ANALOG DEVICES AD9600 Service Manual

10-Bit, 105 MSPS/125 MSPS/150 MSPS,
www.BDTIC.com/ADI
1.8 V Dual Analog-to-Digital Converter

FEATURES

SNR = 60.6 dBc (61.6 dBFS) to 70 MHz at 150 MSPS SFDR = 81 dBc to 70 MHz at 150 MSPS Low power: 825 mW at 150 MSPS
1.8 V analog supply operation
1.8 V to 3.3 V CMOS output supply or 1.8 V LVDS supply Integer 1 to 8 input clock divider Intermediate frequency (IF) sampling frequenci Internal analog-to-digital converter (ADC) voltage reference Integrated ADC sample-and-hold inputs Flexible analog input: 1 V p-p to 2 V p-p range Differential analog inputs with 650 MHz bandwidth ADC clock duty cycle stabilizer 95 dB channel isolation/crosstalk Serial port control User-configurable built-in self-test (BIST) capability Energy-saving power-down modes Integrated receive features
Fast detect/threshold bits Composite signal monitor

APPLICATIONS

Point-to-point radio receivers (GPSK, QAM) Diversity radio systems
es up to 450 MHz

FUNCTIONAL BLOCK DIAGRAM

FD[0:3]A
AD9600
I/Q demodulation systems Smart antenna systems Digital predistortion General-purpose software radios Broadband data applications Data acquisition Nondestructive testing

PRODUCT HIGHLIGHTS

1. Integrated dual, 10-bit, 150 MSPS/125 MSPS/105 MSPS ADC.
ast overrange detect and signal monitor with serial output.
2. F
3. Si
gnal monitor block with dedicated serial output mode.
4. P
roprietary differential input maintains excellent SNR
performance for input frequencies up to 450 MHz.
5. The AD9600 op
features a separate digital output driver supply to accommodate 1.8 V to 3.3 V logic families.
6. A st
andard serial port interface supports various product features and functions, such as data formatting (offset binary, twos complement, or gray coding), enabling the clock DCS, power-down mode, and voltage reference mode.
7. Th
e AD9600 is pin compatible with the AD9627-11, AD9627,
AD9640, allowing a simple migration from 10 bits to
and 11 b
its, 12 bits, or 14 bits.
SCLK/
SDIO/
DFS
DCS
erates from a single 1.8 V supply and
DRVDDDVDDAVDD CSB
FD BITS/THRESHOLD
AD9600
VIN + A
VIN – A
VREF
SENSE
CML
VIN – B
VIN + B
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
SHA ADC
–+
REFERENCE
SELECT
SHA
MULTICHIP
SYNC
NOTES
1. PIN NAMES ARE F OR THE CMOS PIN CONFIGURATION O NLY; SEE FIGURE 7 FOR LVDS PIN NAMES.
DETECT
SIGNAL
MONITOR
ADC
FD BITS/THRESHOLD
DETECT
FD[0:3]B
SPI
D9A
PROGRAMMING DATA
DIVIDE 1
TO 8
DUTY CYCLE
STABLIZER
SERIAL MONITOR
DATA
SERIAL MONITOR
INTERFACE
SMI
SMI
SDFS
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.
SCLK/ PDWN
SDO/
OEB
CMOS/LV DS
DCO
GENERATION
CMOS/ LVDS
DRGNDSYNCAGND SMI
D0A
OUTPUT BUFFER
CLK+
CLK–
DCOA
DCOB
D9B
D0B
OUTPUT BUFF ER
6909-001
AD9600
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications....................................................................................... 1
Product Highlights........................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
General Description......................................................................... 3
Specifications..................................................................................... 4
DC Specifications ......................................................................... 4
AC Specifications.......................................................................... 5
Digital Specifications ................................................................... 6
Switching Specifications .............................................................. 8
Timing Characteristics ................................................................ 9
Timing Diagrams.......................................................................... 9
Absolute Maximum Ratings.......................................................... 11
Thermal Characteristics ............................................................ 11
ESD Caution................................................................................ 11
Pin Configuration and Function Descriptions........................... 12
Equivalent Circuits......................................................................... 16
Typical Performance Characteristics ........................................... 17
Theory of Operation ...................................................................... 22
ADC Architecture ...................................................................... 22
Analog Input Considerations....................................................22
Volt a ge R e fer e nce ....................................................................... 24
Clock Input Considerations...................................................... 25
Power Dissipation and Standby Mode..................................... 27
Digital Outputs ........................................................................... 27
Timing.......................................................................................... 28
ADC Overrange and Gain Control.............................................. 29
Fast Detect Overview................................................................. 29
ADC Fast Magnitude................................................................. 29
ADC Overrange (OR)................................................................ 30
Gain Switching............................................................................ 30
Signal Monitor ................................................................................ 32
Peak Detector Mode................................................................... 32
RMS/MS Magnitude Mode....................................................... 32
Threshold Crossing Mode......................................................... 33
Additional Control Bits ............................................................. 33
DC Correction............................................................................ 34
Signal Monitor SPORT Output ................................................ 34
Built-In Self-Test (BIST) and Output Test .................................. 35
Built-In Self-Test (BIST)............................................................ 35
Output Test Modes..................................................................... 35
Channel/Chip Synchronization.................................................... 36
Serial Port Interface (SPI).............................................................. 37
Configuration Using the SPI..................................................... 37
Hardware Interface..................................................................... 37
Configuration Without the SPI................................................ 38
SPI Accessible Features.............................................................. 38
Memory Map .................................................................................. 39
Reading the Memory Map Table.............................................. 39
Memory Map .............................................................................. 40
Memory Map Register Description ......................................... 43
Applications..................................................................................... 46
Design Guidelines ...................................................................... 46
Evaluation Board ............................................................................ 47
Power Supplies ............................................................................ 47
Input Signals................................................................................ 47
Output Signals ............................................................................ 47
Default Operation and Jumper Selection Settings................. 48
Alternative Clock Configurations ............................................ 48
Alternative Analog Input Drive Configuration...................... 49
Schematics................................................................................... 50
Evaluation Board Layouts ......................................................... 60
Bill of Materials........................................................................... 68
Outline Dimensions ....................................................................... 70
Ordering Guide .......................................................................... 70

REVISION HISTORY

11/07—Revision 0: Initial Version
Rev. 0 | Page 2 of 72
AD9600
www.BDTIC.com/ADI

GENERAL DESCRIPTION

The AD9600 is a dual, 10-bit, 105 MSPS/125 MSPS/150 MSPS ADC. It is designed to support communications applications where low cost, small size, and versatility are desired.
The dual ADC core features a multistage, differential pipelined
rchitecture with integrated output error correction logic. Each
a ADC features wide bandwidth, differential sample-and-hold analog input amplifiers supporting a variety of user-selectable input ranges. An integrated voltage reference eases design considerations. A duty cycle stabilizer is provided to compen­sate for variations in the ADC clock duty cycle, allowing the converters to maintain excellent performance.
The AD9600 has several functions that simplify the automated ga
in control (AGC) function in a communications receiver. For example, the fast detect feature allows fast overrange detection by outputting four bits of input level information with very short latency.
In addition, the programmable threshold detector allows moni­t
oring the amplitude of the incoming signal with short latency, using the four fast detect bits of the ADC. If the input signal level exceeds the programmable threshold, the fine upper threshold indicator goes high. Because this threshold is set from the four MSBs, the user can quickly adjust the system gain to avoid an overrange condition.
Another AGC-related function of the AD9600 is the signal
onitor. This block allows the user to monitor the composite
m magnitude of the incoming signal, which aids in setting the gain to optimize the dynamic range of the overall system.
The ADC output data can be routed directly to the two external 10-b
it output ports. These outputs can be set from 1.8 V to 3.3 V CMOS or 1.8 V LVDS. In addition, flexible power-down options allow significant power savings.
Rev. 0 | Page 3 of 72
AD9600
www.BDTIC.com/ADI

