Changes to Pin Function Descriptions ..........................................8
Changes to Figure 3 ........................................................................10
Deleted two Typical Performance Characteristics Graphs........11
Changes to Inverse SINC Function Section ................................28
Changes to Differential REFCLK Enable Section.......................28
Changes to Figure 52 ......................................................................30
Changes to Parallel I/O Operation Section .................................32
Changes to General Operation of the Serial Interface Section .33
Changes to Figure 57 ......................................................................34
Replaced Operating Instructions Section ....................................40
Changes to Figure 68 ......................................................................44
Changes to Figure 69 ......................................................................45
Changes to Customer Evaluation Board Table............................46
Rev. E | Page 3 of 52
AD9854

GENERAL DESCRIPTION

The AD9854 digital synthesizer is a highly integrated device that uses advanced DDS technology, coupled with two internal high speed, high performance quadrature DACs to form a digitally programmable I and Q synthesizer function. When referenced to an accurate clock source, the AD9854 generates highly stable, frequency-phase, amplitude-programmable sine and cosine outputs that can be used as an agile LO in communications, radar, and many other applications. The innovative high speed DDS core of the AD9854 provides 48-bit frequency resolution (1 Hz tuning resolution with 300 MHz SYSCLK). Maintaining 17 bits ensures excellent SFDR.
The circuit architecture of the AD9854 allows the generation of simultaneous quadrature output signals at frequencies up to 150 MHz, which can be digitally tuned at a rate of up to 100 million new frequencies per second. The sine wave output (externally filtered) can be converted to a square wave by the internal comparator for agile clock generator applications. The device provides two 14-bit phase registers and a single pin for BPSK operation.
For higher-order PSK operation, the I/O interface can be used for phase changes. The 12-bit I and Q DACs, coupled with the innovative DDS architecture, provide excellent wideband and narrow-band output SFDR. The Q DAC can also be configured
as a user-programmable control DAC if the quadrature function is not desired. When configured with the comparator, the 12-bit control DAC facilitates static duty cycle control in high speed clock generator applications.
Two 12-bit digital multipliers permit programmable amplitude modulation, on/off output shaped keying, and precise amplitude control of the quadrature output. Chirp functionality is also included to facilitate wide bandwidth frequency sweeping applications. The programmable 4× to 20× REFCLK multiplier circuit of the AD9854 internally generates the 300 MHz system clock from an external lower frequency reference clock. This saves the user the expense and difficulty of implementing a 300 MHz system clock source.
Direct 300 MHz clocking is also accommodated with either single­ended or differential inputs. Single-pin conventional FSK and the enhanced spectral qualities of ramped FSK are supported. The AD9854 uses advanced 0.35 µm CMOS technology to provide a high level of functionality on a single 3.3 V supply.
The AD9854 is pin-for-pin compatible with the AD9852 single­tone synthesizer. It is specified to operate over the extended industrial temperature range of −40°C to +85°C.
Rev. E | Page 4 of 52
AD9854

