ANALOG DEVICES AD9789 Service Manual

14-Bit, 2400 MSPS RF DAC

FEATURES

DOCSIS 3.0 performance: 4 QAM carriers
ACLR over full band (47 MHz to 1 GHz)
−75 dBc @ f
−72 dBc @ f
−67 dBc @ f
Unequalized MER = 42 dB
On chip and bypassable
4 QAM encoders with SRRC filters, 16× to 512× interpolation,
rate converters, and modulators Flexible data interface: 4, 8, 16, or 32 bits wide with parity Power: 1.6 W (I Direct to RF synthesis support with f Built-in self-test (BIST) support
Input connectivity check Internal random number generator

APPLICATIONS

Broadband communications systems CMTS/DVB Cellular infrastructure Point-to-point wireless

GENERAL DESCRIPTION

The AD9789 is a flexible QAM encoder/interpolator/upconverter combined with a high performance, 2400 MSPS, 14-bit RF digital­to-analog converter (DAC). The flexible digital interface can accept up to four channels of complex data. The QAM encoder supports constellation sizes of 16, 32, 64, 128, and 256 with SRRC filter coefficients for all standards.
= 200 MHz
OUT
= 800 MHz (noise)
OUT
= 800 MHz (harmonics)
OUT
= 20 mA, f
FS
= 2.4 GHz, LVDS interface)
DAC
mix mode
S
with 4-Channel Signal Processing
AD9789
The on-chip rate converter supports a wide range of baud rates with a fixed DAC clock. The digital upconverter can place the channels from 0 to 0.5 × f channels to be synthesized and placed anywhere from dc to f
The AD9789 includes a serial peripheral interface (SPI) for device configuration and status register readback. The flexible digital interface can be configured for data bus widths of 4, 8, 16, and 32 bits. It can accept real or complex data.
The AD9789 operates from 1.5 V, 1.8 V, and 3.3 V supplies for a total power consumption of 1.6 W. It is supplied in a 164-ball chip scale package ball grid array for lower thermal impedance and reduced package parasitics. No special power sequencing is required. The clock receiver powers up muted to prevent start-up noise.

PRODUCT HIGHLIGHTS

1. Highly integrated and configurable QAM mappers, inter-
polators, and upconverters for direct synthesis of one to four DOCSIS- or DVB-C-compatible channels in a block.
2. Low noise and intermodulation distortion (IMD) perfor-
mance enable high quality synthesis of signals up to 1 GHz.
3. Flexible data interface supports LVDS for improved SFDR
or CMOS input data for less demanding applications.
4. Interface is configurable from 4-bit nibbles to 32-bit words
and can run at up to 150 MHz CMOS or 150 MHz LVDS double data rate (DDR).
5. Manufactured on a CMOS process, the AD9789 uses a
proprietary switching technique that enhances dynamic performance.
. This permits four contiguous
DAC
DAC
/2.

FUNCTIONAL BLOCK DIAGRAM

CMOS
0TO 15
32 INPUT
PINS AND
2PARITY
PINS
DCO
FS
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
150MHz
LVDS/CMOS
LVDS
RISE
CMOS
16 TO 31
LVDS FALL
RETIMER
DATA FORMATTER/
ASSEMBLER
DATA
DATA
DATA
DATA
Figure 1.
QAM/
FILTER/
NCO
QAM/
FILTER/
NCO
QAM/
FILTER/
NCO
QAM/
FILTER/
NCO
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2009-2011 Analog Devices, Inc. All rights reserved.
16×
INTERPOLATOR
AND BPF
+ SCALARS
SPI
IRQ RS
14-BIT
2.4GSPS DAC
07852-001
AD9789

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description ......................................................................... 1
Product Highlights ........................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Detailed Functional Block Diagrams............................................. 3
Specifications..................................................................................... 4
DC Specifications ......................................................................... 4
Digital Specifications ................................................................... 5
AC Specifications.......................................................................... 6
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Pin Configurations and Function Descriptions ........................... 9
Typical Performance Characteristics ........................................... 12
Terminology ....................................................................................22
Serial Control Port.......................................................................... 23
Serial Control Port Pin Descriptions....................................... 23
General Operation of Serial Control Port............................... 23
Instruction Word (16 Bits) ........................................................24
MSB/LSB First Transfers............................................................ 24
SPI Register Map............................................................................. 27
SPI Register Descriptions.......................................................... 29
Theory of Operation ...................................................................... 39
Datapath Signal Processing....................................................... 39
Digital Block Upconverter ........................................................ 43
Digital Interface Modes............................................................. 45
Analog Modes of Operation ..................................................... 54
Analog Control Registers.......................................................... 55
Voltage Reference....................................................................... 56
DAC Output Stages.................................................................... 56
Clocking the AD9789 ................................................................ 57
Mu Delay Controller.................................................................. 58
Interrupt Requests...................................................................... 61
Recommended Start-Up Sequence.......................................... 62
Customer BIST Modes................................................................... 63
Using the Internal PRN Generator to Test QAM Output AC
Performance................................................................................ 63
Using the Internal Built-In Self-Test (BIST) to Test for Digital
Data Input Connectivity............................................................. 63
QAM Constellation Maps ............................................................. 65
Channelizer Mode Pin Mapping for CMOS and LVDS ............ 68
Outline Dimensions....................................................................... 74
Ordering Guide .......................................................................... 74

REVISION HISTORY

7/11—Rev. 0 to Rev. A
Changes to Table 2, DAC Clock Input (CLKP, CLKN): Added
DAC Clock Rate Parameter............................................................. 5
Changes to Table 3, Dynamic Performance, DAC Update Rate
Parameter; Added Adjusted DAC Update Rate Parameter......... 6
Changes to Captions for Figure 42, Figure 44, Figure 46,
Figure 49 ..........................................................................................18
Changes to Digital 16x Tunable Band-Pass Filter Section, Third
Paragraph......................................................................................... 44
Changes to Retimer and Latency Look-Up Tables Section,
Second Paragraph........................................................................... 50
Changes to Captions for Figure 122, Figure 124, Figure 125.... 65
4/09—Revision 0: Initial Version
Rev. A | Page 2 of 76
AD9789

DETAILED FUNCTIONAL BLOCK DIAGRAMS

DATA-
PATH
0
DATA-
PATH
1
DATA-
PATH
2
DATA-
PATH
3
SUM
SCALE
16×
INTERPOLATOR
f
= 0 TO
C
f
DAC
BPF
BPF
/2
f
C
07852-002
32 INPUT
PINS
P0 P1
FS
DCO
LVD S/C MOS
CMOS
0TO 15
LVD S
RISE
CMOS
16 TO 31
LVD S FALL
RETIMER
CLK CTL
4TO
32 BITS
DATA FORMATTER/
ASSEMBLER
UP TO
32 BITS
UP TO
32 BITS
UP TO
32 BITS
UP TO
32 BITS
Figure 2. Digital Signal Processing Functional Block Diagram
24-BIT NCO
f
/16
0TO
QAM
MAPPER
INPUT
SCALE
BYPASS
QAM
SRRC
2
BYPASS
SRRC
RATE
N
2
(N = 0 TO 5) (P/Q = 0.5TO 1)
CONVERT ER
P/Q 24-BI T
Figure 3. Channel 0 Through Channel 3 Datapath Block Detail (I and Q Paths Are Identical So Only One Is Shown)
DAC
CH GAIN 0× TO 2×
07852-003
Rev. A | Page 3 of 76
AD9789