SPECIFICATIONS

DC SPECIFICATIONS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, fast detect output pins disabled, signal monitor disabled, unless otherwise noted.
Table 1.
AD9600BCPZ-105 AD9600BCPZ-125 AD9600BCPZ-150
Parameter Temp
RESOLUTION Full 10 10 10 Bits ACCURACY
No Missing Codes Full Guaranteed Guaranteed Guaranteed Offset Error Full ±0.3 ±0.7 ±0.3 ±0.7 ±0.3 ±0.7 % FSR Gain Error Full −3.6 −2.2 −1.0 −4.0 −2.5 −1.3 −4.3 −3.0 −1.6 % FSR Differential Nonlinearity (DNL)
1
Full ±0.2 ±0.2 ±0.2 LSB
25°C ±0.1 ±0.1 ±0.1 LSB
Integral Nonlinearity (INL)
1
Full ±0.3 ±0.3 ±0.4 LSB 25°C ±0.1 ±0.1 ±0.1 LSB MATCHING CHARACTERISTICS
Offset Error Full ±0.3 ±0.7 ±0.3 ±0.7 ±0.2 ±0.7 % FSR Gain Error Full ±0.2 ±0.8 ±0.3 ±0.8 ±0.2 ±0.8 % FSR
TEMPERATURE DRIFT
Offset Error Full ±15 ±15 ±15 ppm/°C Gain Error Full ±95 ±95 ±95 ppm/°C
INTERNAL VOLTAGE REFERENCE
Output Voltage Error (1 V Mode) Full ±5 ±16 ±5 ±16 ±5 ±16 mV Load Regulation @ 1.0 mA Full 7 7 7 mV
INPUT-REFERRED NOISE
VREF = 1.0 V 25°C 0.1 0.1 0.1 LSB rms
ANALOG INPUT
Input Span, VREF = 1.0 V Full Input Capacitance
2
Full VREF INPUT RESISTANCE Full 6 6 6 kΩ POWER SUPPLIES
Supply Voltage
AVDD, DVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 V DRVDD (CMOS Mode) Full 1.7 3.3 3.6 1.7 3.3 3.6 1.7 3.3 3.6 V
Supply Current
1, 3
I
AVDD
4
1, 3,
I
DVDD
I
(3.3 V CMOS) Full
DRVDD
I
(1.8 V CMOS) Full
DRVDD
I
(1.8 V LVDS)
DRVDD
Full
Full
POWER CONSUMPTION
DC Input Full Sine Wave Input
1
DRVDD = 1.8 V Full DRVDD = 3.3 V Full
Standby Power
4
Full
Power-Down Power Full
1
Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.
2
Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 8 for the equivalent analog input structure.
3
The maximum limit applies to the combination of I
4
Standby power is measured with a dc input and the CLK+ and CLK− pins inactive (set to AVDD or AGND).
Min Typ Max Min Typ Max Min Typ Max Unit
and I
DVDD
currents.
AVDD
2 8
310 365 385 455 419 495 mA 34 365 42 455 50 495 mA 35 15 42
600 650 750 800 825 890 mW
645 740 68
2.5 6 2.5 6 2.5 6 mW
Rev. 0 | Page 4 of 72
2 2 V p-p 8 8 pF
36 42 mA 18 22 mA 44 46 mA
813 892 mW 900 990 mW 77 77 mW
AD9600
www.BDTIC.com/ADI

AC SPECIFICATIONS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, fast detect output pins disabled, signal monitor disabled, unless otherwise noted.
Table 2.
Parameter
SIGNAL-TO-NOISE RATIO (SNR)
fIN = 2.3 MHz 25°C 60.7 60.6 60.6 dB fIN = 70 MHz 25°C 60.6 60.6 60.6 dB Full 60.3 60.3 fIN = 140 MHz 25°C 60.6 60.6 60.5 dB fIN = 220 MHz 25°C
SIGNAL-TO-NOISE AND DISTORTION (SINAD)
fIN = 2.3 MHz 25°C 60.6 fIN = 70 MHz 25°C 60.5 Full 60.2 fIN = 140 MHz 25°C 60.5 fIN = 220 MHz 25°C 60.4 60.4 60.3 dB
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 2.3 MHz 25°C fIN = 70 MHz 25°C fIN = 140 MHz 25°C fIN = 220 MHz 25°C
WORST SECOND OR THIRD HARMONIC
fIN = 2.3 MHz 25°C fIN = 70 MHz 25°C Full fIN = 140 MHz 25°C fIN = 220 MHz 25°C
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
fIN = 2.3 MHz 25°C fIN = 70 MHz 25°C Full 72.0 fIN = 140 MHz 25°C fIN = 220 MHz 25°C
WORST OTHER HARMONIC OR SPUR
fIN = 2.3 MHz 25°C fIN = 70 MHz 25°C Full fIN = 140 MHz 25°C fIN = 220 MHz 25°C
TWO-TONE SFDR
fIN = 29.1 MHz, 32.1 MHz (−7 dBFS ) 25°C
fIN = 169.1 MHz, 172.1 MHz (−7 dBFS ) 25°C CROSSTALK ANALOG INPUT BANDWIDTH 25°C
1
See AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.
2
Crosstalk is measured at 100 MHz with −1 dBFS on one channel and no input on the alternate channel.
1
2
Temp
Full
AD9600BCPZ-105 AD9600BCPZ-125 AD9600BCPZ-150
Min Typ Max Min Typ Max Min Typ Max
60.5
9.9
9.9
9.9
9.9
−87.0
−85.0
−84.0
−83.0
85.5
85.0
83.0
81.0
−92
−88
−86
−86
84 82 95 650
−72.0
−81
60.5 60.4 dB
60.5 60.5 dB
60.5 60.5 dB
60.2
60.5 60.4 dB
9.9
9.9
9.9
9.9
−86.5
−85.0
−84.0
−83.0
85.5
85.0
72.0
84.0
81.0
−92
-88
−86
−86
84 82 95 650
60.3 dB
60.1 dB
−72.0
72.0
−81
9.9
9.9
9.9
9.9
−88.5
−84.0
−83.5
−77
85.5
84.0
83.5 77
−92
−88
−86
−86
84 82 95 650
−72.0 dBc
−80 dBc
Unit
Bits Bits Bits Bits
dBc dBc
dBc dBc
dBc dBc dBc dBc dBc
dBc dBc
dBc dBc
dBc dBc dB MHz
Rev. 0 | Page 5 of 72
AD9600
www.BDTIC.com/ADI