SPECIFICATIONS

VS = 3.3 V ± 5%, R external reference clock frequency = 20 MHz with REFCLK multiplier enabled at 10× for AD9854ASTZ, unless otherwise noted.
Table 1.
AD9854ASVZ AD9854ASTZ Parameter Temp
REFERENCE CLOCK INPUT CHARACTERISTICS
Internal System Clock Frequency Range
REFCLK Multiplier Enabled Full VI 20 300 20 200 MHz REFCLK Multiplier Disabled Full VI DC 300 DC 200 MHz
External Reference Clock Frequency Range
REFCLK Multiplier Enabled Full VI 5 75 5 50 MHz
REFCLK Multiplier Disabled Full VI DC 300 DC 200 MHz Duty Cycle 25°C IV 45 50 55 45 50 55 % Input Capacitance 25°C IV 3 3 pF Input Impedance 25°C IV 100 100 kΩ Differential Mode Common-Mode Voltage Range
Minimum Signal Amplitude
Common-Mode Range 25°C IV 1.6 1.75 1.9 1.6 1.75 1.9 V VIH (Single-Ended Mode) 25°C IV 2.3 2.3 V VIL (Single-Ended Mode) 25°C IV 1 1 V
DAC STATIC OUTPUT CHARACTERISTICS
Output Update Speed Full I 300 200 MSPS Resolution 25°C IV 12 12 Bits I and Q Full-Scale Output Current 25°C IV 5 10 20 5 10 20 mA I and Q DAC DC Gain Imbalance Gain Error 25°C I −6 +2.25 −6 +2.25 % FS Output Offset 25°C I 2 2 μA Differential Nonlinearity 25°C I 0.3 1.25 0.3 1.25 LSB Integral Nonlinearity 25°C I 0.6 1.66 0.6 1.66 LSB Output Impedance 25°C IV 100 100 kΩ Voltage Compliance Range 25°C I −0.5 +1.0 −0.5 +1.0 V
DAC DYNAMIC OUTPUT CHARACTERISTICS
I and Q DAC Quadrature Phase Error 25°C IV 0.2 1 0.2 1 Degrees DAC Wideband SFDR
1 MHz to 20 MHz A
20 MHz to 40 MHz A
40 MHz to 60 MHz A
60 MHz to 80 MHz A
80 MHz to 100 MHz A
100 MHz to 120 MHz A DAC Narrow-Band SFDR
10 MHz A
10 MHz A
10 MHz A
41 MHz A
41 MHz A
41 MHz A
119 MHz A
119 MHz A
119 MHz A
= 3.9 kΩ, external reference clock frequency = 30 MHz with REFCLK multiplier enabled at 10× for AD9854ASVZ,
SET
Te st Level
1
2
3
25°C V 58 58 dBc
OUT
25°C V 56 56 dBc
OUT
25°C V 52 52 dBc
OUT
25°C V 48 48 dBc
OUT
25°C V 48 48 dBc
OUT
25°C V 48 48 dBc
OUT
(±1 MHz) 25°C V 83 83 dBc
OUT
(±250 kHz) 25°C V 83 83 dBc
OUT
(±50 kHz) 25°C V 91 91 dBc
OUT
(±1 MHz) 25°C V 82 82 dBc
OUT
(±250 kHz) 25°C V 84 84 dBc
OUT
(±50 kHz) 25°C V 89 89 dBc
OUT
(±1 MHz) 25°C V 71 71 dBc
OUT
(±250 kHz) 25°C V 77 77 dBc
OUT
(±50 kHz) 25°C V 83 83 dBc
OUT
25°C IV 400 400 mV p-p
25°C I −0.5 +0.15 +0.5 −0.5 +0.15 +0.5 dB
Min Typ Max Min Typ Max Unit
Rev. E | Page 5 of 52
AD9854
AD9854ASVZ AD9854ASTZ Parameter Temp
Residual Phase Noise
(A
= 5 MHz, External Clock = 30 MHz
OUT
REFCLK Multiplier Engaged at 10×)
1 kHz Offset 25°C V 140 140 dBc/Hz 10 kHz Offset 25°C V 138 138 dBc/Hz 100 kHz Offset 25°C V 142 142 dBc/Hz
(A
= 5 MHz, External Clock = 300 MHz,
OUT
REFCLK Multiplier Bypassed)
1 kHz Offset 25°C V 142 142 dBc/Hz 10 kHz Offset 25°C V 148 148 dBc/Hz 100 kHz Offset 25°C V 152 152 dBc/Hz
PIPELINE DELAYS
DDS Core (Phase Accumulator and
4, 5, 6
25°C IV 33 33 SYSCLK cycles
Phase-to-Amp Converter) Frequency Accumulator 25°C IV 26 26 SYSCLK cycles Inverse Sinc Filter 25°C IV 16 16 SYSCLK cycles Digital Multiplier 25°C IV 9 9 SYSCLK cycles DAC 25°C IV 1 1 SYSCLK cycles I/O Update Clock (Internal Mode) 25°C IV 2 2 SYSCLK cycles I/O Update Clock (External Mode) 25°C IV 3 3 SYSCLK cycles
MASTER RESET DURATION 25°C IV 10 10 SYSCLK cycles COMPARATOR INPUT CHARACTERISTICS
Input Capacitance 25°C V 3 3 pF Input Resistance 25°C IV 500 500 Input Current 25°C I ±1 ±5 ±1 ±5 μA Hysteresis 25°C IV 10 20 10 20 mV p-p
COMPARATOR OUTPUT CHARACTERISTICS
Logic 1 Voltage, High-Z Load Full VI 3.1 3.1 V Logic 0 Voltage, High-Z Load Full VI 0.16 0.16 V Output Power, 50 Ω Load, 120 MHz Toggle Rate 25°C I 9 11 9 11 dBm Propagation Delay 25°C IV 3 3 ns Output Duty Cycle Error
7
25°C I −10 ±1 +10 −10 ±1 +10 % Rise/Fall Times, 5 pF Load 25°C V 2 2 ns Toggle Rate, High-Z Load 25°C IV 300 350 300 350 MHz Toggle Rate, 50 Ω Load 25°C IV 375 400 375 400 MHz Output Cycle-to-Cycle Jitter
COMPARATOR NARROW-BAND SFDR
8
9
IV 4.0 4.0 ps rms
10 MHz (±1 MHz) 25°C V 84 84 dBc 10 MHz (±250 MHz) 25°C V 84 84 dBc 10 MHz (±50 MHz) 25°C V 92 92 dBc 41 MHz (±1 MHz) 25°C V 76 76 dBc 41 MHz (±250 MHz) 25°C V 82 82 dBc 41 MHz (±50 MHz) 25°C V 89 89 dBc 119 MHz (±1 MHz) 25°C V 73 dBc 119 MHz (±250 MHz) 25°C V 73 dBc 119 MHz (±50 MHz) 25°C V 83 dBc