SPECIFICATIONS

DC SPECIFICATIONS

AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, DVDD15 = 1.5 V, f
Table 1.
Parameter Min Typ Max Unit
DAC RESOLUTION 14 Bits ANALOG OUTPUTS
Offset Error 6.5 % FSR Gain Error (with Internal Reference) 3.5 % FSR Full-Scale Output Current (Monotonicity Guaranteed) 8.66 20.2 31.66 mA Output Compliance Range −1.0 +1.0 V Output Resistance 70 Ω Output Capacitance 1 pF
TEMPERATURE DRIFT
Gain 135 ppm/°C Reference Voltage 25 ppm/°C
REFERENCE
Internal Reference Voltage 1.2 V Output Resistance1 5 kΩ
ANALOG SUPPLY VOLTAGES
AVDD33 3.14 3.3 3.47 V CVDD18 1.71 1.8 1.89 V
DIGITAL SUPPLY VOLTAGES
DVDD33 3.14 3.3 3.47 V DVDD18 1.71 1.8 1.89 V DVDD15 1.43 1.5 1.58 V
SUPPLY CURRENTS AND POWER DISSIPATION
f
= 2.4 GSPS, f
DAC
I
45 mA
AVDD33
I
72 mA
DVDD18
I
180 mA
CVDD18
I
DVDD33
= 930 MHz, IFS = 25 mA, Four Channels Enabled
OUT
CMOS Interface 42 mA LVDS Interface 16 mA
I
640 mA
DVDD15
f
= 2.0 GSPS, f
DAC
I
37.4 38.5 mA
AVDD33
I
67.3 70.5 mA
DVDD18
I
155.4 180 mA
CVDD18
I
40.3 50.7 mA
DVDD33
I
(Four Channels Enabled, All Signal Processing Enabled) 517 556 mA
DVDD15
I
(One Channel Enabled, 16× Interpolation Only) 365 391 mA
DVDD15
= 70 MHz, IFS = 20 mA, CMOS Interface
OUT
Power Dissipation
f
= 2.4 GSPS, f
DAC
= 930 MHz, IFS = 25 mA, Four Channels Enabled
OUT
CMOS Interface 1.7 W LVDS Interface 1.63 W
1
Use an external amplifier to drive any external load.
= 2.4 GHz, IFS = 20 mA, unless otherwise noted.
DAC
Rev. A | Page 4 of 76
AD9789

DIGITAL SPECIFICATIONS

AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, DVDD15 = 1.5 V, f are compliant with the IEEE Std 1596.3-1996 reduced range link, unless otherwise noted.
Table 2.
Parameter Min Typ Max Unit
CMOS DATA INPUTS (D[31:0], P0, P1)
Input Voltage High, VIH 2.0 3.3 V Input Voltage Low, VIL 0 0.8 V Input Current High, IIH −10 +10 µA Input Current Low, IIL −10 +10 µA Input Capacitance 2 pF Setup Time, CMOS Data Input to CMOS_DCO1 5.3 ns Hold Time, CMOS Data Input to CMOS_DCO1 −1.4 ns
CMOS OUTPUTS (CMOS_FS, CMOS_DCO)
Output Voltage High, VOH 2.4 3.3 V Output Voltage Low, VOL 0 0.4 V Output Current High, IOH 12 mA Output Current Low, IOL 12 mA Maximum Clock Rate (CMOS_DCO) 150 MHz CMOS_DCO to CMOS_FS Delay 0.28 0.85 ns
LVDS DATA INPUTS (D[15:0]P, D[15:0]N, PARP, PARN)
Input Voltage Range, VIA or VIB 825 1575 mV Input Differential Threshold, V Input Differential Hysteresis, V
−100 +100 mV
IDTH
, V
IDTHH
25 mV
IDTHL
Input Differential Input Impedance, RIN 80 120 Ω Maximum LVDS Input Rate 150 MSPS Setup Time, LVDS Differential Input Data to Differential DCOx2 1.41 ns Hold Time, LVDS Differential Input Data to Differential DCOx2 0.24 ns
LVDS OUTPUTS (DCOP, DCON, FSP, FSN)
DCOP, FSP = V
; DCON, FSN = VOB; 100 Ω Termination
OA
Output Voltage High, VOA or VOB 1375 mV Output Voltage Low, VOA or VOB 1025 mV Output Differential Voltage, |VOD| 150 200 250 mV Output Offset Voltage, VOS 1150 1250 mV Output Impedance, Single Ended, RO 40 140 Ω RO Mismatch Between A and B, RO 10 % Change in |VOD| Between 0 and 1, |VOD| 25 mV Change in VOS Between 0 and 1, VOS 25 mV Output Current—Driver Shorted to Ground, ISA, ISB 20 mA Output Current—Drivers Shorted Together, I
4 mA
SAB
Power-Off Output Leakage, |IXA|, |IXB| 10 mA Maximum Clock Rate (DCOP, DCON) 150 MHz DCOx to FSx Delay 0.12 0.37 ns
DAC CLOCK INPUT (CLKP, CLKN)3
Differential Peak Voltage 1.4 1.8 V Common-Mode Voltage 900 mV DAC Clock Rate 2400 MHz
SERIAL PERIPHERAL INTERFACE
Maximum Clock Rate (f Minimum Pulse Width High, t Minimum Pulse Width Low, t Minimum SDIO and CS to SCLK Setup, tDS
SCLK
, 1/t
) 25 MHz
SCLK
20 ns
PWH
20 ns
PWL
10 ns
= 2.4 GHz, IFS = 20 mA, LVDS drivers and receivers
DAC
Rev. A | Page 5 of 76
AD9789
Parameter Min Typ Max Unit
Minimum SCLK to SDIO Hold, tDH 5 ns Maximum SCLK to Valid SDIO and SDO, tDV 20 ns Minimum SCLK to Invalid SDIO and SDO, t
INPUTS (SDIO, SCLK, CS)
Input Voltage High, VIH 2.0 3.3 V Input Voltage Low, VIL 0 0.8 V Input Current High, IIH −10 +10 µA Input Current Low, IIL −10 +10 µA
OUTPUTS (SDO, SDIO)
Output Voltage High, VOH 2.4 3.6 V Output Voltage Low, VOL 0 0.4 V Output Current High, IOH 4 mA Output Current Low, IOL 4 mA
1
See the CMOS Interface Timing section for more information.
2
See the LVDS Interface Timing section for more information.
3
See the Clock Phase Noise Effects on AC Performance section for more information.