DIGITAL SPECIFICATIONS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, unless otherwise noted.
Table 3.
Parameter Temperature Min Typ Max Unit
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)
Logic Compliance CMOS/LVDS/LVPECL Internal Common-Mode Bias Full 1.2 V Differential Input Voltage Full 0.2 6 V p-p Input Voltage Range Full GND − 0.3 AVDD + 1.6 V Input Common-Mode Range Full 1.1 AVDD V High Level Input Voltage Full 1.2 3.6 V Low Level Input Voltage Full 0 0.8 V High Level Input Current Full −10 +10 μA Low Level Input Current Full −10 +10 μA Input Capacitance Full 4 pF Input Resistance Full 8 10 12
SYNC INPUT
Logic Compliance CMOS Internal Bias Full 1.2 V Input Voltage Range Full GND − 0.3 AVDD + 1.6 V High Level Input Voltage Full 1.2 3.6 V Low Level Input Voltage Full 0 0.8 V High Level Input Current Full −10 +10 μA Low Level Input Current Full −10 +10 μA Input Capacitance Full 4 pF Input Resistance Full 8 10 12
LOGIC INPUT (CSB)1
High Level Input Voltage Full 1.22 3.6 V Low Level Input Voltage Full 0 0.6 V High Level Input Current Full −10 +10 μA Low Level Input Current Full 40 132 μA Input Resistance Full 26 kΩ Input Capacitance Full 2 pF
LOGIC INPUT (SCLK/DFS)2
High Level Input Voltage Full 1.22 3.6 V Low Level Input Voltage Full 0 0.6 V High Level Input Current (VIN = 3.3 V) Full −92 −135 μA Low Level Input Current Full −10 +10 μA Input Resistance Full 26 kΩ Input Capacitance Full 2 pF
LOGIC INPUTS/OUTPUTS (SDIO/DCS, SMI SDFS)
High Level Input Voltage Full 1.22 3.6 V Low Level Input Voltage Full 0 0.6 V High Level Input Current Full −10 +10 μA Low Level Input Current Full 38 128 μA Input Resistance Full 26 kΩ Input Capacitance Full 5 pF
1
Rev. 0 | Page 6 of 72
AD9600
www.BDTIC.com/ADI
Parameter Temperature Min Typ Max Unit
LOGIC INPUTS/OUTPUTS (SMI SDO/OEB, SMI SCLK/PDWN)
High Level Input Voltage Full 1.22 3.6 V
Low Level Input Voltage Full 0 0.6 V
High Level Input Current (VIN = 3.3 V) Full −90 −134 μA
Low Level Input Current Full −10 +10 μA
Input Resistance Full 26
Input Capacitance Full 5 pF DIGITAL OUTPUTS
CMOS Mode—DRVDD = 3.3 V
High Level Output Voltage (IOH = 50 μA) Full 3.29 V High Level Output Voltage (IOH = 0.5 mA) Full 3.25 V Low Level Output Voltage (IOL = 1.6 mA) Full 0.2 V Low Level Output Voltage (IOL = 50 μA) Full 0.05 V
CMOS Mode—DRVDD = 1.8 V
High Level Output Voltage (IOH = 50 μA) Full 1.79 V High Level Output Voltage (IOH = 0.5 mA) Full 1.75 V Low Level Output Voltage (IOL = 1.6 mA) Full 0.2 V Low Level Output Voltage (IOL = 50 μA) Full 0.05 V
LVDS Mode—DRVDD = 1.8 V
Differential Output Voltage (VOD), ANSI Mode Full 250 350 450 mV Output Offset Voltage (VOS), ANSI Mode Full 1.15 1.25 1.35 V Differential Output Voltage (VOD), Reduced Swing Mode Full 150 200 280 mV Output Offset Voltage (VOS), Reduced Swing Mode Full 1.15 1.25 1.35 V
1
Pull up.
2
Pull down.
2
Rev. 0 | Page 7 of 72
AD9600
www.BDTIC.com/ADI

SWITCHING SPECIFICATIONS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, unless otherwise noted.
Table 4.
AD9600BCPZ-105 AD9600BCPZ-125 AD9600BCPZ-150
Parameter Temp
CLOCK INPUT PARAMETERS
Input Clock Rate Full 625 625 625 MHz Conversion Rate
DCS Enabled Full 20 105 20 125 20 150 MSPS DCS Disabled Full 10 105 10 125 10 150 MSPS
CLK Period (t CLK Pulse Width High
Divide-by-1 Mode,
DCS Enabled
Divide-by-1 Mode,
DCS Disabled
Divide-by-2 Mode,
DCS Enabled
Divide-by-3 Through Divide-
by-8 Modes, DCS Enabled
DATA OUTPUT PARAMETERS
CMOS Mode—DRVDD = 3.3 V
Data Propagation Delay (tPD)1Full 2.2 4.5 6.4 2.2 4.5 6.4 2.2 4.5 6.4 ns DCO Propagation Delay (t Setup Time (tS) Full 5.25 4.5 3.83 ns Hold Time (tH) Full 4.25 3.5 2.83 ns
CMOS Mode—DRVDD = 1.8 V
Data Propagation Delay (tPD)1 DCO Propagation Delay (t Setup Time (tS) Full 5.25 4.5 3.83 ns Hold Time (tH) Full 4.25 3.5 2.83 ns
LVDS Mode—DRVDD = 1.8 V Full
Data Propagation Delay (tPD)1 DCO Propagation Delay (t
CMOS Mode Pipeline Delay
(Latency)
LVDS Mode Pipeline Delay
(Latency) Channel A/Channel B Aperture Delay (tA) Full 1.0 1.0 1.0 ns Aperture Uncertainty (Jitter, tJ) Full 0.1 0.1 0.1 ps rms Wake-Up Time
OUT-OF-RANGE RECOVERY TIME Full 2 3 3 Cycles
1
Output propagation delay is measured from the CLK+ and CLK− pins 50% transition to the output data pins 50% transition, with 5 pF load.
2
Wake-up time is dependent on the value of the decoupling capacitors.
) Full 9.5 8 6.66 ns
CLK
Full 2.85 4.75 6.65 2.4 4 5.6 2.0 3.33 4.66 ns
Full 4.28 4.75 5.23 3.6 4 4.4 3.0 3.33 3.66 ns
Full 1.6 1.6 1.6 ns
Full 0.8 0.8 0.8 ns
) Full 3.8 5.0 6.8 3.8 5.0 6.8 3.8 5.0 6.8 ns
DCO
Full 2.4 5.2 6.9 2.4 5.2 6.9 2.4 5.2 6.9 ns
) Full 4.0 5.6 7.3 4.0 5.6 7.3 4.0 5.6 7.3 ns
DCO
2.0 4.8 6.3 2.0 4.8 6.3 2.0 4.8 6.3 ns
) Full 5.2 7.3 9.0 5.2 7.3 9.0 5.2 7.3 9.0 ns
DCO
Full 12 12 12 Cycles
Full 12/12.5 12/12.5 12/12.5 Cycles
2
Full 350 350 350 μs
Min Typ Max Min Typ Max Min Typ Max Unit
Rev. 0 | Page 8 of 72
AD9600
A
www.BDTIC.com/ADI