CLOCK GENERATOR OUTPUT JITTER
5 MHz A 40 MHz A 100 MHz A
25°C V 23 23 ps rms
OUT
25°C V 12 12 ps rms
OUT
25°C V 7 7 ps rms
OUT
9
Te st Level
Min Typ Max Min Typ Max Unit
Rev. E | Page 6 of 52
AD9854
AD9854ASVZ AD9854ASTZ Parameter Temp
PARALLEL I/O TIMING CHARACTERISTICS
t
(Address Setup Time to WR Signal Active)
ASU
t
(Address Hold Time to WR Signal Inactive)
ADHW
t
(Data Setup Time to WR Signal Inactive)
DSU
t
(Data Hold Time to WR Signal Inactive)
DHD
t
(WR Signal Minimum Low Time)
WRLOW
t
(WR Signal Minimum High Time)
WRHIGH
tWR (Minimum WR Time) t
(Address to Data Valid Time) Full V 15 15 15 15 ns
ADV
t
(Address Hold Time to RD Signal Inactive)
ADHR
t
(RD Low to Output Valid)
RDLOV
t
(RD High to Data Three-State)
RDHOZ
Full IV 8.0 7.5 8.0 7.5 ns Full IV 0 0 ns Full IV 3.0 1.6 3.0 1.6 ns Full IV 0 0 ns Full IV 2.5 1.8 2.5 1.8 ns Full IV 7 7 ns Full IV 10.5 10.5 ns
Full IV 5 5 ns Full IV 15 15 ns Full IV 10 10 ns
SERIAL I/O TIMING CHARACTERISTICS
t
(CS Setup Time)
PRE
t
(Period of Serial Data Clock) Full IV 100 100 ns
SCLK
t
(Serial Data Setup Time) Full IV 30 30 ns
DSU
t
(Serial Data Clock Pulse Width High) Full IV 40 40 ns
SCLKPWH
t
(Serial Data Clock Pulse Width Low) Full IV 40 40 ns
SCLKPWL
t
(Serial Data Hold Time) Full IV 0 0 ns
DHLD
Full IV 30 30 ns
tDV (Data Valid Time) Full V 30 30 ns
CMOS LOGIC INPUTS
10
Logic 1 Voltage 25°C I 2.2 2.2 V Logic 0 Voltage 25°C I 0.8 0.8 V Logic 1 Current 25°C IV ±5 ±12 μA Logic 0 Current 25°C IV ±5 ±12 μA Input Capacitance 25°C V 3 3 pF
12, 15
13, 15
11, 15
11, 12 , 15
11, 13 , 15
14
25°C I 1050 1210 755 865 mA 25°C I 710 816 515 585 mA 25°C I 600 685 435 495 mA 25°C I 3.475 4.190 2.490 3.000 W 25°C I 2.345 2.825 1.700 2.025 W 25°C I 1.975 2.375 1.435 1.715 W
POWER SUPPLY
VS Current VS Current VS Current
11,
P
DISS
11,
P
DISS
14
P
DISS
P
Power-Down Mode 25°C I 1 50 1 50 mW
DISS
1
The reference clock inputs are configured to accept a 1 V p-p (typical) dc offset square or sine wave centered at one-half the applied VDD or a 3 V TTL-level pulse input.
2
An internal 400 mV p-p differential voltage swing equates to 200 mV p-p applied to both REFCLK input pins.
3
The I and Q gain imbalance is digitally adjustable to less than 0.01 dB.
4
Pipeline delays of each individual block are fixed; however, if the first eight MSBs of a tuning word are 0s, the delay appears longer. This is due to insufficient phase
accumulation per system clock period to produce enough LSB amplitude to the DAC.
5
If a feature such as the inverse sinc, which has 16 pipeline delays, can be bypassed, the total delay is reduced by that amount.
6
The I/O UD CLK transfers data from the I/O port buffers to the programming registers. This transfer is measured in system clocks.
7
Change in duty cycle from 1 MHz to 100 MHz with 1 V p-p sine wave input and 0.5 V threshold.
8
Represents the comparator’s inherent cycle-to-cycle jitter contribution. The input signal is a 1 V, 40 MHz square wave, and the measurement device is a Wavecrest DTS-2075.
9
Comparator input originates from the analog output section via the external 7-pole elliptic low-pass filter. Single-ended input, 0.5 V p-p. Comparator output
terminated in 50 Ω.
10
Avoid overdriving digital inputs. (Refer to the equivalent circuits in Figure 3.)
11
If all device functions are enabled, it is not recommended to simultaneously operate the device at the maximum ambient temperature of 85°C and at the maximum
internal clock frequency. This configuration may result in violating the maximum die junction temperature of 150°C. Refer to the Power Dissipation and Thermal Considerations section for derating and thermal management information.
12
All functions engaged.
13
All functions except inverse sinc engaged.
14
All functions except inverse sinc and digital multipliers engaged.
15
In most cases, disabling the inverse sinc filter reduces power consumption by approximately 30%.
Te st Level
Min Typ Max Min Typ Max Unit
Rev. E | Page 7 of 52
AD9854