AC SPECIFICATIONS

AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, DVDD15 = 1.5 V, f otherwise noted.
5 ns
DNV
= 2.4 GHz, IFS = 20 mA, digital scale = 0 dBFS, unless
DAC
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
DYNAMIC PERFORMANCE
DAC Update Rate 2400 MSPS Adjusted DAC Update Rate1 150 MSPS Output Settling Time (tST) To 0.025% 13 ns
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
f
= 2000 MSPS
DAC
f
= 100 MHz 70 dBc
OUT
f
= 316 MHz 63 dBc
OUT
f
= 550 MHz 58 dBc
OUT
f
= 2400 MSPS
DAC
f
= 100 MHz 70 dBc
OUT
f
= 316 MHz 70 dBc
OUT
f
= 550 MHz 60 dBc
OUT
f
= 850 MHz 60 dBc
OUT
= f
TWO-TONE INTERMODULATION DISTORTION
f
OUT2
+ 1.25 MHz
OUT1
(IMD) f
= 2000 MSPS
DAC
f
= 100 MHz 86 dBc
OUT
f
= 316 MHz 73 dBc
OUT
f
= 550 MHz 62 dBc
OUT
f
= 2400 MSPS
DAC
f
= 100 MHz 86 dBc
OUT
f
= 316 MHz 74 dBc
OUT
f
= 550 MHz 66 dBc
OUT
f
= 850 MHz 66 dBc
OUT
NOISE SPECTRAL DENSITY (NSD)
1-Channel QAM f
f
= 100 MHz P
OUT
f
= 316 MHz P
OUT
f
= 550 MHz P
OUT
f
= 850 MHz P
OUT
= 2400 MSPS
DAC
= −14.5 dBm −167 dBm/Hz
OUT
= −15.5 dBm −166.5 dBm/Hz
OUT
= −18 dBm −166.5 dBm/Hz
OUT
= −18.5 dBm −166.5 dBm/Hz
OUT
Rev. A | Page 6 of 76
AD9789
Parameter Test Conditions/Comments Min Typ Max Unit
ADJACENT CHANNEL LEAKAGE RATIO (ACLR)
= 2293.76 MSPS measured in 6 MHz
f
DAC
channels
1-Channel QAM
f
= 200 MHz (Harmonics) −76 dBc
OUT
f
= 200 MHz (Noise Floor) −82 dBc
OUT
f
= 500 MHz (Harmonics) −74.5 dBc
OUT
f
= 500 MHz (Noise Floor) −78 dBc
OUT
f
= 800 MHz (Harmonics) −69 dBc
OUT
f
= 800 MHz (Noise Floor) −78 dBc
OUT
2-Channel QAM
f
= 200 MHz (Harmonics) −77.5 dBc
OUT
f
= 200 MHz (Noise Floor) −81 dBc
OUT
f
= 500 MHz (Harmonics) −68 dBc
OUT
f
= 500 MHz (Noise Floor) −76 dBc
OUT
f
= 800 MHz (Harmonics) −66 dBc
OUT
f
= 800 MHz (Noise Floor) −76 dBc
OUT
4-Channel QAM
f
= 200 MHz (Harmonics) −75 dBc
OUT
f
= 200 MHz (Noise Floor) −76 dBc
OUT
f
= 500 MHz (Harmonics) −69 dBc
OUT
f
= 500 MHz (Noise Floor) −72 dBc
OUT
f
= 800 MHz (Harmonics) −67 dBc
OUT
f
= 800 MHz (Noise Floor) −72 dBc
OUT
WCDMA ACLR
= 2304 MSPS, mix mode second
f
DAC
Nyquist zone
Single Carrier f
= 1850 MHz
OUT
First Adjacent Channel −70 dBc Second Alternate Channel −72.5 dBc Third Alternate Channel −74 dBc
Single Carrier f
= 2100 MHz
OUT
First Adjacent Channel −68 dBc Second Alternate Channel −70.4 dBc Third Alternate Channel −72.7 dBc
Four Carrier f
= 2100 MHz
OUT
First Adjacent Channel −63.5 dBc Second Alternate Channel −65.1 dBc Third Alternate Channel −66.9 dBc
1
Adjusted DAC update rate is calculated as f
with f
= 2400 MSPS, F
DAC
= 2400 MSPS/16 = 150 MSPS.
DACadj
divided by the minimum required interpolation factor. For the AD9789, the minimum interpolation factor is 16. Thus,
DAC
Rev. A | Page 7 of 76
AD9789

ABSOLUTE MAXIMUM RATINGS

Table 4.
Parameter Rating
AVDD33 to AVSS −0.3 V to +3.6 V DVDD18 to DVSS −0.3 V to +1.98 V DVDD33 to DVSS −0.3 V to +3.6 V DVDD15 to DVSS −0.3 V to +1.98 V CVDD18 to AVSS −0.3 V to +1.98 V AVSS to DVSS −0.3 V to +0.3 V CLKP, CLKN to AVSS −0.3 V to CVDD18 + 0.3 V FS, DCO to DVSS −0.3 V to DVDD33 + 0.3 V CMOS and LVDS Data Inputs
to DVSS IOUTN, IOUTP to AVSS −1.0 V to AVDD33 + 0.3 V I120, VREF, IPTAT to AVSS −0.3 V to AVDD33 + 0.3 V IRQ, CS, SCLK, SDO, SDIO, RESET
to DVSS Junction Temperature 150°C Storage Temperature Range −65°C to +150°C
−0.3 V to DVDD33 + 0.3 V
−0.3 V to DVDD33 + 0.3 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 5. Thermal Resistance
Package Typ e
164-Ball CSP_BGA
θJB θJC Unit Notes
θ
JA
25.5 14.4 6.8 °C/W 4-layer board, no vias
24.4 °C/W 4-layer board, 4 PCB vias
19.0 °C/W 8-layer board, 4 PCB vias
17.2 °C/W 8-layer board, 16 PCB vias

