Supports external 3.3 V/5 V VCO/VCXO to 2.4 GHz
1 differential or 2 single-ended reference inputs
Accepts CMOS, LVPECL, or LVDS references to 250 MHz
Accepts 16.62 MHz to 33.3 MHz crystal for reference input
Optional reference clock doubler
Reference monitoring capability
Auto and manual reference switchover/holdover modes,
with selectable revertive/nonrevertive switching
Glitch-free switchover between references
Automatic recovery from holdover
Digital or analog lock detect, selectable
Optional zero delay operation
Twelve 800 MHz LVDS outputs divided into 4 groups
Each group of 3 has a 1-to-32 divider with phase delay
Additive broadband jitter as low as 242 fs rms
OPTIONAL
REFIN
REFIN
CLK
REF1
REF2
SWITCHOVER
AND MONITOR
DIVIDER
AND MUXES
DIV/Φ
DIV/Φ
DIV/Φ
DIV/Φ
PLL
Channel-to-channel skew grouped outputs < 60 ps
Each LVDS output can be configured as 2 CMOS outputs
(for f
≤ 250 MHz)
OUT
Automatic synchronization of all outputs on power-up
Manual synchronization of outputs as needed
SPI- and I²C-compatible serial control port
64-lead LFCSP
Nonvolatile EEPROM stores configuration settings
APPLICATIONS
Low jitter, low phase noise clock distribution
Clock generation and translation for SONET, 10Ge, 10G FC,
and other 10 Gbps protocols
Forward error correction (G.710)
Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs
High performance wireless transceivers
ATE and high performance instrumentation
Broadband infrastructures
GENERAL DESCRIPTION
The AD9522-21 provides a multioutput clock distribution
function with subpicosecond jitter performance, along with an
The AD9522 serial interface supports both SPI and IC® ports.
An in-package EEPROM can be programmed through the
serial interface and store user-defined register settings for
power-up and chip reset.
The AD9522 features 12 LVDS outputs in four groups. Any of
the 800 MHz LVDS outputs can be reconfigured as two
250 MHz CMOS outputs.
Each group of outputs has a divider that allows both the divide
ratio (from 1 to 32) and the phase (coarse delay) to be set.
The AD9522 is available in a 64-lead LFCSP and can be operated
from a single 3.3 V supply. The external VCO can have an
operating voltage up to 5.5 V.
The AD9522 is specified for operation over the standard industrial
range of −40°C to +85°C.
The AD9520-2 is an equivalent part to the AD9522-2 featuring
LVPECL/CMOS drivers instead of LVDS/CMOS drivers.
SPI/I2C CONTROL
PORT AND
DIGITAL LOGIC
EEPROM
Figure 1.
AD9522
on-chip PLL and VCO. The on-chip VCO tunes from 2.02 GHz
to 2.335 GHz. An external 3.3 V/5 V VCO/VCXO of up to 2.4 GHz
can also be used.
1
The AD9522 is used throughout this data sheet to refer to all the members of the AD9522 family. However, when AD9522-2 is used, it is referring to that specific
member of the AD9522 family.
OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7
OUT8
OUT9
OUT10
OUT11
07221-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
Typical (typ) is given for VS = 3.3 V ± 5%; VS ≤ VCP ≤ 5.25 V; TA = 25°C; RSET = 4.12 kΩ; CPRSET = 5.1 kΩ, unless otherwise noted. Minimum
(min) and maximum (max) values are given over full VS and T
POWER SUPPLY REQUIREMENTS
Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
VS 3.135 3.3 3.465 V 3.3 V ± 5%
VCP VS 5.25 V This is nominally 3.3 V to 5.0 V ± 5%
RSET Pin Resistor 4.12 kΩ Sets internal biasing currents; connect to ground
CPRSET Pin Resistor 5.1 kΩ
BYPASS Pin Capacitor 220 nF Bypass for internal LDO regulator; necessary for LDO stability; connect to ground
PLL CHARACTERISTICS
Table 2.