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
Maximum Junction Temperature 150°C V
4 V
S
Digital Inputs −0.7 V to +V
S
Digital Output Current 5 mA Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +85°C Lead Temperature (Soldering, 10 sec) 300°C Maximum Clock Frequency (ASVZ) 300 MHz Maximum Clock Frequency (ASTZ) 200 MHz
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

The heat sink of the AD9854ASVZ 80-lead TQFP package must be soldered to the PCB.
Table 3.
Thermal Characteristic TQFP LQFP
θJA (0 m/sec airflow) θ
(1.0 m/sec airflow)
JMA
θ
(2.5 m/sec airflow)
JMA
1, 2
Ψ
JT
6, 7
θ
2.0°C/W
JC
1
Per JEDEC JESD51-2 (heat sink soldered to PCB).
2
2S2P JEDEC test board.
3
Values of θJA are provided for package comparison and PCB design
considerations.
4
Per JEDEC JESD51-6 (heat sink soldered to PCB).
5
Airflow increases heat dissipation, effectively reducing θJA. Furthermore, the
more metal that is directly in contact with the package leads from metal traces through holes, ground, and power planes, the more θJA is reduced.
6
Per MIL-Std 883, Method 1012.1.
7
Values of θJC are provided for package comparison and PCB design
considerations when an external heat sink is required.
1, 2, 3
16.2°C/W 38°C/W
2, 3, 4, 5
13.7°C/W
2, 3, 4, 5
12.8°C/W
0.3°C/W
To determine the junction temperature on the application PCB use the following equation:
T
= T
+ (
Ψ
J
case
× PD)
JT
where:
is the junction temperature expressed in degrees Celsius.
T
J
is the case temperature expressed in degrees Celsius, as
T
case
measured by the user at the top center of the package.
Ψ
= 0.3°C/W.
JT
PD is the power dissipation (PD); see the
Thermal Considerations
section for the method to calculate PD.
Power Dissipation and

EXPLANATION OF TEST LEVELS

Table 3.
Test Level Description
I 100% production tested. III Sample tested only. IV
Parameter is guaranteed by design and
characterization testing. V Parameter is a typical value only. VI
Devices are 100% production tested at 25°C and
guaranteed by design and characterization testing
for industrial operating temperature range.

