ANALOG DEVICES AD9518-3 Service Manual

Integrated 2.0 GHz VCO
AD9518-3
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
Trademarks and registered trademarks are the property of their respective owners.
Fax: 781.461.3113 ©2007–2012 Analog Devices, Inc. All rights reserved.
REFIN
REF1
REF2
CLK
LF
SWITCHOVER
AND MONITOR
PLL
DIVIDER
AND MUXs
CP
VCO
STATUS
MONITOR
LVPECL
LVPECL
SERIAL CONTROL PORT
AND
DIGITAL LOGIC
AD9518-3
OUT0 OUT1 OUT2 OUT3 OUT4 OUT5
DIV/Φ
DIV/Φ
DIV/Φ
LVPECL
06432-001
Data Sheet

FEATURES

Low phase noise, phase-locked loop (PLL)
On-chip VCO tunes from 1.75 GHz to 2.25 GHz External VCO/VCXO to 2.4 GHz optional 1 differential or 2 single-ended reference inputs Reference monitoring capability Automatic revertive and manual reference
switchover/holdover modes Accepts LVPECL, LVDS, or CMOS references to 250 MHz Programmable delays in path to PFD Digital or analog lock detect, selectable
3 pairs of 1.6 GHz LVPECL outputs
Each output pair shares a 1-to-32 divider with coarse
phase delay Additive output jitter: 225 fs rms Channel-to-channel skew paired outputs of <10 ps
Automatic synchronization of all outputs on power-up Manual output synchronization available Available in a 48-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution 10/40/100 Gb/sec networking line cards, including SONET,
Synchronous Ethernet, OTU2/3/4
Forward error correction (G.710) Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs High performance wireless transceivers ATE and high performance instrumentation

GENERAL DESCRIPTION

The AD9518-31 provides a multi-output clock distribution function with subpicosecond jitter performance, along with an on-chip PLL and VCO. The on-chip VCO tunes from 1.75 GHz to 2.25 GHz. Optionally, an external VCO/VCXO of up to
2.4 GHz can be used.
The AD9518-3 emphasizes low jitter and phase noise to maximize data converter performance, and it can benefit other applications with demanding phase noise and jitter requirements.
The AD9518-3 features six LVPECL outputs (in three pairs). The LVPECL outputs operate to 1.6 GHz.
For applications that require additional outputs, a crystal reference input, zero-delay, or EEPROM for automatic configuration at startup, the AD9520 and AD9522 are available.
6-Output Clock Generator with

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
In addition, the AD9516 and AD9517 are similar to the AD9518 but have a different combination of outputs.
Each pair of outputs has dividers that allow both the divide ratio and coarse delay (or phase) to be set. The range of division for the LVPECL outputs is 1 to 32.
The AD9518-3 is available in a 48-lead LFCSP and can be operated from a single 3.3 V supply. An external VCO, which requires an extended voltage range, can be accommodated by connecting the charge pump supply (VCP) to 5 V. A separate LVPECL power supply can be from 2.5 V to 3.3 V (nominal).
The AD9518-3 is specified for operation over the industrial range of −40°C to +85°C.
1
AD9518 is used throughout the data sheet to refer to all the members of
the AD9518 family. However, when AD9518-3 is used, it refers to that specific member of the AD9518 family.
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
www.analog.com
AD9518-3 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
Specifications ..................................................................................... 4
Power Supply Requirements ....................................................... 4
PLL Characteristics ...................................................................... 4
Clock Inputs .................................................................................. 6
Clock Outputs ............................................................................... 6
Timing Characteristics ................................................................ 6
Clock Output Additive Phase Noise (Distribution Only;
VCO Divider Not Used) .............................................................. 7
Clock Output Absolute Phase Noise (Internal VCO Used) .... 7
Clock Output Absolute Time Jitter (Clock Generation
Using Internal VCO) .................................................................... 8
Clock Output Absolute Time Jitter (Clock Cleanup Using
Internal VCO) ............................................................................... 8
Clock Output Absolute Time Jitter (Clock Generation
Using External VCXO) ................................................................ 8
Clock Output Additive Time Jitter (VCO Divider
Not Used) ....................................................................................... 9
Clock Output Additive Time Jitter (VCO Divider Used) ....... 9
Serial Control Port ..................................................................... 10
PD, SYNC
LD, STATUS, and REFMON Pins ............................................ 11
Power Dissipation ....................................................................... 11
Timing Diagrams ............................................................................ 12
Absolute Maximum Ratings .......................................................... 13
, and
RESET
Pins ..................................................... 10
Thermal Resistance .................................................................... 13
ESD Caution................................................................................ 13
Pin Configuration and Function Descriptions ........................... 14
Typical Performance Characteristics ........................................... 16
Terminology .................................................................................... 20
Detailed Block Diagram ................................................................ 21
Theory of Operation ...................................................................... 22
Operational Configurations ...................................................... 22
Digital Lock Detect (DLD) ....................................................... 30
Clock Distribution ..................................................................... 34
Reset Modes ................................................................................ 38
Power-Down Modes .................................................................. 38
Serial Control Port ......................................................................... 40
Serial Control Port Pin Descriptions ....................................... 40
General Operation of Serial Control Port ............................... 40
The Instruction Word (16 Bits) ................................................ 41
MSB/LSB First Transfers ........................................................... 41
Thermal Performance .................................................................... 44
Control Registers ............................................................................ 45
Control Register Map Overview .............................................. 45
Control Register Map Descriptions ......................................... 47
Applications Information .............................................................. 59
Frequency Planning Using the AD9518 .................................. 59
Using the AD9518 Outputs for ADC Clock Applications .... 59
LVPECL Clock Distribution ..................................................... 60
Outline Dimensions ....................................................................... 61
Ordering Guide .......................................................................... 61
Rev. C | Page 2 of 64
Data Sheet AD9518-3