ESD CAUTION

Rev. A | Page 8 of 76
AD9789
A
V
S

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

111312111089765243 4
A
B
C
D
E
F
G
++++ ++
H
J
K
XXXX
SB
NC
CS L
NC
CK
NC
DO
R
IO
I
RESET IRQ
NC
NC
NCNCNC
NC
DVSSNO CONNECT DVDD15DVDD33
X
++++
XXXX
+
07852-006
Figure 6. Digital Supply and SPI Pins (Top View)
CLKN C
CLKP D
CVDD18
111312111089765243 4
A
B
N
P
E
F
G
H
J
K
L
M
N
P
+
+
+
+
+
++
+
+
+
DVDD18
X
AVS S DV DD18CVDD18 AVDD33
DD33IOUTN IOUTP
XX
XX
XX
XX
NC
I120
VREF
IPTAT
CLK M
SDO N
SDIO P
07852-004
Figure 4. Clock and Analog Pins (Top View)
111312111089765243 4
A
B
C
D
E
F
G
H
J
K
P1
L
M
N
P
31 27 23 19 15 11 7 3
P0
30 26 22 18 14 10 6 2
29 25 21 17 13 9 5 1
28 24 20 16 12 8 4 0
D[31:0] CMOS D ATA INPUTS
PARITY AND CONTROL INPUTS
BU
CT
FS
DC
CMOS_BUS
CMOS_CTRL
CMOS_FS
CMOS_DCO
07852-005
PAR P
PARN
Figure 5. CMOS Mode Data Input Pins (Top View)
111312111089765243 4
A
B
C
D
E
F
G
H
J
K
P+
L
M
N
P
13 11 9
15
P–
15 13 11 9
14 12 10 8 6 4 2 0
14 12 10 8 6 4 2 0
14 14
+LVDS
7
7
–LVDS
531
531
FS
FS
DC
DC
FSP
FSN
DCOP
DCON
07852-007
Figure 7. LVDS Mode Data Input Pins (Top View)
Rev. A | Page 9 of 76
AD9789
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
A1, A2, A3, A6, A9, A10, A11, B1, B2, B3, B6, B7, B8, B9, B10, B11, C2, C3, C6, C7, C8, C9, C10, C11, D2, D3, D6, D7, D8, D9, D10, D11, E1, E2, E3, E4, E13, E14, F1, F2, F3, F4, F11, F12, F13, F14
A4, A5, B4, B5, C4, C5, D4, D5 CVDD18 1.8 V Clock Supply. A7 IOUTN DAC Negative Output Current. A8 IOUTP DAC Positive Output Current. A12, A13, B12, B13, C12, C13,
D12, D13 A14 NC No Connect. Leave floating. B14 I120 Tie this pin to analog ground with a 10 kΩ resistor to generate a 120 µA reference current. C1 CLKN Negative DAC Clock Input (DACCLK). C14 VREF
D1 CLKP Positive DAC Clock Input (DACCLK). D14 IPTAT
E11, E12 DVDD18 1.8 V Digital Supply. G1, G2, G3, G4, G7, G8, G11,
G12, G13, G14 H1, H2, H3, H4, H7, H8, H11,
H12, H13, H14, J1, J2, J3, J4, J11, J12, J13, J14
K1, K2, K3, K4, K11, K12, K13, K14
L1 L2, L3, M2, M3, N3, N4, P3, P4 NC Not Used. Leave unconnected.
L4 P1/PARP CMOS/LVDS Parity Bit. L5 D31/D15P CMOS/LVDS Data Input. L6 D27/D13P CMOS/LVDS Data Input. L7 D23/D11P CMOS/LVDS Data Input. L8 D19/D9P CMOS/LVDS Data Input. L9 D15/D7P CMOS/LVDS Data Input. L10 D11/D5P CMOS/LVDS Data Input. L11 D7/D3P CMOS/LVDS Data Input. L12 D3/D1P CMOS/LVDS Data Input. L13 FSP Positive LVDS Frame Sync (FSP) for Data Bus. L14 CMOS_BUS
M1 SCLK Qualifying Clock for SPI. M4 P0/PARN CMOS/LVDS Parity Bit. M5 D30/D15N CMOS/LVDS Data Input. M6 D26/D13N CMOS/LVDS Data Input. M7 D22/D11N CMOS/LVDS Data Input. M8 D18/D9N CMOS/LVDS Data Input. M9 D14/D7N CMOS/LVDS Data Input. M10 D10/D5N CMOS/LVDS Data Input. M11 D6/D3N CMOS/LVDS Data Input. M12 D2/D1N CMOS/LVDS Data Input. M13 FSN Negative LVDS Frame Sync (FSN) for Data Bus.
AVSS Analog Supply Ground.
AVDD33 3.3 V Analog Supply.
Band Gap Voltage Reference I/O. Decouple to analog ground with a 1 nF capacitor. Output impedance is approximately 5 kΩ.
Factory Test Pin. Output current, proportional to absolute temperature, is approximately 10 µA at 25°C with a slope of approximately 20 nA/°C.
DVDD15 1.5 V Digital Supply.
DVSS Digital Supply Ground.
DVDD33 3.3 V Digital Supply.
CS
Active Low Chip Select for SPI.
Active High Input. Configures data bus for CMOS inputs. Low input configures data bus to accept LVDS inputs.
Rev. A | Page 10 of 76
AD9789
Pin No. Mnemonic Description
M14 CMOS_CTRL
N1 SDO Serial Data Output for SPI. N2 RESET Active High Input. Resets the AD9789. N5 D29/D14P CMOS/LVDS Data Input. N6 D25/D12P CMOS/LVDS Data Input. N7 D21/D10P CMOS/LVDS Data Input. N8 D17/D8P CMOS/LVDS Data Input. N9 D13/D6P CMOS/LVDS Data Input. N10 D9/D4P CMOS/LVDS Data Input. N11 D5/D2P CMOS/LVDS Data Input. N12 D1/D0P CMOS/LVDS Data Input. N13 DCOP Positive LVDS Data Clock Output (DCOP) for Data Bus. N14 CMOS_FS CMOS Frame Sync for Data Bus. P1 SDIO Serial Data Input/Output for SPI. P2 IRQ
P5 D28/D14N CMOS/LVDS Data Input. P6 D24/D12N CMOS/LVDS Data Input. P7 D20/D10N CMOS/LVDS Data Input. P8 D16/D8N CMOS/LVDS Data Input. P9 D12/D6N CMOS/LVDS Data Input. P10 D8/D4N CMOS/LVDS Data Input. P11 D4/D2N CMOS/LVDS Data Input. P12 D0/D0N CMOS/LVDS Data Input. P13 DCON Negative LVDS Data Clock Output (DCON) for Data Bus. P14 CMOS_DCO CMOS Data Clock Output for Data Bus.
Active High Input. Enables CMOS_DCO and CMOS_FS signals and disables DCOP/DCON and FSP/FSN signals. Low input disables CMOS_DCO and CMOS_FS signals and enables DCOP/DCON and FSP/FSN signals.
Active Low, Open-Drain Interrupt Request Output. Pull up to DVDD33 with a 10 kΩ resistor.
Rev. A | Page 11 of 76
AD9789