TIMING CHARACTERISTICS

Table 5.
Parameter Conditions Min Typ Max Unit
SYNC TIMING REQUIREMENTS
t
SSYNC
t
HSYNC
SPI TIMING REQUIREMENTS
t
DS
t
DH
t
CLK
t
S
t
H
t
HIGH
t
LOW
t
EN_SDIO
t
DIS_SDIO
SPORT TIMING REQUIREMENTS
t
CSSCLK
t
SSCLKSDO
t
SSCLKSDFS
Setup time between SYNC and the rising edge of CLK+ 0.24 ns Hold time between SYNC and the rising edge of CLK+ 0.40 ns
Setup time between the data and the rising edge of SCLK 2 ns Hold time between the data and the rising edge of SCLK 2 ns Period of the SCLK 40 ns Setup time between CSB and SCLK 2 ns Hold time between CSB and SCLK 2 ns SCLK pulse width high 10 ns SCLK pulse width low 10 ns Time required for the SDIO pin to switch from an input to an output
10 ns
relative to the SCLK falling edge Time required for the SDIO pin to switch from an output to an input
10 ns
relative to the SCLK rising edge
Delay from the rising edge of CLK+ to the rising edge of SMI SCLK 3.2 4.5 6.2 ns Delay from the rising edge of SMI SCLK to SMI SDO −0.4 0 0.4 ns Delay from the rising edge of SMI SCLK to SMI SDFS −0.4 0 0.4 ns

TIMING DIAGRAMS

CH A/CH B DAT
CH A/CH B FAST
CLK+
CLK–
DETECT
DCOA/DCOB
N+2
N+ 1
N
t
A
t
CLK
t
PD
N – 12 N – 11 N – 9 N – 8 N – 7 N – 6 N – 5 N – 4
N – 13
N – 1 N + 2 N + 3 N + 4 N + 5 N + 6N – 3 N – 2
t
S
t
H
N+ 3
N – 10
N
t
N + 1
DCO
N+ 4
N+ 5
N+ 6
t
CLK
N+ 7
Figure 2. CMOS Output Mode Data and Fast Detect Output Timing
N+ 8
06909-012
Rev. 0 | Page 9 of 72
AD9600
S
www.BDTIC.com/ADI
N
t
A
CLK+
CLK–
CH A/CH B DATA
CH A/CH B FAS T
DETECT
DCO+
DCO–
t
PD
ABABABABABABABABA AB
N – 12 N – 11 N – 9 N – 8 N – 7 N – 6 N – 5 N – 4
N – 13
ABABABABABABABABA AB
N – 6 N – 5 N – 3 N – 2 N – 1 N N + 1 N + 2N – 7
Figure 3. LVDS Mode Data and Fast Detect Output T
N+ 1
t
CLK
N+2
N+ 3
N – 10
N – 4
N+ 4
t
DCO
N+ 5
t
CLK
N+ 6
N+ 7
iming (Fast Detect Mode Select Bits = 000)
N+ 8
06909-089
CLK+
CLK+
CLK–
MI SCLK/PDWN
SMI SDFS
t
SSYNC
SYNC
Figure 4. SYNC Input Timing Requirements
t
CSSCLK
t
SSCLKSDFS
Figure 5. Signal Monitor SPORT Outpu
t
HSYNC
t
SSCLKSDO
DATA DATASMI SDO/OEB
t Timing (Divide-by-2 Mode)
06909-072
06909-082
Rev. 0 | Page 10 of 72
AD9600
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 6.
Parameter Rating
ELECTRICAL
AVDD, DVDD to AGND −0.3 V to +2.0 V DRVDD to DRGND −0.3 V to +3.9 V AGND to DRGND −0.3 V to +0.3 V AVDD to DRVDD −3.9 V to +2.0 V VIN + A/VIN + B, VIN − A/VIN − B to
−0.3 V to AVDD + 0.2 V
AGND CLK+, CLK− to AGND −0.3 V to +3.9 V SYNC to AGND −0.3 V to +3.9 V VREF to AGND −0.3 V to AVDD + 0.2 V SENSE to AGND −0.3 V to AVDD + 0.2 V CML to AGND −0.3 V to AVDD + 0.2 V RBIAS to AGND −0.3 V to AVDD + 0.2 V CSB to AGND −0.3 V to +3.9 V SCLK/DFS to DRGND −0.3 V to +3.9 V SDIO/DCS to DRGND −0.3 V to DRVDD + 0.3 V SMI SDO/OEB −0.3 V to DRVDD + 0.3 V SMI SCLK/PDWN −0.3 V to DRVDD + 0.3 V SMI SDFS −0.3 V to DRVDD + 0.3 V Output Data Pins to DRGND Fast Detect Output Pins to DRGND Data Clock Output Pins to DRGND
1
−0.3 V to DRVDD + 0.3 V
2
−0.3 V to DRVDD + 0.3 V
3
−0.3 V to DRVDD + 0.3 V
ENVIRONMENTAL
Operating Temperature Range
−40°C to +85°C
(Ambient)
Maximum Junction Temperature
150°C
Under Bias
Storage Temperature Range
−65°C to +150°C
(Ambient)
1
The output data pins are D0A/D0B to D9A/D9B for the CMOS configuration
and D0+/D0− to D9+/D9− for the LVDS configuration.
2 The fast detect output pins are FD0A/FD0B to FD3A/FD3B for the CMOS
configuration and FD0+/FD0− to FD3+/FD3−.
3
The data clock output pins are DCOA and DCOB for the CMOS configuration
and DCO+ and DCO− for the LVDS configuration.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

The exposed paddle must be soldered to the ground plane for the LFCSP package. Soldering the exposed paddle to the customer board increases the reliability of the solder joints, maximizing the thermal capability of the package.
Table 7. Thermal Resistance
Airflow
locity
Package Type
64 Lead, 9 mm × 9 mm
LFCSP (CP-64-3)
Ve (m/s)
0 18.8 0.6 6.0 °C/W
1.0 16.5 °C/W
1, 2
1, 3
θ
θ
JA
JC
1, 4
θ
Unit
JB
2.0 15.8 °C/W
1
Per JEDEC 51-7 standard and JEDEC 25-5 2S2P test board.
2
Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
3
Per MIL-Std 883, Method 1012.1.
4
Per JEDEC JESD51-8 (still air).
Typical θJA and θJC are specified for a 4-layer board in still air. Airflow increases heat dissipation, effectively reducing θ
JA
. In addition, metal (such as metal traces through holes, ground, and power planes) that is in direct contact with the package leads reduces the θ
.
JA

ESD CAUTION

Rev. 0 | Page 11 of 72
AD9600
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