Parameter Min Typ Max Unit Test Conditions/Comments
VCO (ON-CHIP)
Frequency Range 2020 2335 MHz See Figure 13
VCO Gain (K
Tunin g Volt age (VT) 0.5
Frequency Pushing (Open-Loop) 1 MHz/V
Phase Noise @ 1 kHz Offset −61 dBc/Hz LVDS output; f
Phase Noise @ 100 kHz Offset −117 dBc/Hz LVDS output; f
Phase Noise @ 1 MHz Offset −135 dBc/Hz LVDS output; f
REFERENCE INPUTS
Differential Mode (REFIN, REFIN)
Input Frequency 0 250 MHz
Input Sensitivity 280 mV p-p
Self-Bias Voltage, REFIN 1.35 1.60 1.75 V Self-bias voltage of REFIN1
Self-Bias Voltage, REFIN
Input Resistance, REFIN 4.0 4.8 5.9 kΩ Self-biased1
Input Resistance, REFIN
Dual Single-Ended Mode (REF1, REF2) Two single-ended CMOS-compatible inputs
Parameter Min Typ Max Unit Test Conditions/Comments
PHASE OFFSET IN ZERO DELAY
Phase Offset (REF-to-LVDS Clock Output
1890 2348 3026 ps When N delay and R delay are bypassed
REF refers to REFIN (REF1)/REFIN
Pins) in Internal Zero Delay Mode
Phase Offset (REF-to-LVDS Clock Output
900 1217 1695 ps When N delay = Setting 111 and R delay is bypassed
Pins) in Internal Zero Delay Mode
Phase Offset (REF-to-CLK Input Pins) in
318 677 1085 ps When N delay and R delay are bypassed
External Zero Delay Mode
Phase Offset (REF-to-CLK Input Pins) in
−329 +33 +360 ps When N delay = Setting 011 and R delay is bypassed
External Zero Delay Mode
NOISE CHARACTERISTICS
In-Band Phase Noise of the Charge Pump/
Phase Frequency Detector (In-Band
Means Within the LBW of the PLL)
The PLL in-band phase noise floor is estimated by
measuring the in-band phase noise at the output of
the VCO and subtracting 20 log(N) (where N is the value
of the N divider)
@ 500 kHz PFD Frequency −165 dBc/Hz
@ 1 MHz PFD Frequency −162 dBc/Hz
@ 10 MHz PFD Frequency −152 dBc/Hz
@ 50 MHz PFD Frequency −144 dBc/Hz
PLL Figure of Merit (FOM) −222 dBc/Hz
Reference slew rate > 0.5 V/ns; FOM + 10 log(f
approximation of the PFD/CP in-band phase noise (in
the flat region) inside the PLL loop bandwidth; when
running closed-loop, the phase noise, as observed at
the VCO output, is increased by 20 log(N); PLL figure of
merit decreases with decreasing slew rate; see Figure 12
PLL DIGITAL LOCK DETECT WINDOW2
Signal available at the LD, STATUS, and REFMON pins
when selected by appropriate register settings; lock
detect window settings can be varied by changing the
CPRSET resistor
Lock Threshold (Coincidence of Edges)
Selected by 0x017[1:0] and 0x018[4] (this is the threshold
to go from unlock to lock)
Low Range (ABP 1.3 ns, 2.9 ns) 3.5 ns 0x017[1:0] = 00b, 01b, 11b; 0x018[4] = 1b
High Range (ABP 1.3 ns, 2.9 ns) 7.5 ns 0x017[1:0] = 00b, 01b, 11b; 0x018[4] = 0b
High Range (ABP 6.0 ns) 3.5 ns 0x017[1:0] = 10b; 0x018[4] = 0b
Unlock Threshold (Hysteresis)2
Selected by 0x017[1:0] and 0x018[4] (this is the threshold
to go from lock to unlock)
Low Range (ABP 1.3 ns, 2.9 ns) 7 ns 0x017[1:0] = 00b, 01b, 11b; 0x018[4] = 1b
High Range (ABP 1.3 ns, 2.9 ns) 15 ns 0x017[1:0] = 00b, 01b, 11b; 0x018[4] = 0b
High Range (ABP 6.0 ns) 11 ns 0x017[1:0] = 10b; 0x018[4] = 0b
1
The REFIN and
2
For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the unlock-after-lock time.
REFIN
self-bias points are offset slightly to avoid chatter on an open input condition.
(REF2)
PFD
) is an
Rev. 0 | Page 6 of 84
AD9522-2
CLOCK INPUTS
Table 3.
Parameter Min Typ Max Unit Test Conditions/Comments
CLOCK INPUTS (CLK, CLK)
Input Frequency 01 2.4 GHz High frequency distribution (VCO divider)
0
Input Sensitivity, Differential 150 mV p-p
Input Level, Differential 2 V p-p
Input Common-Mode Voltage, VCM 1.3 1.57 1.8 V Self-biased; enables ac coupling
Input Common-Mode Range, V
Output Frequency 250 MHz See Figure 22
Output Voltage High, VOH VS − 0.1 V @ 1 mA load
Output Voltage Low, VOL 0.1 V @ 1 mA load
Output Voltage High, VOH 2.7 V @ 10 mA load
Output Voltage Low, VOL 0.5 V @ 10 mA load
Differential input
1
1.6 GHz
Distribution only (VCO divider bypassed); this is the
frequency range supported by the channel divider
Measured at 2.4 GHz; jitter performance is improved with
slew rates > 1 V/ns
Larger voltage swings can turn on the protection diodes
and can degrade jitter performance
1.3 1.8 V With 200 mV p-p signal applied; dc-coupled
CLK ac-coupled; CLK
Differential (OUT, OUT
ac-bypassed to RF ground
)
The AD9522 outputs toggle at higher frequencies,
but the output amplitude may not meet the V
specification
− VOL measurement across a differential pair
V
OH
at the default amplitude setting with output
driver not toggling; see Figure 21 for variation
over frequency
This is the absolute value of the difference
between VOD when the normal output is high vs.
when the complementary output is high
This is the absolute value of the difference
between V
when the normal output is high vs.