REVISION HISTORY

1/12—Rev. B to Rev. C
Change to 0x232 Description, Table 49 ........................................ 58
9/11—Rev. A to Rev. B
Changes to Applications and General Description Sections ....... 1
Change to CPRSET Pin Resistor Parameter, Table 1 .................... 4
Changes to Table 2 ............................................................................ 4
Change to Test Conditions/Comments Column of Output Differential Voltage (V
) Parameter, Table 4 ............................... 5
OD
Change to Logic 1 Current and Logic 0 Current Parameters,
Table 14 ............................................................................................. 10
Change to Test Conditions/Comments Column of LVPECL
Channel (Divider Plus Output Driver) Parameter, Table 16 ..... 11
Changes to Table 19 ........................................................................ 14
Changes to Captions, Figure 11 and Figure 16............................ 17
Added Figure 26, Renumbered Sequentially ............................... 19
Change to PLL External Loop Filter Section ............................... 27
Changes to Reference Switchover and Prescaler Sections ......... 28
Changes to Comments/Conditions Column, Table 27 .............. 29
Changes to Automatic/Internal Holdover Mode and
Frequency Status Monitors Sections ............................................. 32
Changes to VCO Calibration Section ........................................... 33
Changes to Clock Distribution Section ........................................ 34
Change to Write Section ................................................................. 40
Change to Figure 47 ........................................................................ 42
Changes to Table 41 ........................................................................ 44
Changes to Register Address 0x01C, Table 42 ............................ 45
Changes to Register Address 0x017, Bits[1:0] and
Register Address 0x018, Bits[2:0], Table 44 ................................. 50
Changes to Register Address 0x01C, Bits[5:1], Table 44 ............ 53
Change to Bit 5, Register Address 0x191, Register
Address 0x194, and Register Address 0x197, Table 46 ............... 56
Changes to LVPECL Clock Distribution Section ....................... 60
Updated Outline Dimensions and Changes to
Ordering Guide ............................................................................... 61
1/10—Rev. 0 to Rev. A
Added 48-Lead LFCSP Package (CP-48-8) .................... Universal
Changes to Features, Applications, and General Description ..... 1
Change to CPRSET Pin Resistor Parameter .................................. 4
Changes to V
Supply Parameter................................................. 11
CP
Changes to Table 18 ........................................................................ 13
Added Exposed Paddle Notation to Figure 4;
Changes to Table 19 ........................................................................ 14
Change to High Frequency Clock Distribution—CLK or
External VCO > 1600 MHz Section; Change to Table 21 .......... 22
Changes to Table 23 ........................................................................ 24
Change to Configuration and Register Settings Section ........... 25
Change to Phase Frequency Detector (PFD) Section ................ 26
Changes to Charge Pump (CP), On-Chip VCO, PLL
External Loop Filter, and PLL Reference Inputs Sections ......... 27
Change to Figure 31; Added Figure 32 ......................................... 27
Changes to Reference Switchover and Prescaler Sections ......... 28
Changes to A and B Counters Section and Table 27 .................. 29
Change to Holdover Section .......................................................... 31
Changes to VCO Calibration Section ........................................... 33
Changes to Clock Distribution Section ........................................ 34
Change to Table 32; Change to Channel Frequency
Division (0, 1, and 2) Section ........................................................ 35
Change to Write Section ................................................................ 40
Change to Figure 46 ........................................................................ 42
Added Thermal Performance Section; Added Table 41 ............ 44
Changes to 0x003 Register Address .............................................. 45
Changes to Table 43 ........................................................................ 47
Changes to Table 44 ........................................................................ 48
Changes to Table 45 ........................................................................ 55
Changes to Table 46 ........................................................................ 57
Changes to Table 47 ........................................................................ 58
Changes to Table 48 ........................................................................ 59
Added Frequency Planning Using the AD9518 Section ............ 60
Changes to LVDS Clock Distribution Section ............................ 61
Changes to Figure 52 and Figure 54; Added Figure 53 .............. 61
Added Exposed Paddle Notation to Outline Dimensions;
Changes to Ordering Guide ........................................................... 62
9/07—Revision 0: Initial Version
Rev. C | Page 3 of 64
AD9518-3 Data Sheet
Phase Noise at 1 MHz Offset
−126 dBc/Hz
f = 2000 MHz
Input Frequency (AC-Coupled)
20 250
MHz
Slew rate > 50 V/µs
Input Current
−100 +100
µA
6.0 ns
Register 0x017[1:0] = 10b

SPECIFICATIONS

Typical values are given for VS = V Minimum and maximum values are given over full V

POWER SUPPLY REQUIREMENTS

Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
VS 3.135 3.3 3.465 V 3.3 V ± 5% V
2.375 VS V Nominally 2.5 V to 3.3 V ± 5%
S_LVPE CL
VCP VS 5.25 V Nominally 3.3 V to 5.0 V ± 5% RSET Pin Resistor 4.12 kΩ Sets internal biasing currents; connect to ground CPRSET Pin Resistor 2.7 5.1 10 kΩ Sets internal CP current range, nominally 4.8 mA (CP_lsb = 600 µA);
BYPASS Pin Capacitor 220 nF Bypass for internal LDO regulator; necessary for LDO stability;