DRGND
D1B
D0B (LSB)
DNC
DNC
DNC
DNC
DVDD
FD3B
FD2B
FD1B
FD0B
SYNC
CSB
CLK–
CLK+
49
48
SCLK/DFS
47
SDIO/DCS
46
AVDD
45
AVDD
44
VIN + B
43
VIN – B
42
RBIAS
41
CML
40
SENSE
39
VREF
38
VIN – A
37
VIN + A
36
AVDD
35
SMI SDFS
34
SMI SCLK/PDWN
33
SMI SDO/OEB
DRVDD
D2B D3B D4B D5B D6B D7B D8B
(MSB) D9B
DCOB DCOA
DNC DNC DNC DNC
(LSB) D0A
646362616059585756555453525150
PIN 1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
INDICATO R
EXPOSED PADDLE, PIN 0 (BOTTOM OF PACKAGE)
AD9600
PARALLEL CMOS
TOP VIEW
(Not to Scale)
DNC = DO NOT CONNECT
171819202122232425262728293031
D1A
D2A
D3A
D4A
D5A
D6A
D7A
D8A
FD0A
DRGND
DVDD
DRVDD
FD1A
(MSB) D9A
32
FD2A
FD3A
06909-002
Figure 6. Parallel CMOS Mode Pin Configuration (Top View)
Table 8. Parallel CMOS Mode Pin Function Descriptions
Pin No. Mnemonic Type Description
ADC Power Supplies
20, 64 DRGND Ground Digital Output Ground. 1, 21 DRVDD Supply Digital Output Driver Supply (1.8 V to 3.3 V). 24, 57 DVDD Supply Digital Power Supply (1.8 V Nominal). 36, 45, 46 AVDD Supply Analog Power Supply (1.8 V Nominal). 0 AGND Ground Analog Ground. Pin 0 is the exposed thermal pad on the bottom of the package.
ADC Inputs
37 VIN + A Input Differential Analog Input Pin (+) for Channel A. 38 VIN − A Input Differential Analog Input Pin (−) for Channel A. 44 VIN + B Input Differential Analog Input Pin (+) for Channel B. 43 VIN − B Input Differential Analog Input Pin (−) for Channel B. 39 VREF I/O Voltage Reference Input/Output. 40 SENSE Input Voltage Reference Mode Select (see Tab le 11 for details). 42 RBIAS Input External Reference Bias Resistor. 41 CML Output Common-Mode Level Bias Output for Analog Inputs. 49 CLK+ Input
ADC Master Clock True. The ADC clock can be driven using a single-ended CMOS (see Figure 60 and Figure 61 for the recommended connection).
50 CLK− Input
ADC Master Clock Complement. The ADC clock can be driven using a single-
nded CMOS (see Figure 60 and Figure 61 for the recommended connection).
e
ADC Fast Detect Outputs
29 FD0A Output Channel A Fast Detect Indicator (see Tab le 14 for details). 30 FD1A Output Channel A Fast Detect Indicator (see Tab le 14 for details). 31 FD2A Output Channel A Fast Detect Indicator (see Tab le 14 for details). 32 FD3A Output Channel A Fast Detect Indicator (see Tab le 14 for details). 53 FD0B Output Channel B Fast Detect Indicator (see Tab le 14 for details). 54 FD1B Output Channel B Fast Detect Indicator (see Tab le 14 for details). 55 FD2B Output Channel B Fast Detect Indicator (see Tab le 14 for details). 56 FD3B Output Channel B Fast Detect Indicator (see Tab le 14 for details).
Rev. 0 | Page 12 of 72
AD9600
www.BDTIC.com/ADI
Pin No. Mnemonic Type Description
Digital Inputs
52 SYNC Input Digital Synchronization Pin (Slave Mode Only).
Digital Outputs
16 to 19, 22, 23, 25 to 28
62, 63, 2 to 9 D0B to D9B Output Channel B CMOS Output Data. 11 DCOA Output Channel A Data Clock Output. 10 DCOB Output Channel B Data Clock Output.
SPI Control
48 SCLK/DFS Input SPI Serial Clock/Data Format Select Pin in External Pin Mode. 47 SDIO/DCS I/O SPI Serial Data Input and Output/Duty Cycle Stabilizer in External Pin Mode. 51 CSB Input SPI Chip Select (Active Low).
Signal Monitor Port
33 SMI SDO/OEB I/O
35 SMI SDFS Output Signal Monitor Serial Data Frame Sync. 34 SMI SCLK/PDWN I/O Signal Monitor Serial Clock Output/Power-Down Input in External Pin Mode.
Do Not Connect
12 to 15, 58 to 61 DNC N/A Do Not Connect.
D0A to D9A Output Channel A CMOS Output Data.
Signal Monitor Serial Data Output/Output Enable I External Pin Mode.
nput (Active Low) in
Rev. 0 | Page 13 of 72
AD9600
www.BDTIC.com/ADI
DRGND
DNC
DNC
FD3+
FD3–
FD2+
FD2–
DVDD
FD1+
FD1–
FD0+
FD0–
SYNC
CSB
CLK–
CLK+
49
48
SCLK/DFS
47
SDIO/DCS
46
AVDD
45
AVDD
44
VIN + B
43
VIN – B
42
RBIAS
41
CML
40
SENSE
39
VREF
38
VIN – A
37
VIN + A
36
AVDD
35
SMI SDFS
34
SMI SCLK/PDWN
33
SMI SDO/OEB
DRVDD
DNC DNC DNC DNC DNC DNC
(LSB) D0–
D0+ DCO– DCO+
D1–
D1+
D2–
D2+
D3–
646362616059585756555453525150
PIN 1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
INDICATO R
EXPOSED PADDLE, PIN 0 (BOTTOM OF PACKAGE)
AD9600
PARALLEL LVDS
TOP VIEW
(Not to Scale)
DNC = DO NOT CONNECT
Figure 7. Interleaved Parallel LVDS M
171819202122232425262728293031
D5–
D6–
D7–
D4–
D3+
D5+
D4+
DRGND
DRVDD
DVDD
D8–
D6+
D7+
D8+
ode Pin Configuration (Top View)
32
D9–
(MSB) D9+
06909-003
Table 9. Interleaved Parallel LVDS Mode Pin Function Descriptions
Pin No. Mnemonic Type Description
ADC Power Supplies
20, 64 DRGND Ground Digital Output Ground. 1, 21 DRVDD Supply Digital Output Driver Supply (1.8 V to 3.3 V). 24, 57 DVDD Supply Digital Power Supply (1.8 V Nominal). 36, 45, 46 AVDD Supply Analog Power Supply (1.8 V Nominal). 0 AGND Ground Analog Ground. Pin 0 is the exposed thermal pad on the bottom of the package.
ADC Inputs
37 VIN + A Input Differential Analog Input Pin (+) for Channel A. 38 VIN − A Input Differential Analog Input Pin (−) for Channel A. 44 VIN + B Input Differential Analog Input Pin (+) for Channel B. 43 VIN − B Input Differential Analog Input Pin (−) for Channel B. 39 VREF I/O Voltage Reference Input/Output. 40 SENSE Input Voltage Reference Mode Select (see Table 11 for details). 42 RBIAS Input External Reference Bias Resistor. 41 CML Output Common-Mode Level Bias Output for Analog Inputs. 49 CLK+ Input
ADC Master Clock True. The ADC clock can be driven using a single-ended CMOS (see Figure 60 and Figure 61 for the recommended connection).
50 CLK− Input
ADC Master Clock Complement. The ADC clock can be driven using a single-ended CMOS (see Figure 60 and Figure 61 for the recommended connection).
ADC Fast Detect Outputs
54 FD0+ Output Channel A/Channel B LVDS Fast Detect Indicator 0 True (see Table 1 4 for full details). 53 FD0− Output
Channel A/Channel B LVDS Fast Detect Indicator 0 Complement (see Tabl e 14
or details).
f 56 FD1+ Output Channel A/Channel B LVDS Fast Detect Indicator 1 True (see Table 1 4 for details). 55 FD1− Output
Channel A/Channel B LVDS Fast Detect Indicator 1 Complement (see Table 14
or details).
f 59 FD2+ Output Channel A/Channel B LVDS Fast Detect Indicator 2 True (see Table 1 4 for details). 58 FD2− Output
Channel A/Channel B LVDS Fast Detect Indicator 2 Complement (see Table 14
or details).
f 61 FD3+ Output Channel A/Channel B LVDS Fast Detect Indicator 3 True (see Table 1 4 for details). 60 FD3− Output
Channel A/Channel B LVDS Fast Detect Indicator 3 Complement (see Tabl e 14
or details).
f
Rev. 0 | Page 14 of 72
AD9600
www.BDTIC.com/ADI
Pin No. Mnemonic Type Description
Digital Inputs
52 SYNC Input Digital Synchronization Pin (Slave Mode Only).
Digital Outputs
9 D0+ Output Channel A/Channel B LVDS Output Data 0 True. 8 D0− Output Channel A/Channel B LVDS Output Data 0 Complement. 13 D1+ Output Channel A/Channel B LVDS Output Data 1 True. 12 D1− Output Channel A/Channel B LVDS Output Data 1 Complement. 15 D2+ Output Channel A/Channel B LVDS Output Data 2 True. 14 D2− Output Channel A/Channel B LVDS Output Data 2 Complement. 17 D3+ Output Channel A/Channel B LVDS Output Data 3 True. 16 D3− Output Channel A/Channel B LVDS Output Data 3 Complement. 19 D4+ Output Channel A/Channel B LVDS Output Data 4 True. 18 D4− Output Channel A/Channel B LVDS Output Data 4 Complement. 23 D5+ Output Channel A/Channel B LVDS Output Data 5 True. 22 D5− Output Channel A/Channel B LVDS Output Data 5 Complement. 26 D6+ Output Channel A/Channel B LVDS Output Data 6 True. 25 D6− Output Channel A/Channel B LVDS Output Data 6 Complement. 28 D7+ Output Channel A/Channel B LVDS Output Data 7 True. 27 D7− Output Channel A/Channel B LVDS Output Data 7 Complement. 30 D8+ Output Channel A/Channel B LVDS Output Data 8 True. 29 D8− Output Channel A/Channel B LVDS Output Data 8 Complement. 32 D9+ Output Channel A/Channel B LVDS Output Data 9 True. 31 D9− Output Channel A/Channel B LVDS Output Data 9 Complement. 11 DCO+ Output Channel A/Channel B LVDS Data Clock Output True. 10 DCO− Output Channel A/Channel B LVDS Data Clock Output Complement.
SPI Control
48 SCLK/DFS Input SPI Serial Clock/Data Format Select Pin in External Pin Mode. 47 SDIO/DCS I/O SPI Serial Data Input and Output/Duty Cycle Stabilizer in External Pin Mode. 51 CSB Input SPI Chip Select (Active Low).
Signal Monitor Port
33 SMI SDO/OEB I/O
35 SMI SDFS Output Signal Monitor Serial Data Frame Sync. 34 SMI SCLK/PDWN I/O Signal Monitor Serial Clock Output/Power-Down Input in External Pin Mode.
Do Not Connect
2 to 7, 62, 63 DNC N/A Do Not Connect.
Signal Monitor Serial Data Output/Output Enable I External Pin Mode.
nput (Active Low) in
Rev. 0 | Page 15 of 72
AD9600
V
C
A
V
www.BDTIC.com/ADI