ESD CAUTION

Rev. E | Page 8 of 52
AD9854

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

AGND
AGND
AVD D
DIFF CLK ENABLENCAGND
PLL FILTER
60
AVD D
59
AGND
58
NC
57
NC
56
DAC R
SET
55
DACBP
54
AVD D
53
AGND
52
IOUT2
51
IOUT2
50
AVD D
49
IOUT1
48
IOUT1
47
AGND
46
AGND
45
AGND
44
AVD D
43
VINN
42
VINP
41
AGND
AVD D
AVD D
AGND
AGND
D7
D6
D5
D4
D3
D2
D1
D0
DVDD
DVDD
DGND
DGND
NC
A5
A4
A3
A2/IO RESET
A1/SDO
A0/SDIO
I/O UD CLK
DVDD
DVDD
DGND
DGND
DGND
DGND
DVDD
DVDD
DGND
DGND
DGND
AD9854
TOP VIEW
(Not to Scale)
DGND
80 79 78 77 76 71 70 69 6875 74 73 72
1
PIN 1
2
INDICATOR
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 22 23 24 25 26 27 28 29 30 31 32 33
DVDD
DVDD
DVDD
RD/CS
WR/SCLK
MASTER RESET
OSK
S/P SELECT
REFCLK
REFCLK
34 35 36 37 38 39 40
AVD D
AVD D
AGND
AGND
NC
64 63 62 6167 66 65
VOUT
NC = NO CONNECT
FSK/BPSK/HO LD
00636-002
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 to 8 D7 to D0 8-Bit Bidirectional Parallel Programming Data Inputs. Used only in parallel programming mode. 9, 10, 23, 24, 25,
73, 74, 79, 80 11, 12, 26, 27, 28,
DVDD
Connections for the Digital Circuitry Supply Voltage. Nominally 3.3 V more positive than AGND and DGND.
DGND Connections for the Digital Circuitry Ground Return. Same potential as AGND.
72, 75 to 78 13, 35, 57, 58, 63 NC No Internal Connection. 14 to 16 A5 to A3
Parallel Address Inputs for Program Registers (Part of 6-Bit Parallel Address Inputs for Program Register, A5:A0). Used only in parallel programming mode.
17 A2/IO RESET
Parallel Address Input for Program Registers (Part of 6-Bit Parallel Address Inputs for Program Register, A5:A0)/IO Reset. A2 is used only in parallel programming mode. IO RESET is used when the serial programming mode is selected, allowing an IO RESET of the serial communication bus that is unresponsive due to improper programming protocol. Resetting the serial bus in this manner does not affect previous programming, nor does it invoke the default programming values listed in
18 A1/SDO
Parallel Address Input for Program Registers (Part of 6-Bit Parallel Address Inputs for Program
Table 8. Active high.
Register, A5:A0)/Unidirectional Serial Data Output. A1 is used only in parallel programming mode. SDO is used in 3-wire serial communication mode when the serial programming mode is selected.
19 A0/SDIO
Parallel Address Input for Program Registers (Part of 6-Bit Parallel Address Inputs for Program Register, A5:A0)/Bidirectional Serial Data I/O. A0 is used only in parallel programming mode. SDIO is used in 2-wire serial communication mode.
Rev. E | Page 9 of 52
AD9854
Pin No. Mnemonic Description
20 I/O UD CLK
21
22
WR/SCLK Write Parallel Data to I/O Port Buffers. Shared function with SCLK. Serial clock signal associated
RD/CS Read Parallel Data from Programming Registers. Shared function with CS. Chip-select signal
29 FSK/BPSK/HOLD
30 OSK
31, 32, 37, 38, 44,
AVDD
50, 54, 60, 65 33, 34, 39, 40, 41,
AGND Connections for Analog Circuitry Ground Return. Same potential as DGND. 45, 46, 47, 53, 59, 62, 66, 67
36 VOUT
42 VINP Voltage Input Positive. The noninverting input of the internal high speed comparator. 43 VINN Voltage Input Negative. The inverting input of the internal high speed comparator. 48 IOUT1 Unipolar Current Output of I, or the Cosine DAC. (Refer to Figure 3.) 49
51
IOUT1
IOUT2 52 IOUT2
55 DACBP
56 DAC R
SET
61 PLL FILTER
64 DIFF CLK ENABLE
68
REFCLK Complementary (180° Out of Phase) Differential Clock Signal. User should tie this pin high or low
69 REFCLK
70 S/P SELECT Selects serial programming mode (logic low) or parallel programming mode (logic high). 71 MASTER RESET