PLL CHARACTERISTICS

Table 2.
Parameter Min Typ Max Unit Test Conditions/Comments
VCO (ON-CHIP)
Frequency Range 1750 2250 MHz VCO Gain (K Tuning Voltage (VT) 0.5 VCP −
Frequency Pushing (Open-Loop) 1 MHz/V Phase Noise at 100 kHz Offset −108 dBc/Hz f = 2000 MHz
) 50 MHz/V
VCO
= 3.3 V ± 5%; VS ≤ VCP ≤ 5.25 V; TA = 25°C; R
S_ LVPE CL
and TA (−40°C to +85°C) variation.
S
V VCP ≤ VS when using internal VCO; outside of this range, the CP
0.5
= 4.12 kΩ; CP
SET
= 5.1 kΩ, unless otherwise noted.
RSET
actual current can be calculated by CP_lsb = 3.06/CPRSET; connect to ground
connect to ground
See
Figure 11
See
Figure 6
spurs may increase due to CP up/down mismatch
REFERENCE INPUTS
Differential Mode (REFIN,
REFIN
)
Differential mode (can accommodate single-ended input by ac
grounding undriven input)
Input Frequency 0 250 MHz Frequencies below about 1 MHz should be dc-coupled; be careful
to match V
(self-bias voltage)
CM
Input Sensitivity 250 mV p-p PLL figure of merit (FOM) increases with increasing slew rate
(see Figure 10);
LVPECL and LVDS signals
the input sensitivity is sufficient for ac-coupled
Self-Bias Voltage, REFIN 1.35 1.60 1.75 V Self-bias voltage of REFIN1 Self-Bias Voltage,
REFIN
1.30 1.50 1.60 V
Input Resistance, REFIN 4.0 4.8 5.9 kΩ Input Resistance,
REFIN
4.4 5.3 6.4 kΩ
Self-bias voltage of
Self-biased Self-biased
1
1
REFIN
1
Dual Single-Ended Mode (REF1, REF2) Two single-ended CMOS-compatible inputs
Input Frequency (DC-Coupled) 0 250 MHz Slew rate > 50 V/µs; CMOS levels Input Sensitivity (AC-Coupled) 0.8 V p-p Should not exceed VS p-p Input Logic High 2.0 V Input Logic Low 0.8 V
Pulse Width High/Low 1.8 ns This value determines the allowable input duty cycle and is the
amount of time that a square wave is high/low
Input Capacitance 2 pF
Each pin, REFIN/
REFIN
(REF1/REF2)
PHASE/FREQUENCY DETECTOR (PFD)
PFD Input Frequency 100 MHz Antibacklash pulse width = 1.3 ns, 2.9 ns 45 MHz Antibacklash pulse width = 6.0 ns Antibacklash Pulse Width 1.3 ns Register 0x017[1:0] = 01b
2.9 ns Register 0x017[1:0] = 00b; Register 0x017[1:0] = 11b
Rev. C | Page 4 of 64
Data Sheet AD9518-3
Sink-and-Source Current Matching
2 % 0.5 < CPV < VCP − 0.5 V
P = 4 DM (4/5)
1000
MHz
110
880 ps
At 50 MHz PFD Frequency
−143 dBc/Hz
Parameter Min Typ Max Unit Test Conditions/Comments
CHARGE PUMP (CP) CPV is CP pin voltage; VCP is charge pump power supply voltage
ICP Sink/Source Programmable
High Value 4.8 mA With CP Low Value 0.60 mA Absolute Accuracy 2.5 % CPV = VCP/2 V CP
Range 2.7/10 kΩ
RSET
ICP High Impedance Mode Leakage 1 nA
ICP vs. CPV 1.5 % 0.5 < CPV < VCP − 0.5 V ICP vs. Temperature 2 % CPV = VCP/2 V
PRESCALER (PART OF N DIVIDER) See the VCXO/VCO Feedback Divider N—P, A, B, R section
Prescaler Input Frequency
P = 1 FD 300 MHz P = 2 FD 600 MHz P = 3 FD 900 MHz P = 2 DM (2/3) 200 MHz
P = 8 DM (8/9) 2400 MHz P = 16 DM (16/17) 3000 MHz P = 32 DM (32/33) 3000 MHz
Prescaler Output Frequency 300 MHz A, B counter input frequency (prescaler input frequency
divided by P)
PLL DIVIDER DELAYS
Register 0x019: R, Bits[5:3]; N, Bits[2:0] (see 000 Off ps 001 330 ps 010 440 ps 011 550 ps 100 660 ps 101 770 ps
= 5.1 kΩ
RSET
Table 44)
111 990 ps
NOISE CHARACTERISTICS
In-Band Phase Noise of the Charge
Pump/Phase Frequency Detector (In-Band Is Within the LBW of the PLL)
The PLL in-band phase noise floor is estimated by measuring the
in-band phase noise at the output of the VCO and subtracting
20 log(N) (where N is the value of the N divider)
At 500 kHz PFD Frequency −165 dBc/Hz At 1 MHz PFD Frequency −162 dBc/Hz At 10 MHz PFD Frequency −151 dBc/Hz
PLL Figure of Merit (FOM) −220 dBc/Hz Reference slew rate > 0.25 V/ns; FOM + 10 log(f
PFD
) is an approximation of the PFD/CP in-band phase noise (in the flat region) inside the PLL loop bandwidth; when running closed­loop, the phase noise, as observed at the VCO output, is increased by 20 log(N)
PLL DIGITAL LOCK DETECT WINDOW2 Signal available at LD, STATUS, and REFMON pins when
selected by appropriate register settings
Required to Lock (Coincidence of Edges) Selected by Register 0x017[1:0] and Register 0x018[4]
Low Range (ABP 1.3 ns, 2.9 ns) 3.5 ns Register 0x017[1:0] = 00b, 01b,11b; Register 0x018[4] = 1b High Range (ABP 1.3 ns, 2.9 ns) 7.5 ns Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 0b High Range (ABP 6.0 ns) 3.5 ns Register 0x017[1:0] = 10b; Register 0x018[4] = 0b
To Unlock After Lock (Hysteresis)2
Low Range (ABP 1.3 ns, 2.9 ns) 7 ns Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 1b High Range (ABP 1.3 ns, 2.9 ns) 15 ns Register 0x017[1:0] = 00b, 01b, 11b; Register 0x018[4] = 0b High Range (ABP 6.0 ns) 11 ns Register 0x017[1:0] = 10b; Register 0x018[4] = 0b
1
REFIN and
2
For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the unlock-after-lock time.
REFIN
self-bias points are offset slightly to avoid chatter on an open input condition.
Rev. C | Page 5 of 64
AD9518-3 Data Sheet
CLOCK INPUTS (CLK,
)
Differential input
Parameter
Min
Typ
Max
Unit
Test Conditions/Comments
Output High Voltage (VOH)
V
V
V
V