EQUIVALENT CIRCUITS

26k
1k
1k
06909-008
LK+
IN
Figure 8. Analog Input Circuit
AVDD
1.2V
10k 10k
SCLK/DFS
06909-004
Figure 12. Equivalent SCLK/DFS Input Circuit
SENSE
CLK–
Figure 9. Equivalent Clock Input Circu
DRVDD
DRGND
Figure 10. Digital Output
DRVDD
DRVDD
26k
SDIO/DCS
1k
6909-005
it
6909-081
Figure 13. Equivalent SENSE Circuit
VDD
26k
CSB
1k
06909-009
06909-010
Figure 14. Equivalent CSB Input Circuit
AVDD
REF
06909-007
Figure 11. Equivalent SDIO/DCS Input Circuit
Rev. 0 | Page 16 of 72
6k
Figure 15. Equivalent VREF Circuit
06909-011
AD9600
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, sample rate = 150 MSPS, DCS enabled, 1 V internal reference, 2 V p-p differential input, VIN = −1.0 dBFS, 64k sample, and T
0
–20
–40
= 25°C, unless otherwise noted.
A
150MSPS
2.3MHz @ –1dBFS SNR = 60.6dB (61. 6dBFS) ENOB = 9.9 BITS SFDR = 85.5dBc
–20
–40
0
150MSPS 140MHz @ –1dBFS SNR = 60.5dB (61. 5dBFS) ENOB = 9.8 BITS SFDR = 83.5d Bc
–60
SECOND HARMONIC
–80
AMPLITUDE ( dBFS)
–100
–120
Figure 16. AD9600-150 Single-Tone FFT with f
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
Figure 17. AD9600-150 Single-Tone FFT with f
THIRD HARMONIC
0 10203040506070
0 10203040506070
FREQUENCY (MHz)
150MSPS
30.3MHz @ –1dBFS SNR = 60.6dB (61. 6dBFS) ENOB = 9.9 BITS SFDR = 84.0dBc
THIRD HARMONIC
FREQUENCY (MHz)
= 2.3 MHz
IN
= 30.3 MHz
IN
SECOND
HARMONIC
–60
–80
AMPLITUDE ( dBFS)
–100
–120
06909-029
Figure 19. AD9600-150 Single-Tone FFT with f
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
06909-030
Figure 20. AD9600-150 Single-Tone FFT with f
SECOND HARMONIC
0 10203040506070
150MSPS 220MHz @ –1dBFS SNR = 60.4dB (61. 4dBFS) ENOB = 9.7 BITS SFDR = 77.0dBc
SECOND HARMONIC
0 10203040506070
THIRD HARMONIC
FREQUE NCY (MHz )
FREQUE NCY (MHz )
= 140 MHz
IN
THIRD HARMONIC
= 220 MHz
IN
06909-119
06909-120
0
150MSPS 70MHz @ –1dBFS SNR = 60.6dB (61. 6dBFS)
–20
ENOB = 9.8 BITS SFDR = 84.0dBc
–40
–60
SECOND HARMONIC
–80
AMPLITUDE ( dBFS)
–100
–120
0 10203040506070
FREQUE NCY (MHz )
Figure 18. AD9600-150 Single-Tone FFT with f
THIRD HARMONIC
IN
= 70 MHz
06909-118
Rev. 0 | Page 17 of 72
0
150MSPS 337MHz @ –1dBFS SNR = 60.2dB (61. 2dBFS)
–20
ENOB = 9.7 BITS SFDR = 74.0dBc
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
0 10203040506070
FREQUE NCY (MHz )
Figure 21. AD9600-150 Single-Tone FFT with f
THIRD HARMONIC
SECOND HARMONIC
IN
= 337 MHz
06909-121
AD9600
www.BDTIC.com/ADI
0
–20
–40
SECOND HARMONIC
–60
–80
AMPLITUDE ( dBFS)
THIRD HARMONIC
150MSPS 440MHz @ –1dBFS SNR = 60.0dB (61. 0dBFS) ENOB = 9.6 BITS SFDR = 70.0dBc
0
125MSPS
70.1MHz @ –1dBF S SNR = 60.6dB (61. 6dBFS)
–20
ENOB = 9.8 BITS SFDR = 85.0dBc
–40
–60
–80
AMPLITUDE ( dBFS)
THIRD HARMONIC
SECOND HARMONIC
–100
–120
0 10203040506070
Figure 22. AD9600-150 Single-Tone FFT with f
0
–20
–40
–60
SECOND HARMONIC
–80
AMPLITUDE ( dBFS)
–100
–120
THIRD HARMONIC
0 102030405060
Figure 23. AD9600-125 Single-Tone FFT with f
FREQUENCY (MHz)
125MSPS
2.3MHz @ –1dBFS SNR = 60.6dB (61. 6dBFS) ENOB = 9.8 BITS SFDR = 86.5dBc
FREQUENCY (MHz)
= 440 MHz
IN
= 2.3 MHz
IN
–100
–120
0 102030405060
06909-122
Figure 25. AD9600-125 Single-Tone FFT with f
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
0 102030405060
06909-123
Figure 26. AD9600-125 Single-Tone FFT with f
FREQUENCY (MHz)
125MSPS
140.1MHz @ –1dBF S SNR = 60.6dB (61. 6dBFS) ENOB = 9.8 BITS SFDR = 84.0dBc
SECOND HARMONIC
FREQUENCY (MHz)
= 70.1 MHz
IN
THIRD HARMONIC
= 140.1 MHz
IN
06909-125
06909-126
0
125MSPS
30.3MHz @ –1dBF S SNR = 60.6dB (61. 6dBFS)
–20
ENOB = 9.8 BITS SFDR = 85.0dBc
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
0 102030405060
FREQUENCY (MHz)
Figure 24. AD9600-125 Single-Tone FFT with f
THIRD HARMONIC
SECOND HARMONIC
= 30.3 MHz
IN
06909-124
Rev. 0 | Page 18 of 72
0
125MSPS
220.1MHz @ –1dBF S SNR = 60.5dB (61. 5dBFS)
–20
ENOB = 9.7 BITS SFDR = 81.0dBc
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
0 102030405060
Figure 27. AD9600-125 Single-Tone FFT with f
THIRD HARMONIC
FREQUENCY (MHz)
SECOND HARMONIC
= 220.1 MHz
IN
06909-127
AD9600
www.BDTIC.com/ADI
120
95
100
80
60