OS
when the complementary output is high
Single-ended; termination = 10 pF
OD
Rev. 0 | Page 7 of 84
AD9522-2
K
TIMING CHARACTERISTICS
Table 5.
Parameter Min Typ Max Unit Test Conditions/Comments
LVDS OUTPUT RISE/FALL TIMES Termination = 100 Ω across differential pair
Output Rise Time, tRP 150 350 ps 20% to 80%, measured differentially
Output Fall Time, tFP 150 350 ps 80% to 20%, measured differentially
PROPAGATION DELAY, t
For All Divide Values 1866 2313 2812 ps High frequency clock distribution configuration
1808 2245 2740 ps Clock distribution configuration
Variation with Temperature 1 ps/°C
LVDS Outputs That Share the Same Divider 7 60 ps
LVDS Outputs on Different Dividers 19 162 ps
All LVDS Outputs Across Multiple Parts 432 ps
CMOS OUTPUT RISE/FALL TIMES Termination = open
Output Rise Time, tRC 625 835 ps 20% to 80%; C
Output Fall Time, tFC 625 800 ps 80% to 20%; C
PROPAGATION DELAY, t
For All Divide Values 1913 2400 2950 ps
Variation with Temperature 2 ps/°C
OUTPUT SKEW, CMOS OUTPUTS1
CMOS Outputs That Share the Same Divider 10 55 ps
All CMOS Outputs on Different Dividers 27 230 ps
All CMOS Outputs Across Multiple Parts 500 ps
OUTPUT SKEW, LVDS-TO-CMOS OUTPUT1 All settings identical; different logic type
Outputs That Share the Same Divider −31 +152 +495 ps LVDS to CMOS on the same part
Outputs That Are on Different Dividers −193 +160 +495 ps LVDS to CMOS on the same part
1
The output skew is the difference between any two similar delay paths while operating at the same voltage and temperature.
Timing Diagrams
CL
, CLK-TO-LVDS OUTPUT
LVDS
= 10 pF
LOAD
= 10 pF
LOAD
, CLK-TO-CMOS OUTPUT Clock distribution configuration
Application example based on a typical
setup where the reference source is
clean, so a wider PLL loop bandwidth is
used; reference = 15.36 MHz; R DIV = 1
CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK CLEANUP USING INTERNAL VCO)
Table 9.
Parameter Min Typ Max Unit Test Conditions/Comments
Application example based on a typical
setup where the reference source is jittery,
so a narrower PLL loop bandwidth is used;
reference = 19.44 MHz; R DIV = 162
Rev. 0 | Page 10 of 84
AD9522-2
CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL VCXO)
Table 10.
Parameter Min Typ Max Unit Test Conditions/Comments
Divide Ratio = 1
CLK = 622.08 MHz 116 fs rms Integration bandwidth = 12 kHz to 20 MHz
Any LVDS Output = 155.52 MHz
Divide Ratio = 4
CLK = 100 MHz 263 fs rms Calculated from SNR of ADC method
Any LVDS Output = 100 MHz Broadband jitter
Divide Ratio = 1
CLK = 500 MHz 242 fs rms Calculated from SNR of ADC method
Any LVDS Output = 100 MHz Broadband jitter
Divide Ratio = 5
CMOS OUTPUT ADDITIVE TIME JITTER
CLK = 200 MHz 289 fs rms Calculated from SNR of ADC method
Any CMOS Output Pair = 100 MHz Broadband jitter
Divide Ratio = 2
Application example based on a typical setup using an
external 245.76 MHz VCXO (Toyocom TCO-2112);
reference = 15.36 MHz; R DIV = 1
Distribution section only; does not include
PLL and VCO; measured at rising edge of
clock signal
Distribution section only; does not include
PLL and VCO
Rev. 0 | Page 11 of 84
AD9522-2
CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER USED)
Table 12.
Parameter Min Typ Max Unit Test Conditions/Comments
LVDS OUTPUT ADDITIVE TIME JITTER
CLK = 500 MHz; VCO DIV = 5; LVDS = 100 MHz;
248 fs rms
Bypass Channel Divider; Duty-Cycle Correction = On
CMOS OUTPUT ADDITIVE TIME JITTER
CLK = 200 MHz; VCO DIV = 2; CMOS = 100 MHz;
290 fs rms
Bypass Channel Divider; Duty-Cycle Correction = Off
CLK = 200 MHz; VCO DIV = 1; CMOS = 100 MHz;
288 fs rms
Bypass Channel Divider; Duty-Cycle Correction = Off
SERIAL CONTROL PORT—SPI MODE
Table 13.