CLOCK INPUTS

Table 3.
Parameter Min Typ Max Unit Test Conditions/Comments
CLK Input Frequency 01 2.4 GHz High frequency distribution (VCO divider) 01 1.6 GHz Distribution only (VCO divider bypassed) Input Sensitivity, Differential 150 mV p-p Measured at 2.4 GHz; jitter performance is
improved with slew rates > 1 V/ns
Input Level, Differential 2 V p-p Larger voltage swings may turn on the
protection diodes and may degrade jitter
performance Input Common-Mode Voltage, VCM 1.3 1.57 1.8 V Self-biased; enables ac coupling Input Common-Mode Range, V Input Sensitivity, Single-Ended 150 mV p-p CLK ac-coupled;
Input Resistance 3.9 4.7 5.7 kΩ Self-biased Input Capacitance 2 pF
1
Below about 1 MHz, the input should be dc-coupled. Care should be taken to match VCM.

CLOCK OUTPUTS

Table 4.
1.3 1.8 V With 200 mV p-p signal applied; dc-coupled
CMR
ac-bypassed to RF ground
CLK
LVPECL CLOCK OUTPUTS Termination = 50 Ω to VS − 2 V
OUT0, OUT1, OUT2, OUT3, OUT4, OUT5 Differential (OUT,
OUT
)
Output Frequency, Maximum 2950 MHz Using direct to output; see Figure 16 for peak-
Output Low Voltage (VOL)
S_LVPECL
1.12 V
S_LVPECL
2.03
S_LVPECL
0.98 V
S_LVPECL
1.77
S_LVPECL
0.84 V
S_LVPECL
1.49
V
Output Differential Voltage (VOD) 550 790 980 mV
to-peak differential amplitude
This is VOH − VOL for each leg of a differential pair
for default amplitude setting with driver not
toggling; the peak-to-peak amplitude measured
using a differential probe across the differential
pair with the driver toggling is roughly 2× these
values (see Figure 16 for variation over frequency)

TIMING CHARACTERISTICS

Table 5.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL Termination = 50 Ω to VS − 2 V; level = 810 mV
Output Rise Time, tRP 70 180 ps 20% to 80%, measured differentially Output Fall Time, tFP 70 180 ps 80% to 20%, measured differentially
PROPAGATION DELAY, t
OUTPUT High Frequency Clock Distribution
Configuration Clock Distribution Configuration 773 933 1090 ps See Figure 30 Variation with Temperature 0.8 ps/°C
OUTPUT SKEW, LVPECL OUTPUTS1
LVPECL Outputs That Share the Same Divider 5 15 ps LVPECL Outputs on Different Dividers 13 40 ps All LVPECL Outputs Across Multiple Parts 220 ps
1
This is the difference between any two similar delay paths while operating at the same voltage and temperature.
, CLK-TO-LVPECL
PECL
835 995 1180 ps See Figure 28
Rev. C | Page 6 of 64
Data Sheet AD9518-3
CLK-TO-LVPECL ADDITIVE PHASE NOISE
Distribution section only; does not include
At 100 MHz Offset
−149
dBc/Hz
VCO = 1.75 GHz; Output = 1.75 GHz

CLOCK OUTPUT ADDITIVE PHASE NOISE (DISTRIBUTION ONLY; VCO DIVIDER NOT USED)

Table 6.
Parameter Min Typ Max Unit Test Conditions/Comments
PLL and VCO
CLK = 1 GHz, Output = 1 GHz Input slew rate > 1 V/ns
Divider = 1
At 10 Hz Offset −109 dBc/Hz At 100 Hz Offset −118 dBc/Hz At 1 kHz Offset −130 dBc/Hz At 10 kHz Offset −139 dBc/Hz At 100 kHz Offset −144 dBc/Hz At 1 MHz Offset −146 dBc/Hz At 10 MHz Offset −147 dBc/Hz
CLK = 1 GHz, Output = 200 MHz Input slew rate > 1 V/ns
Divider = 5
At 10 Hz Offset −120 dBc/Hz At 100 Hz Offset −126 dBc/Hz At 1 kHz Offset −139 dBc/Hz At 10 kHz Offset −150 dBc/Hz At 100 kHz Offset −155 dBc/Hz At 1 MHz Offset −157 dBc/Hz >10 MHz Offset −157 dBc/Hz

CLOCK OUTPUT ABSOLUTE PHASE NOISE (INTERNAL VCO USED)