TYPICAL PERFORMANCE CHARACTERISTICS

40
–45
–50
–55
–60
–65
–70
SFDR (dBc)
–75
–80
–85
–90
0 200 400 600 800 1000 1200
Figure 8. SFDR vs. f
OUT
f
(MHz)
OUT
over f
, Full-Scale Current = 20 mA,
DAC
2.4GHz
2.2GHz 2GHz
1.6GHz 1GHz
Digital Scale = 0 dBFS, Temperature = 25°C
07852-013
40
–45
–50
–55
–60
–65
–70
SFDR (dBc)
–75
–80
–85
–90
0 200 400 600 800 1000 1200
Figure 11. SFDR vs. f
f
(MHz)
OUT
over Digital Full Scale, f
OUT
0dBFS –3dBFS –6dBFS –12dBFS
= 2.4 GHz,
DAC
Full-Scale Current = 20 mA, Temperature = 25°C
07852-010
40
–45
–50
–55
–60
–65
–70
–75
HARMONIC LEVEL (dBc)
–80
–85
–90
0 200 400 600 800 1000 1200
Figure 9. Second-Order Harmonic vs. f
= 2.4 GHz, Full-Scale Current = 20 mA, Temperature = 25°C
f
DAC
40
–45
–50
–55
–60
–65
–70
SFDR (dBc)
–75
–80
–85
–90
0 200 400 600 800 1000 1200
Figure 10. SFDR vs. f
f
(MHz)
OUT
over Digital Full Scale,
OUT
f
(MHz)
OUT
over Full-Scale Current, f
OUT
0dBFS –3dBFS –6dBFS –12dBFS
32mA 20mA 8mA
DAC
Digital Scale = 0 dBFS, Temperature = 25°C
= 2.4 GHz,
40
–45
–50
–55
–60
–65
–70
–75
HARMONIC LEVEL (dBc)
–80
–85
–90
07852-009
0 200 400 600 800 1000 1200
Figure 12. Third-Order Harmonic vs. f
= 2.4 GHz, Full-Scale Current = 20 mA, Temperature = 25°C
f
DAC
50
–55
–60
–65
–70
–75
–80
SFDR (dBc)
–85
–90
–95
–100
07852-011
0 200 400 600 800 1000 1200
Figure 13. SFDR vs. f
f
(MHz)
OUT
OUT
f
(MHz)
OUT
over Temperature, f
OUT
over Digital Full Scale,
0dBFS –3dBFS –6dBFS –12dBFS
+85°C +25°C –40°C
= 2.4 GHz,
DAC
07852-012
07852-008
Full-Scale Current = 20 mA, Digital Scale = 0 dBFS
Rev. A | Page 12 of 76
AD9789
90
100
80
70
60
IMD (dBc)
50
40
30
0 100 200 300 400 500 600 700 800 900 1000 1100
Figure 14. Third-Order IMD vs. f
f
OUT
OUT
(MHz)
over f
, Full-Scale Current = 20 mA,
DAC
Digital Scale = 0 dBFS, Temperature = 25°C
100
90
80
70
60
IMD (dBc)
50
40
30
0 100 200 300 400 500 600 700 800 900 1000 1100
Figure 15. Third-Order IMD vs. f
f
(MHz)
OUT
over Full-Scale Current, f
OUT
Digital Scale = 0 dBFS, Temperature = 25°C
2.4GHz
2.0GHz
1.6GHz
1.0GHz
32mA 20mA 8mA
DAC
07852-034
07852-038
= 2.4 GHz,
90
80
70
60
IMD (dBc)
50
40
30
0 100 200 300 400 500 600 700 800 900 1000 1100
Figure 17. Third-Order IMD vs. f
f
(MHz)
OUT
over Digital Full Scale, f
OUT
Full-Scale Current = 20 mA, Temperature = 25°C
90
80
70
60
IMD (dBc)
50
40
30
0 100 200 300 400 500 600 700 800 900 1000 1100
Figure 18. Third-Order IMD vs. f
f
(MHz)
OUT
over Temperature, f
OUT
Full-Scale Current = 20 mA, Digital Scale = 0 dBFS
0dBFS –3dBFS –6dBFS –12dBFS
DAC
+85°C +25°C –40°C
= 2.4 GHz,
DAC
07852-037
= 2.4 GHz,
07852-041
155
–157
–159
–161
–163
–165
–167
NSD (dBm/Hz)
–169
–171
–173
–175
0 200 400 600 800 1000 1200
Figure 16. NSD vs. f
OUT
f
(MHz)
OUT
over f
, 1-Channel QAM, Full-Scale Current = 20 mA
DAC
2.4GHz
2.0GHz
1.6GHz
07852-016
155
–157
–159
–161
–163
–165
–167
NSD (dBm/Hz)
–169
–171
–173
–175
0 200 400 600 800 1000 1200
Figure 19. NSD vs. f
over Temperature, 1-Channel QAM, f
OUT
f
OUT
(MHz)
+85°C +25°C –40°C
= 2.4 GHz,
DAC
07852-019
Full-Scale Current = 20 mA
Rev. A | Page 13 of 76
AD9789
–15
–25
–35
–5
DOCSIS3 –40°C 0°C +25°C +85°C
–15
–25
–35
–5
DOCSIS3 –40°C 0°C +25°C +85°C
–45
ACLR (dB c)
–55
–65
–75
–85
50 250 450 650 850
FREQUENCY (MHz)
Figure 20. ACLR Performance over Temperature, 1-Channel QAM,
= 2.3 GHz, Full-Scale Current = 20 mA, f
f
DAC
= 200 MHz, Sum Scale = 48
OUT
(DOCSIS SPEC Is −73 dBc; Harmonic Exception Is −63 dBc)
55
–60
–65
–70
–75
HARMONIC LEVEL (dBc)
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
f
(MHz)
OUT
Figure 21. Second-Order Harmonic Performance vs. f 1-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 20 mA, Sum Scale = 48
DAC
DOCSIS3 25°C 65°C 85°C
over Temperature,
OUT
(DOCSIS SPEC Is −73 dBc; Harmonic Exception Is −63 dBc)
55
–60
–65
–70
ACLR (d Bc)
–75
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
Figure 22. Noise Floor vs. f
1-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 20 mA, Sum Scale = 48
DAC
OUT
f
(MHz)
OUT
over Temperature (ACLR Measured Beyond 30 MHz),
(DOCSIS SPEC Is −73 dBc)
DOCSIS3 25°C 65°C 85°C
–45
ACLR (dB c)
–55
–65
–75
–85
50 150 250 350 450 550 650 750 850 950
07852-015
FREQUENCY (MHz)
07852-018
Figure 23. ACLR Performance over Temperature, 1-Channel QAM,
= 2.3 GHz, Full-Scale Current = 20 mA, f
f
DAC
= 800 MHz, Sum Scale = 48
OUT
(DOCSIS SPEC Is −73 dBc)
55
–60
–65
–70
–75
HARMONIC LEVEL (dBc)
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
07852-014
f
(MHz)
OUT
Figure 24. Third-Order Harmonic Performance vs. f
1-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 20 mA, Sum Scale = 48
DAC
DOCSIS3 25°C 65°C 85°C
over Temperature,
OUT
07852-017
(DOCSIS SPEC Is −73 dBc; Harmonic Exception Is −63 dBc)
–5
DOCSIS 3
–15
–25
–35
–45
ACLR (dB c)
–55
–65
–75
–85
07852-031
Figure 25. ACLR Performance over f
2.3GHz
2.2GHz
2.4GHz
50 250 450 650 850 1050
FREQUENCY (MHz)
, 1-Channel QAM, f
DAC
= 850 MHz,
OUT
07852-039
Full-Scale Current = 20 mA, Temperature = 25°C, Sum Scale = 48
(DOCSIS SPEC Is −73 dBc)
Rev. A | Page 14 of 76
AD9789
0
DOCSIS3 CMOS LVD S
0 100 200 300 400 500 600 700 800 900 1000
FREQUENCY ( MHz)
07852-040
ACLR (dBc)
–10
–20
–30
–40
–50
–60
–70
–80
–90
Figure 26. ACLR Performance for CMOS and LVDS Interfaces, 1-Channel QAM,
= 840 MHz, f
f
OUT
= 2.4 GHz, Full-Scale Current = 20 mA, Sum Scale = 48
DAC
(DOCSIS SPEC Is −73 dBc)
–5
–15
–25
–35
–45
ACLR (dB c)
–55
–65
–75
–85
DOCSIS3 25°C 65°C 85°C
50 250 450 650 850 1050
FREQUENCY (MHz)
07852-042
Figure 27. ACLR Performance over Temperature, 2-Channel QAM,
f
= 800 MHz, f
OUT
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 32
DAC
(DOCSIS SPEC Is −70 dBc)
55
–60
–65
–5
–15
–25
–35
–45
ACLR (dB c)
–55
–65
–75
–85
50 250 450 650 850 1050
FREQUENCY (MHz)
DOCSIS3 25°C 65°C 85°C
07852-044
Figure 29. ACLR Performance over Temperature, 2-Channel QAM,
= 200 MHz, f
f
OUT
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 32
DAC
(DOCSIS SPEC Is −70 dBc; Harmonic Exception Is −63 dBc)
55
–60
–65
–70
–75
HARMONIC LEVEL (dBc)
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
f
OUT
(MHz)
Figure 30. Second Harmonic Performance vs. f
2-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 32
DAC
DOCSIS3 25°C 65°C 85°C