Parameter Min Typ Max Unit Test Conditions/Comments
CS (INPUT)
Input Logic 1 Voltage 2.0 V
Input Logic 0 Voltage 0.8 V
Input Logic 1 Current 3 μA
Input Logic 0 Current −110 μA
Input Capacitance 2 pF
SCLK (INPUT) IN SPI MODE
Input Logic 1 Voltage 2.0 V
Input Logic 0 Voltage 0.8 V
Input Logic 1 Current 110 μA
Input Logic 0 Current 1 μA
Input Capacitance 2 pF
SDIO (WHEN AN INPUT IN BIDIRECTIONAL MODE)
Input Logic 1 Voltage 2.0 V
Input Logic 0 Voltage 0.8 V
Input Logic 1 Current 1 μA
Input Logic 0 Current 1 μA
Input Capacitance 2 pF
SDIO, SDO (OUTPUTS)
Output Logic 1 Voltage 2.7 V
Output Logic 0 Voltage 0.4 V
TIMING
Clock Rate (SCLK, 1/t
Pulse Width High, t
Pulse Width Low, t
) 25 MHz
SCLK
16 ns
HIGH
16 ns
LOW
SDIO to SCLK Setup, tDS 4 ns
SCLK to SDIO Hold, tDH 0 ns
SCLK to Valid SDIO and SDO, tDV 11 ns
CS to SCLK Setup and Hold, tS, tC
CS Minimum Pulse Width High, t
PWH
CS has an internal 30 kΩ pull-up resistor
The minus sign indicates that current is flowing out of
the AD9522, which is due to the internal pull-up resistor
SCLK has an internal 30 kΩ pull-down resistor in SPI
mode, but not in I
2 ns
3 ns
Distribution section only; does not include
PLL and VCO; uses rising edge of clock signal
Calculated from SNR of ADC method
(broadband jitter)
Distribution section only; does not include
PLL and VCO; uses rising edge of clock signal
Calculated from SNR of ADC method
(broadband jitter)
Calculated from SNR of ADC method
(broadband jitter)
2
C mode
Rev. 0 | Page 12 of 84
AD9522-2
SERIAL CONTROL PORT—I²C MODE
Table 14.
Parameter Min Typ Max Unit Test Conditions/Comments
SDA, SCL (WHEN INPUTTING DATA)
Input Logic 1 Voltage 0.7 × VS V
Input Logic 0 Voltage 0.3 × VS V
Input Current with an Input Voltage Between
0.1 × VS and 0.9 × VS
Hysteresis of Schmitt Trigger Inputs 0.015 × VS V
Pulse Width of Spikes That Must Be Suppressed by
the Input Filter, t
SPIKE
SDA (WHEN OUTPUTTING DATA)
Output Logic 0 Voltage at 3 mA Sink Current 0.4 V
Output Fall Time from VIH
MIN
to VIL
with a Bus
MAX
Capacitance from 10 pF to 400 pF
TIMING
Clock Rate (SCL, f
Bus Free Time Between a Stop and Start Condition, t
Setup Time for a Repeated Start Condition, t
) 400 kHz
I2C
IDLE
0.6 μs
SET; STR
Hold Time (Repeated) Start Condition (After This Period,
the First Clock Pulse Is Generated), t
Setup Time for Stop Condition, t
Low Period of the SCL Clock, t
High Period of the SCL Clock, t
SCL, SDA Rise Time, t
SCL, SDA Fall Time, t
Data Setup Time, t
Data Hold Time, t
RISE
FAL L
SET; DAT
HLD; DAT
LOW
HIGH
20 + 0.1 Cb 300 ns Cb = capacitance of one bus line in pF
20 + 0.1 Cb 300 ns Cb = capacitance of one bus line in pF
120 ns
140 880 ns
SET; STP
1.3 μs
0.6 μs
HLD; STR
0.6 μs
Capacitive Load for Each Bus Line, Cb 400 pF
1
According to the original I2C specification, an I2C master must also provide a minimum hold time of 300 ns for the SDA signal to bridge the undefined region of the SCL
falling edge.
−10 +10 μA
50 ns
20 + 0.1 C
250 ns Cb = capacitance of one bus line in pF
b
Note that all I
to VIH
(0.7 × VS)
1.3 μs
0.6 μs
This is a minor deviation from the
original I²C specification of 100 ns
minimum
This is a minor deviation from the
original I²C specification of 0 ns
minimum
2
C timing values refer
(0.3 × VS) and VIL
MIN
1
MAX
levels
Rev. 0 | Page 13 of 84
AD9522-2
PD, SYNC, AND RESET PINS
Table 15.
Parameter Min Typ Max Unit Test Conditions/Comments
INPUT CHARACTERISTICS Each of these pins has an internal 30 kΩ pull-up resistor
Logic 1 Voltage 2.0 V
Logic 0 Voltage 0.8 V
Logic 1 Current 1 μA
Logic 0 Current −110 μA
Capacitance 2 pF
RESET TIMING
Pulse Width Low 50 ns
RESET Inactive to Start of Register Programming
SYNC TIMING
Pulse Width Low 1.3 ns High speed clock is CLK input signal
100 ns
SERIAL PORT SETUP PINS: SP1, SP0
Table 16.
Parameter Min Typ Max Unit Test Conditions/Comments
SP1, SP0 These pins do not have internal pull-up/pull-down resistors
Logic Level 0 0.25 × VS V VS is the voltage on the VS pin
Logic Level ½ 0.4 × VS 0.65 × VS V
Logic Level 1 0.8 × VS V
User can float these pins to obtain Logic Level ½; if floating this pin, user
should connect a capacitor to ground
The minus sign indicates that current is flowing out of
the AD9522, which is due to the internal pull-up resistor
LD, STATUS, AND REFMON PINS
Table 17.