Table 7.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL ABSOLUTE PHASE NOISE Internal VCO; direct to LVPECL output
VCO = 2.25 GHz; Output = 2.25 GHz
At 1 kHz Offset −49 dBc/Hz At 10 kHz Offset −79 dBc/Hz At 100 kHz Offset −104 dBc/Hz At 1 MHz Offset −123 dBc/Hz At 10 MHz Offset −143 dBc/Hz At 40 MHz Offset −147 dBc/Hz
VCO = 2.00 GHz; Output = 2.00 GHz
At 1 kHz Offset −53 dBc/Hz At 10 kHz Offset −83 dBc/Hz At 100 kHz Offset −108 dBc/Hz At 1 MHz Offset −126 dBc/Hz At 10 MHz Offset −142 dBc/Hz At 40 MHz Offset −147 dBc/Hz
At 1 kHz Offset −54 dBc/Hz At 10 kHz Offset −88 dBc/Hz At 100 kHz Offset −112 dBc/Hz At 1 MHz Offset −130 dBc/Hz At 10 MHz Offset −143 dBc/Hz At 40 MHz Offset −147 dBc/Hz
Rev. C | Page 7 of 64
AD9518-3 Data Sheet
LVPECL OUTPUT ABSOLUTE TIME JITTER
Application example based on a typical
114 fs rms
Integration BW = 200 kHz to 10 MHz

CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING INTERNAL VCO)

Table 8.
Parameter Min Typ Max Unit Test Conditions/Comments
setup where the reference source is clean, so a wider PLL loop bandwidth is used;
reference = 15.36 MHz; R = 1 VCO = 1.97 GHz; LVPECL = 245.76 MHz; PLL LBW = 143 kHz 129 fs rms Integration BW = 200 kHz to 10 MHz 303 fs rms Integration BW = 12 kHz to 20 MHz VCO = 1.97 GHz; LVPECL = 122.88 MHz; PLL LBW = 143 kHz 135 fs rms Integration BW = 200 kHz to 10 MHz 302 fs rms Integration BW = 12 kHz to 20 MHz VCO = 1.97 GHz; LVPECL = 61.44 MHz; PLL LBW = 143 kHz 179 fs rms Integration BW = 200 kHz to 10 MHz 343 fs rms Integration BW = 12 kHz to 20 MHz

CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK CLEANUP USING INTERNAL VCO)

Table 9.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ABSOLUTE TIME JITTER Application example based on a typical
setup where the reference source is
jittery, so a narrower PLL loop bandwidth
is used; reference = 10.0 MHz; R = 20 VCO = 1.87 GHz; LVPECL = 622.08 MHz; PLL LBW = 125 Hz 400 fs rms Integration BW = 12 kHz to 20 MHz VCO = 1.87 GHz; LVPECL = 155.52 MHz; PLL LBW = 125 Hz 390 fs rms Integration BW = 12 kHz to 20 MHz VCO = 1.97 GHz; LVPECL = 122.88 MHz; PLL LBW = 125 Hz 485 fs rms Integration BW = 12 kHz to 20 MHz

CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL VCXO)

Table 10.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ABSOLUTE TIME JITTER Application example based on a typical
setup using an external 245.76 MHz VCXO (Toyocom TCO-2112); reference = 15.36 MHz;
R = 1 LVPECL = 245.76 MHz; PLL LBW = 125 Hz 54 fs rms Integration BW = 200 kHz to 5 MHz 77 fs rms Integration BW = 200 kHz to 10 MHz 109 fs rms Integration BW = 12 kHz to 20 MHz LVPECL = 122.88 MHz; PLL LBW = 125 Hz 79 fs rms Integration BW = 200 kHz to 5 MHz
163 fs rms Integration BW = 12 kHz to 20 MHz LVPECL = 61.44 MHz; PLL LBW = 125 Hz 124 fs rms Integration BW = 200 kHz to 5 MHz 176 fs rms Integration BW = 200 kHz to 10 MHz 259 fs rms Integration BW = 12 kHz to 20 MHz
Rev. C | Page 8 of 64
Data Sheet AD9518-3
LVPECL OUTPUT ADDITIVE TIME JITTER
Distribution section only; does not include PLL and

CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER NOT USED)

Table 11.
Parameter Min Typ Max Unit Test Conditions/Comments
VCO; uses rising edge of clock signal
CLK = 622.08 MHz; LVPECL = 622.08 MHz;
Divider = 1
CLK = 622.08 MHz; LVPECL = 155.52 MHz;
Divider = 4
CLK = 1.6 GHz; LVPECL = 100 MHz; Divider = 16 215 fs rms Calculated from SNR of ADC method; DCC not used
CLK = 500 MHz; LVPECL = 100 MHz; Divider = 5 245 fs rms Calculated from SNR of ADC method; DCC on

CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER USED)

Table 12.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER Distribution section only; does not include PLL and VCO;
CLK = 2.4 GHz; VCO DIV = 2; LVPECL = 100 MHz; Divider = 12; Duty-Cycle Correction = Off
40 fs rms BW = 12 kHz to 20 MHz
80 fs rms BW = 12 kHz to 20 MHz
for even divides
uses rising edge of clock signal
210 fs rms Calculated from SNR of ADC method
Rev. C | Page 9 of 64
AD9518-3 Data Sheet
(INPUT)
CS has an internal 30 kΩ pull-up resistor
Input Logic 0 Voltage
0.8 V
Input Capacitance
2
pF
to SCLK Setup and Hold, tS, tH
2
ns
Logic 0 Current
110 µA
Capacitance
2
pF