Bidirectional I/O Update Clock. Direction is selected in control register. If this pin is selected as an input, a rising edge transfers the contents of the I/O port buffers to the programming registers. If I/O UD CLK is selected as an output (default), an output pulse (low to high) with a duration of eight system clock cycles indicates that an internal frequency update has occurred.
with the serial programming bus. Data is registered on the rising edge. This pin is shared with
WR
when the parallel mode is selected. The mode is dependent on Pin 70 (S/P SELECT).
associated with the serial programming bus. Active low. This pin is shared with
RD when the
parallel mode is selected. Multifunction pin according to the mode of operation selected in the programming control
register. In FSK mode, logic low selects F1 and logic high selects F2. In BPSK mode, logic low selects Phase 1 and logic high selects Phase 2. In chirp mode, logic high engages the hold function, causing the frequency accumulator to halt at its current location. To resume or commence chirp mode, logic low is asserted.
Output Shaped Keying. Must first be selected in the programming control register to function. A logic high causes the I and Q DAC outputs to ramp up from zero-scale to full-scale amplitude at a preprogrammed rate. Logic low causes the full-scale output to ramp down to zero scale at the preprogrammed rate.
Connections for the Analog Circuitry Supply Voltage. Nominally 3.3 V more positive than AGND and DGND.
Noninverted Output of the Internal High Speed Comparator. Designed to drive 10 dBm to 50 Ω load as well as standard CMOS logic levels.
Complementary Unipolar Current Output of I, or the Cosine DAC. Complementary Unipolar Current Output of Q, or the Sine DAC. Unipolar Current Output of Q, or the Sine DAC. This DAC can be programmed to accept external
12-bit data in lieu of internal sine data, allowing the AD9854 to emulate the AD9852 control DAC function.
Common Bypass Capacitor Connection for Both I and Q DACs. A 0.01 μF chip capacitor from this pin to AVDD improves harmonic distortion and SFDR slightly. No connect is permissible, but results in a slight degradation in SFDR.
Common Connection for Both I and Q DACs. Used to set the full-scale output current. R Normal R
range is from 8 kΩ (5 mA) to 2 kΩ (20 mA).
SET
= 39.9/I
SET
OUT
.
Connection for the External Zero-Compensation Network of the REFCLK Multiplier’s PLL Loop Filter. The zero-compensation network consists of a 1.3 kΩ resistor in series with a 0.01 μF capacitor. The other side of the network should be connected to AVDD as close as possible to Pin 60. For optimum phase noise performance, the REFCLK multiplier can be bypassed by setting the bypass PLL bit in Control Register 1E hex.
Differential REFCLK Enable. A high level of this pin enables the differential clock inputs, REFCLK and
REFCLK (Pin 69 and Pin 68, respectively).
when single-ended clock mode is selected. Same signal levels as REFCLK. Single-Ended Reference Clock Input (CMOS Logic Levels Required) or One of Two Differential
Clock Signals. In differential reference clock mode, both inputs can be CMOS logic levels or have greater than 400 mV p-p square or sine waves centered about 1.6 V dc.
Initializes the serial/parallel programming bus to prepare for user programming; sets programming registers to a do-nothing state defined by the default values listed in
Table 8.
Active on logic high. Asserting this pin is essential for proper operation upon power-up.
Rev. E | Page 10 of 52
AD9854
AVDD
I
OUTIOUTB
MUST TERMI NATE OUTPUT S FOR CURRENT FLOW. DO NOT EXCEED THE OUTPUT VOLT AGE COMPLIANCE RAT ING.
A. DAC OUTPUTS B. COMPARATOR OUT PUT C. COMPARATO R INPUT D. DIGITAL INPUT S
AVDD
VINP/
COMPARATOR OUT
VINN
Figure 3. Equivalent Input and Output Circuits
AVDD
DVDD
DIGITAL
IN
AVOID OVERDRIVING DIGITAL INPUTS. FORWARD BIASING ESD DIODES MAY COUPLE DI GITAL NOISE ONTO POWER PINS.
00636-003
Rev. E | Page 11 of 52
AD9854