Parameter Min Typ Max Unit Test Conditions/Comments
OUTPUT CHARACTERISTICS
Output Voltage High, VOH 2.7 V
Output Voltage Low, VOL 0.4 V
MAXIMUM TOGGLE RATE 100 MHz
ANALOG LOCK DETECT
Capacitance 3 pF
REF1, REF2, AND VCO FREQUENCY STATUS MONITOR
Normal Range 1.02 MHz
Extended Range 8 kHz
LD PIN COMPARATOR
Trip Point 1.6 V
Hysteresis 260 mV
When selected as a digital output (CMOS); there are other
modes in which these pins are not CMOS digital outputs;
see Table 52, 0x017, 0x01A, and 0x01B
Applies when mux is set to any divider or counter output,
or PFD up/down pulse; also applies in analog lock detect
mode; usually debug mode only; note that spurs can
couple to output when any of these pins are toggling
On-chip capacitance; used to calculate RC time constant
for analog lock detect readback; use a pull-up resistor
Frequency above which the monitor indicates the
presence of the reference
Frequency above which the monitor indicates the
presence of the reference
Rev. 0 | Page 14 of 84
AD9522-2
POWER DISSIPATION
Table 18.
Parameter Min Typ Max Unit Test Conditions/Comments
POWER DISSIPATION, CHIP
Power-On Default 0.88 1.0 W No clock; no programming; default register values
PLL Locked; One LVDS Output Enabled 0.54 0.63 W
POWER DELTAS, INDIVIDUAL FUNCTIONS Power delta when a function is enabled/disabled
VCO Divider On/Off 33 43 mW VCO divider not used
REFIN (Differential) Off 25 31 mW
REF1, REF2 (Single-Ended) On/Off 16 22 mW
VCO On/Off 60 95 mW Internal VCO disabled; CLK input selected
PLL Dividers and Phase Detector On/Off 54 67 mW PLL off to PLL on, normal operation; no reference enabled
LVDS Channel 118 146 mW No LVDS output on to one LVDS output on; channel divider set to 1
LVDS Driver 11 15 mW Second LVDS output turned on, same channel
CMOS Channel 120 154 mW
CMOS Driver On/Off 16 30 mW Additional CMOS outputs within the same channel turned on
Channel Divider Enabled 33 40 mW
Zero Delay Block On/Off 30 35 mW
Does not include power dissipated in external resistors; all LVDS
outputs terminated with 100 Ω across differential pair; all CMOS
outputs have 10 pF capacitive loading
= 25 MHz; f
f
REF
= 250 MHz; VCO = 2250 MHz; VCO divider = 3;
OUT
one LVDS output and output divider enabled; zero delay off;
ICP = 4.8 mA
= 25 MHz; f
f
REF
= 62.5 MHz; VCO = 2250 MHz; VCO divider = 3;
OUT
one CMOS output and output divider enabled; zero delay off;
ICP = 4.8 mA
f
= 2.4 GHz; f
CLK
= 200 MHz; VCO divider = 2; one LVDS output
OUT
and output divider enabled; zero delay off
= 2.4 GHz; f
f
CLK
= 200 MHz; VCO divider bypassed; one LVDS
OUT
output and output divider enabled; zero delay off
PLL on; internal VCO = 2250 MHz; VCO divider = 3; all channel
dividers on; 12 LVDS outputs @ 125 MHz; zero delay on
PD pin pulled low; does not include power dissipated in
down SYNC, 0x230[2] = 1b; power-down distribution reference,
0x230[1] = 1b
Delta between reference input off and differential reference
input mode
Delta between reference inputs off and one single-ended
reference enabled; double this number if both REF1 and REF2
are powered up
No CMOS output on to one CMOS output on; channel divider
set to 1; f
= 62.5 MHz and 10 pF of capacitive loading
OUT
Delta between divider bypassed (divide-by-1) and divide-by-2 to
divide-by-32
Rev. 0 | Page 15 of 84
AD9522-2
ABSOLUTE MAXIMUM RATINGS
Table 19.
With
Parameter or Pin
VS GND −0.3 V to +3.6 V
VCP, CP GND −0.3 V to +5.8 V
REFIN, REFIN
RSET, LF, BYPASS GND −0.3 V to VS + 0.3 V
CPRSET GND −0.3 V to VS + 0.3 V
CLK, CLK
CLK
SYNC, RESET, PD
REFMON, STATUS, LD GND −0.3 V to VS + 0.3 V
SP0, SP1, EEPROM GND −0.3 V to VS + 0.3 V
Junction Temperature1 150°C
Storage Temperature Range −65°C to +150°C
Lead Temperature (10 sec) 300°C
1
See Table 20 for θJA.