SERIAL CONTROL PORT

Table 13.
Parameter Min Typ Max Unit Test Conditions/Comments
CS
Input Logic 1 Voltage 2.0 V Input Logic 0 Voltage 0.8 V Input Logic 1 Current 3 µA Input Logic 0 Current 110 µA Input Capacitance 2 pF
SCLK (INPUT) SCLK has an internal 30 kΩ pull-down resistor
Input Logic 1 Voltage 2.0 V
Input Logic 1 Current 110 µA Input Logic 0 Current 1 µA Input Capacitance 2 pF
SDIO (WHEN INPUT)
Input Logic 1 Voltage 2.0 V Input Logic 0 Voltage 0.8 V Input Logic 1 Current 10 nA Input Logic 0 Current 20 nA
SDIO, SDO (OUTPUTS)
Output Logic 1 Voltage 2.7 V Output Logic 0 Voltage 0.4 V
TIMING
Clock Rate (SCLK, 1/t Pulse Width High, t Pulse Width Low, t SDIO to SCLK Setup, tDS 2 ns SCLK to SDIO Hold, tDH 1.1 ns SCLK to Valid SDIO and SDO, tDV 8 ns CS
Minimum Pulse Width High, t
CS
PD
,
SYNC
, AND
) 25 MHz
SCLK
16 ns
HIGH
16 ns
LOW
3 ns
PWH
RESET
PINS
Table 14.
Parameter Min Typ Max Unit Test Conditions/Comments
INPUT CHARACTERISTICS These pins each have a 30 kΩ internal pull-up
resistor Logic 1 Voltage 2.0 V Logic 0 Voltage 0.8 V Logic 1 Current 1 µA
TIMING
RESET
Pulse Width Low 50 ns
TIMING
SYNC
Pulse Width Low 1.5 High speed
High speed clock is CLK input signal
clock cycles
Rev. C | Page 10 of 64
Data Sheet AD9518-3
OUTPUT CHARACTERISTICS
When selected as a digital output (CMOS); there are other
Capacitance
3
pF
On-chip capacitance; used to calculate RC time constant POWER DELTAS, INDIVIDUAL FUNCTIONS
Power delta when a function is enabled/disabled

LD, STATUS, AND REFMON PINS

Table 15.
Parameter Min Typ Max Unit Test Conditions/Comments
modes in which these pins are not CMOS digital outputs; see
Table 44, Register 0x017, Register 0x01A, and
Register 0x01B Output Voltage High (VOH) 2.7 V Output Voltage Low (VOL) 0.4 V
MAXIMUM TOGGLE RATE 100 MHz Applies when mux is set to any divider or counter output,
or PFD up/down pulse; also applies in analog lock detect
mode; usually debug mode only; beware that spurs may
couple to output when any of these pins are toggling
ANALOG LOCK DETECT
for analog lock detect readback; use a pull-up resistor
REF1, REF2, AND VCO FREQUENCY STATUS MONITOR
Normal Range 1.02 MHz Frequency above which the monitor always indicates the
presence of the reference Extended Range (REF1 and REF2 Only) 8 kHz Frequency above which the monitor always indicates the
presence of the reference
LD PIN COMPARATOR
Trip Point 1.6 V Hysteresis 260 mV

POWER DISSIPATION

Table 16.
Parameter Min Typ Max Unit Test Conditions/Comments
POWER DISSIPATION, CHIP
Power-On Default 0.76 1.0 W No clock; no programming; default register values;
does not include power dissipated in external resistors Full Operation 1.1 1.7 W PLL on; internal VCO = 2250 MHz; VCO divider = 2;
all channel dividers on; six LVPECL outputs at 562.5 MHz;
does not include power dissipated in external resistors
Power-Down 75 185 mW
PD
Power-Down, Maximum Sleep 31 mW
PD
VCP Supply 4 4.8 mW PLL operating; typical closed-loop configuration
VCO Divider 30 mW VCO divider bypassed REFIN (Differential) 20 mW All references off to differential reference enabled REF1, REF2 (Single-Ended) 4 mW All references off to REF1 or REF2 enabled; differential
VCO 70 mW CLK input selected to VCO selected PLL 75 mW PLL off to PLL on, normal operation; no reference enabled Channel Divider 30 mW Divider bypassed to divide-by-2 to divide-by-32 LVPECL Channel (Divider Plus Output Driver) 160 mW No LVPECL output on to one LVPECL output on,
LVPECL Driver 90 mW Second LVPECL output turned on, same channel
pin pulled low; does not include power dissipated
PD
in terminations
pin pulled low; PLL power-down, Register 0x010[1:0] =
PD
01b; SYNC power-down, Register 0x230[2] = 1b; REF for
distribution power-down, Register 0x230[1] = 1b
reference not enabled
independent of frequency
Rev. C | Page 11 of 64
AD9518-3 Data Sheet
K

TIMING DIAGRAMS

t
CLK
CL
DIFFERENTIAL
80%
LVPECL
20%
t
PECL
Figure 2. CLK/
CLK
to Clock Output Timing, DIV = 1
t
06432-060
RP
Figure 3. LVPECL Timing, Differential
t
FP
06432-061
Rev. C | Page 12 of 64
Data Sheet AD9518-3
VCP to GND
−0.3 V to +5.8 V
CLK,
to GND
−0.3 V to VS + 0.3 V