85dB REFERENCE L INE
40
SNR/SFDR (dBc AND d Bm)
20
0
–60 –10–20–30–40–50 0
SNR (dBFS)
SNR (dBc)
AMPLITUDE (dBm)
Figure 28. AD9600-150 Single-Tone S
= 2.4 MHz
f
IN
100
80
SNR (dBFS)
60
85dB REFERENCE L INE
40
SNR/SFDR (dBc AND dBm)
20
SFDR (dBc)
0
–60 –10–20–30–40–50 0
AMPLI TUDE (d Bm)
Figure 29. AD9600-150 Single-Tone S
= 98.12 MHz
f
IN
SFDR (dBFS)
SFDR (dBc)
NR/SFDR vs. Input Amplitude (A
SFDR (dBFS)
SNR (dBc)
NR/SFDR vs. Input Amplitude (A
) with
IN
) with
IN
90
85
80
75
70
SNR/SFDR (d Bc)
65
60
55
0 50 100 150 200 250 300 350 400 450
06909-031
INPUT FREQUENCY (MHz)
Figure 31. AD9600-150 Single-Tone SNR/SFDR vs. Input Frequency (f
SFDR +25°C
SFDR +85°C
SNR +25°C SNR +85°C SNR –40°C
SFDR –40°C
) and
IN
06909-034
Temperature with12 V p-p Full Scale
2.5
–3.0
–3.5
–4.0
GAIN ERROR (%F SR)
–4.5
–5.0
–40 806040
06909-032
TEMPERATURE (°C)
GAIN
OFFSET
200–20
0.5
0.4
0.3
0.2
0.1
0
OFFSET ERROR (%FSR)
06909-132
Figure 32. AD9600-150 Gain and Offset vs. Temperature
95
90
85
80
75
70
SNR/SFDR (d Bc)
65
60
55
0 50 100 150 200 250 300 350 400 450
SFDR –40°C
INPUT FREQUENCY (MHz)
Figure 30. AD9600-150 Single-Tone SNR/SFDR vs. Input Frequency (f
SNR +25°C SNR +85°C SNR –40°C
SFDR +85°C
SFDR +25°C
) and
IN
06909-033
Temperature with 2 V p-p Full Scale
Rev. 0 | Page 19 of 72
0
–20
–40
–60
–80
SFDR/IMD3 ( dBc AND dBFS)
–100
–120
–60 –12–24–36–48
IMD3 (dBc)
SFDR (dBc)
SFDR (dBFS)
IMD3 (dBFS )
INPUT AMPLITUDE (dBF S)
Figure 33. AD9600-150 Two-Tone SFDR/IMD3 vs. Input Amplitude (A
= 29.1 MHz, f
f
IN1
= 32.1 MHz, fS = 150 MSPS
IN2
) with
IN
06909-133
AD9600
www.BDTIC.com/ADI
–20
0
150MSPS
169.1MHz @ –7dBF S
172.1MHz @ –7dBF S SFDR = 83.1dBc (90.1dBFS )
0
SFDR (dBc)
–20
–40
IMD3 (dBc)
–60
SFDR (dBFS)
–80
SFDR/IMD3 ( dBc AND dBFS)
–100
–120
IMD3 (dBFS)
–60 –12–24–36–48
INPUT AMPLITUDE (dBFS)
Figure 34. AD9600-150 Two-Tone SFDR/IMD3 vs. Input Amplitude (A
= 169.1 MHz, f
f
IN1
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
= 172.1 MHz, fS = 150 MSPS
IN2
) with
IN
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
0 10203040506070
06909-134
Figure 37. AD9600-150 Two-Tone SFDR/IMD3 vs. Input Frequency (f
= 169.1 MHz, f
f
IN1
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
INPUT FREQUENCY (MHz)
= 172.1 MHz, fS = 150 MSPS
IN2
NPR = 54.3dBc NOTCH @ 18. 5MHz NOTCH WIDTH = 3M Hz
) with
IN
06909-137
–120
0 15.36 30.72 46.08 61. 44
FREQUENCY (MHz)
Figure 35. AD9600-125 Two 64k WCDMA Carriers with
= 170 MHz, fS = 125 MSPS
f
IN
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
0 10203040506070
INPUT FREQUENCY (MHz)
150MSPS
29.1MHz @ –7dBF S
32.1MHz @ –7dBF S SFDR = 86.1dBc (93.1dBFS )
Figure 36. AD9600-150 Two-Tone SFDR/IMD3 vs. Input Frequency (f
= 29.1 MHz, f
f
IN1
= 32.1 MHz, fS = 150 MSPS
IN2
) with
IN
–120
07605040302010
06909-135
FREQUENCY (MHz)
0
06909-138
Figure 38. AD9600-150 Noise Power Ratio (NPR)
100
90
80
70
SNR/SFDR (dBc)
06909-136
SNR—SIDE A
60
50
0 25 50 75 100 125 150
Figure 39. AD9600-150 Single-Tone SNR/SFDR vs. Clock Frequency (f
f
SFDR—SIDE B
SFDR—SIDE A
SNR—SIDE B
ENCODE (MSPS)
= 2.3 MHz
IN1
) with
S
06909-035
Rev. 0 | Page 20 of 72
AD9600
www.BDTIC.com/ADI
12
10
8
0.10 LSB rms
100
95
SFDR DCS ON
90
85
6
4
NUMBER OF HIT S (1M)
2
0
OUTPUT CODE
Figure 40. AD9600 Grounded Input Histogram
0.10
0.05
0
INL ERROR (LSB)
–0.05
–0.10
0 128 256 384 512 640 768 896 1024
Figure 41. AD9600 INL with f
OUTPUT CODE
= 10.3 MHz
IN1
80
75
SNR/SFDR (d Bc)
SNR DCS ON
70
65
N + 3N + 2N + 1NN – 1N – 2N – 3
06909-140
60
20 806040
Figure 43. AD9600-150 SNR/SFDR vs. Duty Cycle with f
95
90
85
80
75
70
SNR/SFDR (d Bc)
65
60
55
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1. 1 1.2 1.3
06909-036
INPUT COMMON-MODE VOLTAGE (V)
Figure 44. AD9600-150 SNR/SFDR vs. Input
f
IN1
SFDR DCS OFF
SNR DCS OFF
DUTY CYCLE (%)
SFDR
SNR
Common-Mode Voltage (V
= 30 MHz
= 10.3 MHz
IN1
CM
06909-143
06909-144
) with
0.100
0.075
0.050
0.025
0
–0.025
DNL ERROR (LSB)
–0.050
–0.075
–0.100
0 128 256 384 512 640 768 896 1024
Figure 42. AD9600 DNL with f
OUTPUT CO DE
= 10.3 MHz
IN1
06909-037
Rev. 0 | Page 21 of 72
AD9600
www.BDTIC.com/ADI