, OUT3, OUT3,
, OUT5, OUT5,
Respect to Rating
GND −0.3 V to VS + 0.3 V
GND −0.3 V to VS + 0.3 V
CLK
GND −0.3 V to VS + 0.3 V
GND −0.3 V to VS + 0.3 V
GND −0.3 V to VS + 0.3 V
−1.2 V to +1.2 V
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
Thermal impedance measurements were taken on a JEDEC
JESD51-5 2S2P test board in still air in accordance with JEDEC
JESD51-2. See the Thermal Performance section for more details.
Table 20.
Package Type θJA Unit
64-Lead LFCSP (CP-64-4) 22 °C/W
ESD CAUTION
Rev. 0 | Page 16 of 84
AD9522-2
S
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
REFIN (REF 1)
REFIN (REF 2)
CPRSETVSVS
GND
RSETVSOUT0 (OUT0A)
OUT0 (OUT0B)VSOUT1 (OUT1A)
OUT1 (OUT1B)
OUT2 (OUT2A)
OUT2 (OUT2B)
646362616059585756555453525150
VS
49
32
VS
48
OUT3 (OUT3A)
47
OUT3 (OUT3B)
46
VS
45
OUT4 (OUT4A)
44
OUT4 (OUT4B)
43
OUT5 (OUT5A)
42
OUT5 (OUT5B)
41
VS
40
VS
39
OUT8 (OUT8B)
38
OUT8 (OUT8A)
37
OUT7 (OUT7B)
36
OUT7 (OUT7A)
35
VS
34
OUT6 (OUT6B)
33
OUT6 (OUT6A)
07221-003
VS
1
PIN 1
REFMON
LD
VCP
CP
STATUS
REF_SEL
SYNC
LF
BYPASS
10
VS
11
VS
12
CLK
13
CLK
14
CS
15
16
CLK/SCL
NOTES
1. EXPOSED DIE PAD MUST BE CO NNECTED TO GND.
INDICATO R
2
3
4
5
6
7
8
9
171819202122232425262728293031
SDIO/SDA
SDO
SP1
GND
AD9522
TOP VIEW
(Not to Scale)
PD
SP0
RESET
EEPROM
T9 (OUT9A)
OU
T9 (OUT9B)
OU
VS
OUT10A)
OUT10 (
OUT10B)
OUT10 (
OUT11A)
OUT11 (
OUT11B)
OUT11 (
Figure 5. Pin Configuration
Table 21. Pin Function Descriptions
Pin No.
1, 11, 12, 27,
Input/
Output
I Power VS 3.3 V Power Pins.
Pin
Type Mnemonic Description
32, 35, 40,
41, 46, 49,
54, 57, 60, 61
2 O 3.3 V CMOS REFMON Reference Monitor (Output). This pin has multiple selectable outputs.
3 O 3.3 V CMOS LD
4 I Power VCP
Lock Detect (Output). This pin has multiple selectable outputs.
Power Supply for Charge Pump (CP); VS < VCP < 5.0 V. VCP must still be connected
to 3.3 V if the PLL is not used.
5 O Loop filter CP
Charge Pump (Output). This pin connects to an external loop filter. This pin can
be left unconnected if the PLL is not used.
6 O 3.3 V CMOS STATUS
7 I 3.3 V CMOS REF_SEL
Programmable Status Output.
Reference Select. It selects REF1 (low) or REF2 (high). This pin has an internal
30 kΩ pull-down resistor.
8 I 3.3 V CMOS
SYNC
Manual Synchronizations and Manual Holdover. This pin initiates a manual
synchronization and is used for manual holdover. Active low. This pin has an
internal 30 kΩ pull-up resistor.
9 I Loop filter LF
10 O Loop filter BYPASS
Loop Filter (Input). It connects internally to the VCO control voltage node.
This pin is for bypassing the LDO to ground with a 220 nF capacitor.
This pin can be left unconnected if the PLL is not used.
13 I
Differential
CLK
Along with CLK
, this pin is the differential input for the clock distribution section.
clock input
14 I
Differential
clock input
Along with CLK, this pin is the differential input for the clock distribution section. If a
CLK
single-ended input is connected to the CLK pin, connect a 0.1 μF bypass capacitor
from this pin to ground.
Rev. 0 | Page 17 of 84
AD9522-2
Input/
Pin No.
15 I 3.3 V CMOS
16 I 3.3 V CMOS SCLK/SCL
17 I/O 3.3 V CMOS SDIO/SDA Serial Control Port Bidirectional Serial Data In/Out.
18 O 3.3 V CMOS SDO Serial Control Port Unidirectional Serial Data Out.
19, 59 I GND GND Ground Pins.
20 I
21 I
22 I 3.3 V CMOS EEPROM
23 I 3.3 V CMOS
24 I 3.3 V CMOS
25 O
26 O
28 O
29 O
30 O
31 O
33 O
34 O
36 O
37 O
38 O
39 O
42 O
43 O
44 O
45 O
Output
Pin
Type Mnemonic Description
Serial Control Port Chip Select; Active Low. This pin has an internal 30 kΩ
CS
pull-up resistor.
Serial Control Port Clock Signal. This pin has an internal 30 kΩ pull-down resistor
in SPI mode but is high impedance in I²C mode.