ABSOLUTE MAXIMUM RATINGS

Table 17.
Parameter Rating
VS, VS_LVPECL to GND −0.3 V to +3.6 V
REFIN, REFIN to RSET to GND −0.3 V to VS + 0.3 V
CPRSET to GND −0.3 V to VS + 0.3 V
CLK to SCLK, SDIO, SDO, CS to GND −0.3 V to VS + 0.3 V OUT0,
OUT3, to GND
SYNC REFMON, STATUS, LD to GND −0.3 V to VS + 0.3 V Junction Temperature1 150°C Storage Temperature Range −65°C to +150°C Lead Temperature (10 sec) 300°C
1
See Table 18 for θJA.
to GND −0.3 V to VS + 0.3 V
REFIN
−3.3 V to +3.3 V
REFIN
CLK
−1.2 V to +1.2 V
CLK
, OUT1,
OUT0
,OUT4,
OUT3
to GND −0.3 V to VS + 0.3 V
OUT1
OUT4
, OUT2,
, OUT5,
OUT2
OUT5
,
−0.3 V to VS + 0.3 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 18.
Package Type1 θJA Unit
48-Lead LFCSP 24.7 °C/W
1
Thermal impedance measurements were taken on a 4-layer board in still air
in accordance with EIA/JESD51-2.

ESD CAUTION

Rev. C | Page 13 of 64
AD9518-3 Data Sheet
13141516171819
2021222324
SCLK
CS
SDO
SDIO
RESET
PD
OUT4
OUT4
VS_LVPECL
OUT5
OUT5
VS
4847464544434241403938
37
REFIN (REF1)
REFIN (REF2)
CPRSETVSRSETVSOUT0
OUT0
VS_LVPECL
OUT1
OUT1
VS
1 2 3 4 5 6 7 8
9 10 11 12
35
36
34 33 32 31 30 29 28 27 26 25
AD9518-3
TOP VIEW
(Not to S cale)
PIN 1 INDICATOR
CP
STATUS
CLK
VCP
REFMON
LD
BYPASS
VS
REF_SEL
LF
SYNC
CLK
OUT3
OUT2
VS
VS
VS_LVPECL
VS_LVPECL OUT3
OUT2
NC
GND
VS
GND
06432-003
NOTES
1. NC = NO CONNECT.
2. THE EXTERNAL PADDLE ON THE BOTTOM OF THE PACKAGE MUST BE CONNECTED T O GROUND FO R P ROPER OPERAT ION.
11 I Differential
CLK
Along with
, this is the self-biased differential input for the clock distribution section.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 19. Pin Function Descriptions
Input/
Pin No.
Output P in Ty pe Mnemonic Description
1 I 3.3 V CMOS REFMON Reference Monitor (Output). This pin has multiple selectable outputs; see Table 44,
2 O 3.3 V CMOS LD Lock Detect (Output). This pin has multiple selectable outputs; see Table 44,
3 I Power VCP Power Supply for Charge Pump (CP). VS ≤ VCP ≤ 5.0 V. This pin is usually 3.3 V for most
4 O CP Charge Pump (Output). Connects to external loop filter. 5 O 3.3 V CMOS STATUS Status (Output). This pin has multiple selectable outputs; see Table 44, Register 0x017. 6 I 3.3 V CMOS REF_SEL Reference Select. Selects REF1 (low) or REF2 (high). This pin has an internal 30 kΩ
7 I 3.3 V CMOS
8 I Loop filter LF Loop Filter (Input). Connects to VCO control voltage node internally.
9 O Loop filter B YPASS This pin is for bypassing the LDO to ground with a capacitor. 10, 24, 25,
I Power VS 3.3 V Power Pins. 26, 35, 37, 43, 45
SYNC
clock input
12 I Differential
clock input
Along with CLK, this is the self-biased differential input for the clock distribution section.
CLK
Figure 4. Pin Configuration
Register 0x01B.
Register 0x01A.
applications; but if a 5 V external VCXO is used, this pin should be 5 V.
pull-down resistor. Manual Synchronizations and Manual Holdover. This pin initiates a manual
synchronization and is used for manual holdover. Active low. This pin has an internal 30 kΩ pull-up resistor.
This pin has 31 pF of internal capacitance to ground, which may influence the loop filter design for large loop bandwidths.
CLK
This pin can be left floating if internal VCO is used.
This pin can be left floating if internal VCO is used.
Rev. C | Page 14 of 64
Data Sheet AD9518-3
20 O LVPECL
LVPECL Output; One Side of a Differential LVPECL Output.
Input/
Pin No.
13 I 3.3 V CMOS SCLK Serial Control Port Data Clock Signal. 14 I 3.3 V CMOS
15 O 3.3 V CMOS SDO Serial Control Port. Unidirectional serial data output. 16 I/O 3.3 V CMOS SDIO Serial Control Port. Bidirectional serial data input/output. 17 I 3.3 V CMOS
18 I 3.3 V CMOS 19 O LVPECL OUT4 LVPECL Output; One Side of a Differential LVPECL Output.
21, 30, 31, 40
22 O LVPECL OUT5 LVPECL Output; One Side of a Differential LVPECL Output. 23 O LVPECL 27, 34 GND GND Ground. See the description for EPAD. 28 O LVPECL 29 O LVPECL OUT3 LVPECL Output; One Side of a Differential LVPECL Output. 32 O LVPECL 33 O LVPECL OUT2 LVPECL Output; One Side of a Differential LVPECL Output. 36 NC No Connection. 38 O LVPECL 39 O LVPECL OUT1 LVPECL Output; One Side of a Differential LVPECL Output. 41 O LVPECL 42 O LVPECL OUT0 LVPECL Output; One Side of a Differential LVPECL Output. 44 O Current set
46 O Current set
47 I Reference
48 I Reference
EPAD GND GND Ground. The external paddle on the bottom of the package must be connected to
Output P in Ty pe Mnemonic Description
Serial Control Port Chip Select, Active Low. This pin has an internal 30 kΩ pull-up
CS
resistor.
Chip Reset, Active Low. This pin has an internal 30 kΩ pull-up resistor.
RESET
Chip Power Down, Active Low. This pin has an internal 30 kΩ pull-up resistor.
PD
OUT4
I Power VS_LVPECL Extended Voltage 2.5 V to 3.3 V LVPECL Power Pins.
LVPECL Output; One Side of a Differential LVPECL Output.
OUT5
LVPECL Output; One Side of a Differential LVPECL Output.
OUT3
LVPECL Output; One Side of a Differential LVPECL Output.
OUT2
LVPECL Output; One Side of a Differential LVPECL Output.
OUT1
LVPECL Output; One Side of a Differential LVPECL Output.
OUT0
RSET Resistor connected here sets internal bias currents. Nominal value = 4.12 kΩ.
resistor
CPRSET Resistor connected here sets the CP current range. Nominal value = 5.1 kΩ.
resistor
(REF2) Along with REFIN, this is the self-biased differential input for the PLL reference.
REFIN
input
REFIN (REF1) Along with
input
Alternatively, this pin is a single-ended input for REF2.
, this is the self-biased differential input for the PLL reference.
REFIN
Alternatively, this pin is a single-ended input for REF1.
ground for proper operation.
Rev. C | Page 15 of 64
AD9518-3 Data Sheet
0 500 1000 1500 2000 2500 3000
CURRENT (mA)
FREQUENCY (MHz)
300
100
120
140
160
180
200
220
240
260
280
3 CHANNELS—6 LV P E CL
3 CHANNELS—3 LV P E CL
2 CHANNELS—2 LV P E CL
1 CHANNEL—1 LVP E CL
06432-007
70
65
60
55
50
45
40
35
30
25
1.7 1.8 1.9 2.0 2.1 2.2 2.3
K
VCO
(MHz/V)
VCO FREQ UE NCY ( GHz)
06432-010
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
0 0.5 1.0 1.5 2.0 2.5 3.0
CURRENT FROM CP P IN (mA)
VOLTAGE ON CP PIN (V)
PUMP DOWN PUMP UP
06432-011
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
0 0.5 1.0 1.5 2.0 3.0 4.02.5 3.5 5.04.5
CURRENT FROM CP P IN (mA)
VOLTAGE ON CP PIN (V)
PUMP DOWN PUMP UP
06432-012
–140
–145
–150
–155
–160
–165
–170
0.1 1 10010
PFD PHASE NO ISE REFERRED TO PFD INP UT
(dBc/Hz)
PFD FREQUENCY (MHz)
06432-013
–210
–224
–222
–220
–218
–216
–214
–212
0 2.52.01.51.00.5
PLL FIGURE OF MERIT (dBc/Hz)
SLEW RATE (V/ns)
06432-136