over Temperature,
OUT
07852-045
(DOCSIS SPEC Is −70 dBc; Harmonic Exception Is −63 dBc)
55
DOCSIS3
–60
–65
25°C 65°C 85°C
–70
–75
HARMONIC LEVEL (dBc)
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
f
OUT
(MHz)
Figure 28. Third-Order Harmonic Performance vs. f
2-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 32
DAC
(DOCSIS SPEC Is −70 dBc; Harmonic Exception Is −63 dBc)
DOCSIS3 25°C 65°C 85°C
over Temperature,
OUT
07852-043
–70
ACLR (d Bc)
–75
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
Figure 31. Noise Floor vs. f
2-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 32
DAC
f
(MHz)
OUT
over Temperature (ACLR Measured Beyond 30 MHz),
OUT
(DOCSIS SPEC Is −70 dBc)
07852-046
Rev. A | Page 15 of 76
AD9789
0
–10
–20
–30
–40
ACLR (dBc)
–50
–60
–70
–80
50 250 450 650 850 1050
FREQUENCY ( MHz)
DOCSIS3 –40°C 0°C +25°C +85°C
Figure 32. ACLR Performance over Temperature, 4-Channel QAM,
= 200 MHz, f
f
OUT
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 20
DAC
(DOCSIS SPEC Is −67 dBc; Harmonic Exception Is −63 dBc)
55
–60
–65
–70
0
–10
–20
–30
–40
ACLR (dBc)
–50
–60
–70
–80
50 250 450 650 850 1050
07852-027
DOCSIS3 –40°C 0°C +25°C +85°C
FREQUENCY (MHz )
07852-030
Figure 35. ACLR Performance over Temperature, 4-Channel QAM,
= 800 MHz, f
f
OUT
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 20
DAC
(DOCSIS SPEC Is −67 dBc)
55
–60
–65
–70
–75
HARMONIC LEVEL (dBc)
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
f
(MHz)
OUT
Figure 33. Second-Order Harmonic Performance vs. f 4-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 20
DAC
(DOCSIS SPEC Is −67 dBc; Harmonic Exception Is −63 dBc)
55
–60
–65
–70
ACLR (d Bc)
–75
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
Figure 34. Noise Floor vs. f
4-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 20
DAC
OUT
f
(MHz)
OUT
over Temperature (ACLR Measured Beyond 30 MHz),
(DOCSIS SPEC Is −67 dBc)
DOCSIS3 25°C 65°C 85°C
over Temperature,
OUT
DOCSIS3 25°C 65°C 85°C
–75
HARMONIC LEVEL (dBc)
–80
–85
0 100 200 300 400 500 600 700 800 900 1000
07852-026
f
(MHz)
OUT
Figure 36. Third-Order Harmonic Performance vs. f
4-Channel QAM, f
= 2.3 GHz, Full-Scale Current = 25 mA, Sum Scale = 20
DAC
DOCSIS 3 25°C 65°C 85°C
over Temperature,
OUT
07852-029
(DOCSIS SPEC Is −67 dBc; Harmonic Exception Is −63 dBc)
0
DOCSIS3
–10
–20
–30
–40
ACLR (dBc)
–50
–60
–70
–80
07852-028
Figure 37. ACLR Performance over f
2.3GHz
2.2GHz
2.4GHz
50 250 450 650 850 1050
FREQUENCY (MHz )
, 4-Channel QAM, f
DAC
= 850 MHz,
OUT
07852-047
Full-Scale Current = 25 mA, Temperature = 25°C, Sum Scale = 20
(DOCSIS SPEC Is −67 dBc)
Rev. A | Page 16 of 76
AD9789
A
m
A
m
A
m
A
m
TTEN 2dBRE F –32.76dB
TTEN 2dBRE F –32.76dB
CENTER 840.00MHz RES BW 56kHz VBW 560kHz
FREQ. LOWER UPPER RMS RESULTS CARRIER POWER –18.10dBm/
6.00000MHz
OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –65.57 –83.66 –68. 98 –87.07
6.375MHz 5.250M Hz –75.01 –93. 11 –74.62 –92.71
12.00MHz 6.000M Hz –76.83 –94.92 –76.46 –94.55
18.00MHz 6.000M Hz –77.17 –95.26 –76.56 –94.66
Figure 38. 1-Channel QAM ACLR, f
SWEEP 39. 12ms (601 PTS)
= 840 MHz, Temperature = 25°C,
OUT
SPAN 42MHz
Sum Scale = 48, Full-Scale Current = 20 mA, Span = 42 MHz
TTEN 2dBRE F –35.91dB
CENTER 840.00MHz RES BW 30kHz VBW 300kHz
FREQ. LOWER UPPER RMS RESULTS CARRIER POWER –21.75dBm/
6.00000MHz
OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –71.64 –93.39 –72. 50 –94.25
6.375MHz 5.250M Hz –73.71 –95.47 –66.72 –88.47
12.00MHz 6.000M Hz –73.58 –95.33 0.50 –21.10
18.00MHz 6.000M Hz –73.70 –95.45 –66.72 –88.48
Figure 39. 2-Channel QAM ACLR, f
SWEEP 136. 2ms (601 PTS)
= 840 MHz, Sum Scale = 32,
OUT
SPAN 42MHz
Full-Scale Current = 25 mA, Span = 42 MHz, Channel 1
CENTER 840.00MHz RES BW 30kHz VBW 300kHz
FREQ. LOWER UPPER
RMS RESULTS CARRIER POWER
–17.98dBm/
07852-020
6.00000MHz
OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –73.99 –91.97 –74. 93 –92.91
6.375MHz 5.250M Hz –74.94 –92.92 –75.35 –93.33
Figure 40. 1-Channel QAM ACLR, f
SWEEP 58.4ms (601 PTS)
= 840 MHz, Temperature = 25°C,
OUT
SPAN 18MHz
7852-023
Sum Scale = 48, Full-Scale Current = 20 mA, Span = 18 MHz
TTEN 2dBRE F –35.91dB
START 831.00M Hz RES BW 30kHz VBW 300kHz
FREQ. LOWER UPPER RMS RESULTS CARRIER POWER –21.29dBm/
07852-061
6.00000MHz
OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –70.07 –92.16 –73. 20 –94.49
6.375MHz 5.250M Hz –69.05 –90.34 –73.87 –95.16
12.00MHz 6.000M Hz –0.49 –21.78 –73.29 –94.58
18.00MHz 6.000M Hz –66.61 –87.90 –73.98 –95.27
Figure 41. 2-Channel QAM ACLR, f
SWEEP 136. 2ms (601 PTS)
= 840 MHz, Sum Scale = 32,
OUT
STOP 873MHz
07852-066
Full-Scale Current = 25 mA, Span = 42 MHz, Channel 2
Rev. A | Page 17 of 76
AD9789
A
m
A
m
A
m
A
TTEN 2dBRE F –35.91dB
TTEN 2dBRE F –35.91dB
CENTER 840.00MHz RES BW 30kHz VBW 300kHz
FREQ. LOWER UPPER RMS RESULTS CARRIER POWER –21.56dBm/
6.00000MHz
OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –75.37 –96.93 –75. 56 –97. 11
6.375MHz 5.250M Hz –73.85 –95.41 –72.54 –94.10
Figure 42. Zoomed 2-Channel QAM ACLR, f
SWEEP 58.4ms (601 PTS)
OUT
SPAN 18MHz
= 840 MHz, Sum Scale = 32,
Full-Scale Current = 25 mA, Span = 18 MHz, Channel 1
TTEN 2dBRE F –35.96dB
CENTER 834.00MHz RES BW 30kHz
RMS RESULTS CARRIER POWER –23.63dBm/
6.00000MHz
VBW 300kHz
FREQ. LOWER UPPER
OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –70.33 –93.96 – 11.07 –34.70
6.375MHz 5.250MHz –69.04 –92.67 –0.49 –24.12
12.00MHz 6.000MHz –70.38 –94.01 0.00 –23.63
18.00MHz 6.000MHz –71.02 –94.65 0.43 –23.20
Figure 43. 4-Channel QAM ACLR, f
SWEEP 136.2ms (601 PTS)
= 840 MHz, Temperature = 25°C,
OUT
SPAN 42MHz
Sum Scale = 20, Full-Scale Current = 25 mA, Span = 42 MHz, Channel 1
CENTER 852.00MHz RES BW 30kHz VBW 300kHz
FREQ. LOWER UPPER RMS RESULTS CARRIER POWER –21.03dBm/
07852-065
6.00000MHz
OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –75.51 –96.54 –75. 17 –96.20
6.375MHz 5.250M Hz –72.55 –93.58 –73.90 –94.93
Figure 44. Zoomed 2-Channel QAM ACLR, f
SWEEP 58.4ms (601 PTS)
OUT
SPAN 18MHz
07852-067
= 840 MHz, Sum Scale = 32,
Full-Scale Current = 25 mA, Span = 18 MHz, Channel 2
TTEN 2dBREF –35.96dBm
CENTER 852.00MHz RES BW 30kHz
RMS RESULTS CARRIER POWER –23.23dBm/
07852-021