Three-level
logic
Three-level
logic
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
SP1
SP0
RESET
PD
OUT9 (OUT9A)
(OUT9B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT9
OUT10 (OUT10A)
(OUT10B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT10
OUT11 (OUT11A)
(OUT11B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT11
OUT6 (OUT6A)
(OUT6B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT6
OUT7 (OUT7A)
(OUT7B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT7
OUT8 (OUT8A)
(OUT8B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT8
(OUT5B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT5
OUT5 (OUT5A)
(OUT4B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT4
OUT4 (OUT4A)
Select SPI or I²C as the serial interface port and select the I²C slave address in I²C
mode. Three-level logic. This pin is internally biased for the open logic level.
Select SPI or I²C as the serial interface port and select the I²C slave address in I²C
mode. Three-level logic. This pin is internally biased for the open logic level.
Setting this pin high selects the register values stored in the internal EEPROM to
be loaded at reset and/or power-up. Setting this pin low causes the AD9522 to
load the hard-coded default register values at power-up/reset. This pin has an
internal 30 kΩ pull-down resistor.
Chip Reset, Active Low. This pin has an internal 30 kΩ pull-up resistor.
Chip Power-Down, Active Low. This pin has an internal 30 kΩ pull-up resistor.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Rev. 0 | Page 18 of 84
AD9522-2
Input/
Pin No.
47 O
48 O
50 O
51 O
52 O
53 O
55 O
56 O
58 O
62 O
63 I
64 I
EPAD GND GND The exposed die pad must be connected to GND.
Output
Pin
Type Mnemonic Description
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
LVDS or
CMOS
Current set
resistor
Current set
resistor
Reference
input
Reference
input
(OUT3B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT3
or as a single-ended CMOS output.
OUT3 (OUT3A)
(OUT2B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT2
OUT2 (OUT2A)
(OUT1B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT1
OUT1 (OUT1A)
(OUT0B) Clock Output. This pin can be configured as one side of a differential LVDS output
OUT0
OUT0 (OUT0A)
RSET
CPRSET
(REF2) Along with REFIN, this is the differential input for the PLL reference. Alternatively,
REFIN
REFIN (REF1)
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
or as a single-ended CMOS output.
Clock Output. This pin can be configured as one side of a differential LVDS output
or as a single-ended CMOS output.
Clock Distribution Current Set Resistor. Connect a 4.12 kΩ resistor from this pin
to GND.
Charge Pump Current Set Resistor. Connect a 5.1 kΩ resistor from this pin to GND.
This resistor can be omitted if the PLL is not used.
this pin is a single-ended input for REF2.
Along with REFIN
this pin is a single-ended input for REF1.
, this is the differential input for the PLL reference. Alternatively,
Rev. 0 | Page 19 of 84
AD9522-2
–
TYPICAL PERFORMANCE CHARACTERISTICS
275
250
225
200
175
150
CURRENT (mA)
125
100
3 CHANNELS—6 LVDS
3 CHANNELS—3 LVDS
2 CHANNELS—2 LVDS
1 CHANNEL—1 LVDS
5
4
PUMP UPPUMP DOWN
3
2
CURRENT FROM CP P IN (mA)
1
75
02004006008001000
FREQUENCY (MHz )
07221-108
Figure 6. Total Current vs. Frequency, CLK-to-Output (PLL Off), Channel and
VCO Divide r Bypa ssed, LVDS Outputs Terminated 100 Ω A cross Differential Pair
240
220
200
180
160
140
CURRENT (mA)
120
100
80
050100150200250
2 CHANNELS—8 CMOS
2 CHANNELS—2 CMOS
1 CHANNEL—2 CMOS
1 CHANNEL—1 CMOS
FREQUENCY (MHz)
07221-109
Figure 7. Total Current vs. Frequency, CLK-to-Output (PLL Off), Channel and
VCO Divider Bypassed, CMOS Outputs with 10 pF Load
48
46
44
42
40
(MHz/V)
38
VCO
K
36
34
32
30
2.002.052.102.152.202.252.302.35
VCO FREQUENCY ( GHz)
Figure 8. K
VCO
07221-010
vs. VCO Frequency
0
033.02.52.01.51.00.5
VOLTAGE ON CP PIN (V)
Figure 9. Charge Pump Characteristics @ VCP = 3.3 V
5
4
PUMP DOWNPUMP UP
3
2
CURRENT FROM CP P IN (mA)
1
0
054.03.04.53.52.52. 01.51.00.5
VOLTAGE ON CP PIN (V)
Figure 10. Charge Pump Characteristics @ VCP = 5.0 V
140
–145
–150
–155
(dBc/Hz)
–160
–165
PFD PHASE NOI SE REFERRED TO PFD INPUT
–170
0.1110010
PFD FREQUENCY (MHz)
Figure 11. PFD Phase Noise Referred to PFD Input vs. PFD Frequency
.5
07221-111
.0
07221-112
07221-013
Rev. 0 | Page 20 of 84
AD9522-2
–
208
–210
–212
–214
–216
–218
–220
PLL FIGURE OF MERIT (dBc/ Hz)
–222
–224
DIFFERENTIAL INPUT
SINGLE- ENDED INPUT
00.40.81.20.20.61.01.4
INPUT SLEW RATE (V/ns)
Figure 12. PLL Figure of Merit (FOM) vs. Slew Rate at REFIN/
An ideal sine wave can be thought of as having a continuous
and even progression of phase with time from 0° to 360° for
each cycle. Actual signals, however, display a certain amount
of variation from ideal phase progression over time. This
phenomenon is called phase jitter. Although many causes can
contribute to phase jitter, one major cause is random noise,
which is characterized statistically as Gaussian (normal) in
distribution.