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4 to Figure 9 indicate the wideband harmonic distortion performance of the AD9854 from 19.1 MHz to 119.1 MHz fundamental output, reference clock = 30 MHz, REFCLK multiplier = 10×. Each graph is plotted from 0 MHz to 150 MHz (Nyquist).
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
0
START 0Hz
15MHz/ STOP 150MHz
Figure 7. Wideband SFDR, 79.1 MHz
00636-007
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
START 0Hz
15MHz/ STOP 150MHz
Figure 4. Wideband SFDR, 19.1 MHz
0636-004
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
START 0Hz
START 0Hz
15MHz/ STOP 150MHz
Figure 5. Wideband SFDR, 39.1 MHz
15MHz/ STOP 150MHz
Figure 6. Wideband SFDR, 59.1 MHz
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
00636-005
START 0Hz
15MHz/ STOP 150MHz
00636-008
Figure 8. Wideband SFDR, 99.1 MHz
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
00636-006
START 0Hz
15MHz/ STOP 150MHz
00636-009
Figure 9. Wideband SFDR, 119.1 MHz
Rev. E | Page 12 of 52
AD9854
Figure 10 to Figure 15 show the trade-off in elevated noise floor, increased phase noise (PN), and discrete spurious energy when the internal REFCLK multiplier circuit is engaged. Plots with wide (1 MHz) and narrow (50 kHz) spans are shown. Compare the noise floor of Figure 11 and Figure 12 with that of Figure 14 and Figure 15. The improvement seen in Figure 11 and Figure 12 is a direct result of sampling the fundamental at a higher rate. Sampling at a higher rate spreads the quantization noise of the DAC over a wider bandwidth, which effectively lowers the noise floor.
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
CENTER 39.1MHz
100kHz/ SPAN 1MHz
Figure 10. Narrow-Band SFDR, 39.1 MHz, 1 MHz BW,
300 MHz REFCLK with REFCLK Multiplier Bypassed
0636-010
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
CENTER 39.1MHz
100kHz/ SPAN 1MHz
Figure 13. Narrow-Band SFDR, 39.1 MHz, 1 MHz BW,
30 MHz REFCLK with REFCLK Multiplier = 10×
00636-012
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
CENTER 39.1M Hz
5kHz/ SPAN 50kHz
Figure 11. Narrow-Band SFDR, 39.1 MHz, 50 kHz BW,
300 MHz REFCLK with REFCLK Multiplier Bypassed
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
CENTER 39.1M Hz
5kHz/ SPAN 50kHz
Figure 12. Narrow-Band SFDR, 39.1 MHz, 50 kHz BW,
100 MHz REFCLK with REFCLK Multiplier Bypassed
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
00636-011
CENTER 39.1MHz
5kHz/ SPAN 50kHz
00636-013
Figure 14. Narrow-Band SFDR, 39.1 MHz, 50 kHz BW,
30 MHz REFCLK with REFCLK Multiplier = 10×
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
00636-014
CENTER 39. 1MHz
5kHz/ SPAN 50kHz
00636-015
Figure 15. Narrow-Band SFDR, 39.1 MHz, 50 kHz BW,
10 MHz REFCLK with REFCLK Multiplier = 10×
Rev. E | Page 13 of 52
AD9854
Figure 16 and Figure 17 show the narrow-band performance of the AD9854 when operating with a 200 MHz reference clock with the REFCLK multiplier bypassed vs. a 20 MHz reference clock and the REFCLK multiplier enabled at 10×.
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
CENTER 39.1MHz
5kHz/ SPAN 50kHz
Figure 16. Narrow-Band SFDR, 39.1 MHz, 50 kHz BW,
200 MHz REFCLK with REFCLK Multiplier Bypassed
00636-016
90
–100
–110
–120
–130
–140
PHASE NOISE (dBc/Hz)
–150
A
=5MHz
OUT
–160
10 1M100 100k10k1k
30 MHz REFCLK with REFCLK Multiplier = 10×
A
=80MHz
OUT
FREQUENCY (Hz)
Figure 19. Residual Phase Noise,
00636-019
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
CENTER 39. 1MHz
5kHz/ SPAN 50kHz
Figure 17. Narrow-Band SFDR, 39.1 MHz, 50 kHz BW,
20 MHz REFCLK with REFCLK Multiplier = 10×
100
–110
–120
A
= 80MHz
OUT
PHASE NOISE (dBc/Hz)
–130
–140
–150
–160
A
=5MHz
OUT
55
54
53
52
51
SFDR (dBc)
50
49
48
00636-017
0 5 10 15 20 25
Figure 20. SFDR vs. DAC Current, 59.1 A
DAC CURRENT (mA)
OUT
,
00636-020
300 MHz REFCLK with REFCLK Multiplier Bypassed
620
615
610
605
600
SUPPLY CURRENT (mA)
595
–170
10 1M100 100k10k1k
FREQUENCY (Hz)
Figure 18. Residual Phase Noise,
300 MHz REFCLK with REFCLK Multiplier Bypassed
00636-018
590
0
20 40 60 80 100 120 140
FREQUENCY (MHz)
Figu re 21. Supply Current vs . Output Frequency (Variation Is Minimal,
Expressed as a Percentage, and Heavily Dependent on Tuning Word)
00636-021
Rev. E | Page 14 of 52
AD9854
1200
MINIMUM COMPARATOR INPUT DRI VE V
=0.5V
CM
1000
RISE TIM E
1.04ns
JITTER
[10.6ps RMS]
–33ps 0ps +33ps
500ps/DIV 232mV/DIV 50
INPUT
Figure 22. Typical Comparator Output Jitter, 40 MHz A
300 MHz RFCLK with REFCLK Multiplier Bypassed
REF1 RISE
1.174ns
C1 FALL
1.286ns
OUT
800
600
400
AMPLITUDE (mV p -p)
200
0636-022
,
0
0
100 200 300 400 500
FREQUENCY (MHz)
Figure 24. Comparator Toggle Voltage Requirement
00636-024
CH1 500mV M 500ps CH1 980mV
Figure 23. Comparator Rise/Fall Times
00636-023
Rev. E | Page 15 of 52
AD9854