6.00000MHz
Figure 45. 4-Channel QAM ACLR, f
VBW 300kHz
FREQ. LOWER UPPER
OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –11.10 –34.32 –72.19 –95.42
6.375MHz 5.250M Hz –0.75 –23.98 –68.97 –92.20
12.00MHz 6.000M Hz –0.59 –23.81 –70.32 –93.55
18.00MHz 6.000M Hz –0.35 –23.58 –70.70 –93.93
SWEEP 136. 2ms (601 PTS)
= 840 MHz, Temperature = 25°C,
OUT
SPAN 42MHz
07852-022
Sum Scale = 20, Full-Scale Current = 25 mA, Span = 42 MHz, Channel 4
Rev. A | Page 18 of 76
AD9789
A
A
TTEN 2dBREF –35.96dBm
TTEN 2dBREF –35.96dBm
CENTER 834.00MHz RES BW 30kHz
RMS RESULTS CARRIER POWER
–23.62dBm/
6.00000MHz
VBW 300kHz
FREQ. LOWER UPPER OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –72.95 –96.56 –10. 86 –34.48
6.375MHz 5.250M Hz –69.38 –92.99 –0.51 –24.13
Figure 46. Zoomed 4-Channel QAM ACLR, f
SWEEP 58.4ms (601 PTS)
OUT
SPAN 18MHz
= 840 MHz, Temperature =
07852-024
25°C, Sum Scale = 20, Full-Scale Current = 25 mA, Span = 18 MHz, Channel 1
50
48
46
44
42
40
MER (dB)
38
36
34
32
30
50 150 250 350 450 550 650 750 850 950
f
OUT
(MHz)
+25°C
+85°C
–40°C
07852-032
Figure 47. Modulation Error Ratio, Equalized, 1-Channel 256-QAM,
f
= 2.29376 GHz, Full-Scale Current = 20 mA, Sum Scale = 48
DAC
(Equalization Filter from Demodulation Toolbox on Spectrum Analyzer Used)
50
48
46
44
42
40
MER (dB)
38
36
34
32
30
50 150 250 350 450 550 650 750 850 950
f
OUT
(MHz)
+25°C
+85°C
–40°C
07852-033
Figure 48. Modulation Error Ratio, Unequalized, 1-Channel 256-QAM,
= 2.29376 GHz, Full-Scale Current = 20 mA, Sum Scale = 48
f
DAC
CENTER 852.00MHz RES BW 30kHz
RMS RESULTS CARRIER POWER
–23.20dBm/
6.00000MHz
VBW 300kHz
FREQ. LOWER UPPER OFFSET REF BW dBc dBm dBc dBm
3.375MHz 750.0kHz –11.20 –34.40 –74.44 –97.64
6.375MHz 5.250M Hz –0.77 –23.96 –69.07 –92.26
Figure 49. Zoomed 4-Channel QAM ACLR, f
SWEEP 58.4ms (601 PTS)
OUT
SPAN 18MHz
= 840 MHz, Temperature =
07852-025
25°C, Sum Scale = 20, Full-Scale Current = 25 mA, Span = 18 MHz, Channel 4
50
48
46
44
42
40
MER (dB)
38
36
34
32
30
50 150 250 350 450 550 650 750 850 950
f
OUT
(MHz)
+25°C
+85°C
–40°C
07852-035
Figure 50. Modulation Error Ratio, Equalized, 4-Channel 256-QAM,
f
= 2.29376 GHz, Full-Scale Current = 25 mA, Sum Scale = 20
DAC
(Equalization Filter from Demodulation Toolbox on Spectrum Analyzer Used)
50
48
46
44
42
40
MER (dB)
38
36
34
32
30
50 150 250 350 450 550 650 750 850 950
f
OUT
(MHz)
+25°C
+85°C
–40°C
07852-036
Figure 51. Modulation Error Ratio, Unequalized, 4-Channel 256-QAM,
= 2.29376 GHz, Full-Scale Current = 25 mA, Sum Scale = 20
f
DAC
Rev. A | Page 19 of 76
AD9789
A
m
A
m
80
75
70
65
60
55
50
45
40
SFDR (dBc)
35
30
25
20
15
10
1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
Figure 52. SFDR vs. f
in Mix Mode, f
OUT
f
(MHz)
OUT
= 2.4 GHz, Full-Scale Current = 20 mA
DAC
(Second Nyquist Zone Performance)
90
85
80
75
70
65
60
55
IMD (dBc)
50
45
40
35
30
1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
Figure 53. IMD vs. f
in Mix Mode, f
OUT
f
(MHz)
OUT
= 2.4 GHz, Full-Scale Current = 20 mA
DAC
(Second Nyquist Zone Performance)
07852-068
CENTER 2.100G Hz RES BW 30kHz VBW 300kHz
RMS RESULTS CARRIER POWER –19.95dBm/
3.84000MHz
Figure 55. One-Carrier WCDMA ACLR in Mix Mode, f
f
07852-076
TTEN 0dBRE F –32.62dB
SWEEP 174. 6ms (601 PTS)
FREQ. LOWER UPPER
OFFSET REF BW dBc dBm dBc dBm
5.000MHz 3.840M Hz –68.93 –88.88 –67.99 –87.94
10.00MHz 3.840M Hz –71.31 –91.26 –70.42 –90.37
15.00MHz 3.840M Hz –73.43 –93.37 –72.68 –92.63
20.00MHz 3.840M Hz –75.12 –95.07 –74.89 –94.84
25.00MHz 3.840M Hz –75.60 –95.55 –76.51 –96.46
= 2304 MHz, Full-Scale Current = 20 mA
DAC
TTEN 2dBRE F –38.62dB
SPAN 53.84MHz
OUT
= 2.1 GHz,
07852-092
40
–45
–50
–55
–60
–65
ACLR (dBc)
–70
–75
–80
–85
Figure 54. ACLR vs. f
FIRST ADJACENT CHANNE L SECOND ADJACENT CHANNE L THIRD ADJACENT CHANNE L FIFTH ADJACENT CHANNE L
1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250
in Mix Mode with One-Carrier WCDMA, f
OUT
f
OUT
(MHz)
Full-Scale Current = 20 mA (Second Nyquist Zone Performance)
= 2304 MHz,
DAC
07852-075
Rev. A | Page 20 of 76
CENTER 2.102 50G Hz RES BW 30kHz VBW 300kHz
FREQ. LOWER UPPER RMS RESULTS CARRIER POWER –26.06dBm/
3.84000MHz
OFFSET REF BW dBc dBm dBc dBm
5.000MHz 3.840M Hz –0.25 –26.31 –0.42 –26.47
10.00MHz 3.840M Hz –0.42 –26.48 –63.50 –89.56
15.00MHz 3.840M Hz –64.07 –90.13 –65.13 –91.18
20.00MHz 3.840M Hz –65.36 –91.42 –66.97 –93.03
25.00MHz 3.840M Hz –66.86 –92.92 –68.70 –94.76
30.00MHz 3.840M Hz –67.83 –93.89 –68.64 –94.70
SWEEP 207ms (601 PTS)
Figure 56. Four-Carrier WCDMA ACLR in Mix Mode, f
= 2304 MHz, Full-Scale Current = 20 mA
f
DAC
SPAN 63.84MHz
= 2.1 GHz,
OUT
07852-093
AD9789
1100
1000
900
800
700
600
500
400
300
POWER DISSIPATIO N (mW)
200
100
Figure 57. Power Dissipation by Supply vs. f
AVDD33 DVDD33 (LVDS) DVDD33 (CMOS) DVDD18 DVDD15 CVDD18
0
1.0 1. 2 1.4 1.6 1.8 2.0 2.2 2.4
f
(GHz)
DAC
, 4-Channel DOCSIS, f
DAC
= 915 MHz,
OUT
Full-Scale Current = 25 mA (Datapath Configuration: QAM Encoder On,
SRRC Filter On, Four 2× Interpolation Filters On)
07852-094
2000
1800
1600
1400
1200
1000
800
600
POWER DISSIPATIO N (mW)
400
200
Figure 60. Total Power Dissipation vs. f
TOTAL (CMOS) TOTAL (LVDS)
0
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
f
(GHz)
DAC
, 4-Channel DOCSIS, f
DAC
= 915 MHz,
OUT
Full-Scale Current = 25 mA (Datapath Configuration: QAM Encoder On,
SRRC Filter On, Four 2× Interpolation Filters On)
07852-096
700
600
500
400
300
200
POWER DISSIPATION (mW)
100
AVDD33 DVDD33 (LVDS) DVDD33 (CMOS) DVDD18 DVDD15 CVDD18
0
1.0 1. 2 1.4 1.6 1.8 2.0 2.2 2.4
f
DAC
(GHz)
Figure 58. Power Dissipation by Supply vs. f
One Channel Enabled, f
200
180
160
140
120
100
80
60
POWER DISSIPATION (mW)
40
20
0
8 101214161820222426283032
= 70 MHz, Full-Scale Current = 20 mA
OUT
AVDD33
FULL-SCAL E CURRENT (mA)
Figure 59. AVDD33 Power Dissipation vs. Full-Scale Current
, 16× Interpolation,
DAC
1400
1200
1000
800
600
400
POWER DISSIPATION (mW)
200
07852-095
Figure 61. Total Power Dissipation vs. f
One Channel Enabled, f
07852-098
TOTAL (CMOS) TOTAL (LVDS)
0
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
f
(GHz)
DAC
, 16× Interpolation,
= 70 MHz, Full-Scale Current = 20 mA
OUT
DAC
07852-097
Rev. A | Page 21 of 76
AD9789