This phase jitter leads to a spreading out of the energy of the
sine wave in the frequency domain, producing a continuous
power spectrum. This power spectrum is usually reported as a
series of values whose units are dBc/Hz at a given offset in
frequency from the sine wave (carrier). The value is a ratio
(expressed in decibels) of the power contained within a 1 Hz
bandwidth with respect to the power at the carrier frequency.
For each measurement, the offset from the carrier frequency is
also given.
It is meaningful to integrate the total power contained within
some interval of offset frequencies (for example, 10 kHz to
10 MHz). This is called the integrated phase noise over that
frequency offset interval and can be readily related to the time
jitter due to the phase noise within that offset frequency interval.
Phase noise has a detrimental effect on the performance of ADCs,
DACs, and RF mixers. It lowers the achievable dynamic range of
the converters and mixers, although they are affected in somewhat
different ways.
Time Jitter
Phase noise is a frequency domain phenomenon. In the time
domain, the same effect is exhibited as time jitter. When observing
a sine wave, the time of successive zero crossings varies. In a square
wave, the time jitter is a displacement of the edges from their
ideal (regular) times of occurrence. In both cases, the variations in
timing from the ideal are the time jitter. Because these variations
are random in nature, the time jitter is specified in seconds root
mean square (rms) or 1 sigma of the Gaussian distribution.
Time jitter that occurs on a sampling clock for a DAC or an
ADC decreases the signal-to-noise ratio (SNR) and dynamic
range of the converter. A sampling clock with the lowest possible
jitter provides the highest performance from a given converter.
Additive Phase Noise
Additive phase noise is the amount of phase noise that is
attributable to the device or subsystem being measured.
The phase noise of any external oscillators or clock sources is
subtracted. This makes it possible to predict the degree to which
the device impacts the total system phase noise when used in
conjunction with the various oscillators and clock sources, each
of which contributes its own phase noise to the total. In many
cases, the phase noise of one element dominates the system
phase noise. When there are multiple contributors to phase
noise, the total is the square root of the sum of squares of the
individual contributors.
Additive Time Jitter
Additive time jitter is the amount of time jitter that is attributable to
the device or subsystem being measured. The time jitter of any
external oscillators or clock sources is subtracted. This makes it
possible to predict the degree to which the device impacts the
total system time jitter when used in conjunction with the various
oscillators and clock sources, each of which contributes its own
time jitter to the total. In many cases, the time jitter of the external
oscillators and clock sources dominates the system time jitter.
Rev. 0 | Page 25 of 84
AD9522-2
V
DETAILED BLOCK DIAGRAM
OPTIONAL
BYPASS
EEPROM
REFIN
REFIN
CLK
CLK
PD
SYNC
RESET
REF1
REF2
REGULATOR (LDO)
LF
REF_SELCPRSETVCP
REFERENCE
SWITCHOVER
STATUS
STATUS
BUF
AMP
LOW DROPOUT
DIGITAL
LOGIC
EEPROM
SGNDRSET
DISTRIBUTION
REFERENCE
CLOCK
DOUBLER
STATUS
P, P + 1
PRESCALER
N DIVIDER
ZERO DELAY BL OCK
DIVIDE BY 1,
2, 3, 4, 5, OR 6
01
A/B
COUNTERS
REFMON
R
DIVIDE R
PROGRAMMABLE
PROGRAMMABLE
N DELAY
DIVIDE BY
1 TO 32
R DELAY
LOCK
DETECT
PHASE
FREQUENCY
DETECTOR
PLL
REFERENCE
CHARGE
PUMP
LD
HOLD
CP
STATUS
OUT0
OUT0
OUT1
OUT1
OUT2
OUT2
SP1
SP0
SCLK/SCL
SDIO/SDA
SDO
CS
SERIAL
PORT
DECODE
INTERFACE
SPI
INTERFACE
AD9522
I2C
DIVIDE BY
1 TO 32
DIVIDE BY
1 TO 32
DIVIDE BY
1 TO 32
Figure 36.
OUT3
OUT3
OUT4
OUT4
OUT5
OUT5
OUT6
OUT6
OUT7
OUT7
OUT8
OUT8
OUT9
OUT9
OUT10
OUT10
OUT11
OUT11
LVDS/CMOS OUTPUTS
07221-028
Rev. 0 | Page 26 of 84
Loading...
+ 58 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.