TYPICAL APPLICATIONS

DIGITAL
I BASEBAND
Q BASEBAND
RF OUTPUT
AGC
00636-025
00636-026
Rx BASEBAND DIGITAL DATA OUT
00636-027
LPF
COS
RF/IF
INPUT
REFCLK
AD9854
LPF
LPF
SIN
CHANNEL SELECT FILTERS
LPF
Figure 25. Quadrature Downconversion
I BASEBAND
COS
LPF
LPF
SIN
Q BASEBAND
REFCLK
AD9854
Figure 26. Direct Conversion Quadrature Upconverter
8
8
ADC ENCODE
48
CHIP/SYMBOL/PN
RATE DATA
DEMODULATOR
Rx
RF IN
VCA
I/Q MIXER
AND
LOW-PASS
FILTER
ADC CLOCK FREQUENCY
LOCKED TO Tx CHIP/
SYMBOL/PN RATE
I
DUAL
8-/10-BIT
Q
ADC
AD9854
CLOCK
REFERENCE
CLOCK
GENERATOR
Figure 27. Chip Rate Generator in Spread Spectrum Application
BAND-PASS
FILTER
I
AD9854
C–FO
OUT
50
F
C+FO
IMAGE
F
CLK
AD9854
SPECTRUM
FUNDAMENTAL
F
IMAGE
Figure 28. Using an Aliased Image to Generate a High Frequency
Rev. E | Page 16 of 52
AMPLIFIER
50
FINAL OUTPUT
SPECTRUM
FC+F IMAGE
O
BAND-PASS FILTER
00636-028
Loading...
+ 36 hidden pages