THEORY OF OPERATION

The AD9600 dual ADC design can be used for diversity reception of signals, where the ADCs are operating identically on the same carrier but from two separate antennae. The ADCs can also be operated with independent analog inputs. The user can sample any f
/2 frequency segment from dc to 200 MHz
S
using appropriate low-pass or band-pass filtering at the ADC inputs with little loss in ADC performance. Although operation of up to 450 MHz analog input is permitted, ADC distortion increases at frequencies toward the higher end of this range.
In nondiversity applications, the AD9600 can be used as a
eband receiver where one ADC is used for I input data and
bas the other used for Q input data.
Synchronization capability is provided to allow synchronized
g among multiple channels or multiple devices.
timin
Programming and control of the AD9600 is accomplished using a 3-b
it SPI-compatible serial interface.

ADC ARCHITECTURE

The AD9600 architecture consists of a dual front-end sample­and-hold amplifier (SHA) followed by a pipelined switched­capacitor ADC. The quantized outputs from each stage are combined into a final 10-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate on a new input sample while the remaining stages operate on preceding samples. Sampling occurs on the rising edge of the clock.
Each stage of the pipeline excluding the last consists of a low
esolution flash ADC connected to a switched-capacitor digital-
r to-analog converter (DAC) and an interstage residue amplifier (a multiplying digital-to-analog converter (MDAC)). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC.
The input stage of each channel contains a differential SHA that ca
n be ac- or dc-coupled in differential or single-ended modes. The output-staging block aligns the data, corrects errors, and passes the data to the output buffers. The output buffers are powered from a separate supply, allowing adjustment of the output voltage swing. During power-down, the output buffers go into a high impedance state.

ANALOG INPUT CONSIDERATIONS

The analog input to the AD9600 is a differential switched­capacitor SHA that has been designed for optimum performance while processing a differential input signal.
The clock signal alternatively switches the SHA between sample
ode and hold mode (see Figure 45). When the SHA is
m swi
tched into sample mode, the signal source must be capable
of charging the sample capacitors and settling within one-half
Rev. 0 | Page 22 of 72
of a clock cycle. A small resistor in series with each input can help reduce the peak transient current required from the output stage of the driving source. A shunt capacitor can be placed across the inputs to provide dynamic charging currents. This passive network creates a low-pass filter at the ADC’s input; therefore, the precise values are dependent on the application.
In undersampling (IF sampling) applications, any shunt capacitors
ould be reduced. In combination with the driving source
sh impedance, the shunt capacitors limit the input bandwidth. See the
AN-742 Application Note, F
requency Domain Response of
Switched-Capacitor ADCs; the AN-827 Application Note, A
esonant Approach to Interfacing Amplifiers to Switched-Capacitor
R ADCs; and the Analog Dialogue article “Tr an s fo r me r- C o up le d
F
ront-End for Wideband A/D Converters” (Volume 39, April
2005
) for more information. In general, the precise values are
dependent on the application.
S
C
H
C
H
S
06909-013
VIN+
C
PIN, PAR
VIN–
C
PIN, PAR
Figure 45. Switched-Capac
S
S
C
S
H
C
S
itor SHA Input
For best dynamic performance, the source impedances driving VIN+ and VIN− should be matched.
An internal differential reference buffer creates positive and neg­a
tive reference voltages that define the input span of the ADC core.
The span of the ADC core is set by the buffer to 2 × VREF.

Input Common Mode

The analog inputs of the AD9600 are not internally dc-biased. Therefore, in ac-coupled applications, the user must provide this bias externally. Setting the device so that V
= 0.55 × AVDD is
CM
recommended for optimum performance, but the device can function over a wider range with reasonable performance (see Figure 44). An on-board common-mode voltage reference is
cluded in the design and is available from the CML pin.
in Optimum performance is achieved when the common-mode voltage of the analog input is set by the CML pin voltage (typically
0.55 × AVDD). The CML pin must be decoupled to ground by a
0.1 F capacitor as described in the
Applications section.

Differential Input Configurations

Optimum performance is achieved while driving the AD9600 in a differential input configuration. For baseband applications, the AD8138, ADA4937-2, and ADA4938-2 differential drivers p
rovide excellent performance and a flexible interface to the
ADC. The output common-mode voltage of the AD8138 is
Loading...
+ 50 hidden pages