TERMINOLOGY

Monotonicity
A DAC is monotonic if the output either increases or remains constant as the digital input increases.
Offset Error
Offset error is the deviation of the output current from the ideal of 0. For IOUTP, 0 mA output is expected when all inputs are set to 0. For IOUTN, 0 mA output is expected when all inputs are set to 1.
Gain Error
Gain error is the difference between the actual and ideal output span. The actual span is determined by the output when all inputs are set to 1s minus the output when all inputs are set to 0s.
Temp er at u re D ri ft
Temperature drift is specified as the maximum change from the ambient (25°C) value to the value at either T
MIN
or T
. For offset,
MAX
gain, and reference drift, the drift is reported in ppm per °C.
Power Supply Rejection (PSR)
PSR is the maximum change in the full-scale output as the supplies are varied from nominal to minimum and maximum specified voltages.
Output Compliance Range
The output compliance range is the range of allowable voltage at the output of a current output DAC. Operation beyond the maximum compliance limits may cause either output stage saturation or breakdown, resulting in nonlinear performance.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in dB, between the peak amplitude of the output signal and the peak spurious signal over the specified bandwidth.
Noise Spectral Density (NSD)
NSD is the converter noise power per unit of bandwidth. NSD is usually specified in dBm/Hz in the presence of a 0 dBm full­scale signal.
Adjacent Channel Leakage Ratio (ACLR)
The adjacent channel leakage (power) ratio is the ratio, in dBc, between the measured power within a channel relative to its adjacent channels.
Modulation Error Ratio (MER)
Modulated signals create a discrete set of output values referred to as a constellation. Each symbol creates an output signal corre­sponding to one point on the constellation. MER is a measure of the discrepancy between the average output symbol magnitude and the rms error magnitude of the individual symbol.
Intermodulation Distortion (IMD)
IMD is the result of two or more signals at different frequencies mixing together. Many products are created according to the formula af
± bf2, where a and b are integer values.
1
Rev. A | Page 22 of 76
AD9789

SERIAL CONTROL PORT

The AD9789 serial control port is a flexible, synchronous serial communications port that allows an easy interface to many industry-standard microcontrollers and microprocessors. The AD9789 serial control port is compatible with most synchronous transfer formats, including both the Motorola SPI® and Intel® SSR protocols. The serial control port allows read/write access to all registers that configure the AD9789. Single- or multiple-byte transfers are supported, as well as MSB first or LSB first transfer formats. The AD9789 serial control port can be configured for a single bidirectional I/O pin (SDIO only) or for two unidirectional I/O pins (SDIO/SDO). By default, the AD9789 is in unidirectional long instruction mode (long instruction mode is the only instruction mode supported).

SERIAL CONTROL PORT PIN DESCRIPTIONS

The SCLK (serial clock) pin is the serial shift clock. This pin is an input. SCLK is used to synchronize serial control port reads and writes. Write data bits are registered on the rising edge of this clock, and read data bits are registered on the falling edge. This pin is internally pulled down by a 30 kΩ resistor to ground.
SDIO (serial data input/output) is a dual-purpose pin that acts as an input only (unidirectional mode) or as both an input and an output (bidirectional mode). The AD9789 defaults to the unidirectional I/O mode (Register 0x00[7] = 0).
The SDO (serial data output) pin is used only in the unidirectional I/O mode as a separate output pin for reading back data.
CS
(chip select bar) is an active low control that gates the read
and write cycles. When
CS
is high, SDO and SDIO are in a high impedance state. This pin is internally pulled up by a 30 kΩ resistor to DVDD33.
SCLK
M1
AD9789
L1
CS
SDO
SDIO
Figure 62. Serial Control Port
N1
P1
SERIAL
CONTROL
PORT
07852-048

GENERAL OPERATION OF SERIAL CONTROL PORT

A write or read operation to the AD9789 is initiated by pulling CS
low. CS stall high is supported in modes where three or
fewer bytes of data (plus the instruction data) are transferred
CS
(see ). In these modes, Tabl e 7 on any byte boundary, allowing time for the system controller to process the next byte.
CS
only and can go high during either part (instruction or data) of the transfer.
During
CS
stall high mode, the serial control port state machine enters a wait state until all data is sent. If the system controller decides to abort the transfer before all of the data is sent, the state machine must be reset by either completing the remaining
can temporarily return high
can go high on byte boundaries
transfers or by returning cycle (but less than eight SCLK cycles). Raising boundary terminates the serial transfer and flushes the buffer.
In streaming mode (see Ta b le 7 ), any number of data bytes can be transferred in a continuous stream. The register address is automatically incremented or decremented (see the MSB/LSB First Transfers section). byte to be transferred, thereby ending streaming mode.

Communication Cycle—Instruction Plus Data

There are two parts to a communication cycle with the AD9789. In the first part, a 16-bit instruction word is written to the AD9789, coincident with the first 16 SCLK rising edges. The instruction word provides the AD9789 serial control port with information regarding the data transfer, which is the second part of the communication cycle. The instruction word defines whether the upcoming data transfer is a read or a write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer.

Write

If the instruction word is for a write operation, the second part of the communication cycle is the transfer of data into the serial control port buffer of the AD9789. Data bits are registered on the rising edge of SCLK.
The length of the transfer (one, two, or three bytes or streaming mode) is indicated by two bits (N1 and N0) in the instruction byte. When the transfer is one, two, or three bytes (but not streaming
CS
mode),
can be raised after each sequence of eight bits to stall the bus, except after the last byte, where it ends the cycle. When the bus is stalled, the serial transfer resumes when Raising
CS
on a nonbyte boundary resets the serial control port. During a write, streaming mode does not skip reserved or blank registers; therefore, the user must know what bit pattern to write to the reserved registers to preserve proper operation of the part. It does not matter what data is written to blank registers.
Most writes to the control registers immediately reconfigure the device. However, Register 0x16 through Register 0x1D do not directly control device operation. They provide data to internal logic that must perform additional operations on the data before it is downloaded and the device configuration is changed. For any updates to Register 0x16 through Register 0x1D to take effect, the FREQNEW bit (Register 0x1E[7]) must be set to 1 (this bit is self-clearing). Any number of bytes of data can be changed before updating registers. Setting the FREQNEW bit simultaneously updates Register 0x16 through Register 0x1D.
In a similar fashion, any changes to Register 0x22 and Register 0x23 require PARMNEW (Register 0x24[7]) to be toggled from a low state to a high state before the new values take effect. Unlike the FREQNEW bit, PARMNEW is not self-clearing.
CS
low for at least one complete SCLK
CS
on a nonbyte
CS
must be raised at the end of the last
CS
is lowered.
Rev. A | Page 23 of 76
Loading...
+ 53 hidden pages