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Current vs. Frequency, Direct to Output, LVPECL Outputs
Figure 6. K
vs. VCO Frequency
VCO
Figure 8. Charge Pump Characteristics at VCP = 5.0 V
Figure 9. PFD Phase Noise Referred to PFD Input vs. PFD Frequency
Figure 7. Charge Pump Characteristics at VCP = 3.3 V
Figure 10. PLL Figure of Merit (FOM) vs. Slew Rate at REFIN/
REFIN
Rev. C | Page 16 of 64
Data Sheet AD9518-3
1.9
1.7
1.5
1.3
1.1
0.9
1.7 1.8 1.9 2.0 2.1 2.2 2.3
VCO TUNING VOLTAGE (V)
VCO FREQ UE NCY ( GHz)
06432-138
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
10
0
CENTER 122.88MHz SPAN 50MHz5MHz/DIV
RELATIVE POWER (dB)
06432-137
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
10
0
CENTER 122.88MHz SPAN 1MHz100kHz/DIV
RELATIVE POWER (dB)
06432-135
1.0
0.6
0.2
–0.2
–0.6
–1.0
0 252015105
DIFFERENTIAL OUTPUT (V)
TIME (ns)
06432-014
1.0
0.6
0.2
–0.2
–0.6
–1.0
0 21
DIFFERENTIAL OUTPUT (V)
TIME (ns)
06432-015
1600
800
1000
1200
1400
0 321
DIFFERENTIAL SWING (mV p-p)
FREQUENCY ( GHz)
06432-020
Figure 11. VCO Tuning Voltage vs. Frequency
(Note that VCO calibration centers the dc tuning voltage
for the PLL setup that is active during calibration.)
Figure 12. PFD/CP Spurs; 122.88 MHz; PFD = 15.36 MHz;
LBW = 127 kHz; I
= 3.0 mA; f
CP
= 2.21 GHz
VCO
Figure 14. LVPECL Output (Differential) at 100 MHz
Figure 15. LVPECL Output (Differential) at 1600 MHz
Figure 13. Output Spectrum, LVPECL; 122.88 MHz; PFD = 15.36 MHz;
LBW = 127 kHz; I
= 3.0 mA; f
CP
= 2.21 GHz
VCO
Figure 16. LVPECL Differential Swing vs. Frequency,
Using a Differential Probe Across the Output Pair
Rev. C | Page 17 of 64
AD9518-3 Data Sheet
–80
–90
–100
–110
–120
–130
–140
–150
10k 100M10M1M100k
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
06432-023
10k 100M10M1M100k
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
–80
–90
–100
–110
–120
–130
–140
–150
06432-024
10k 100M10M1M100k
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
–80
–90
–100
–110
–120
–130
–140
–150
06432-025
–120
–130
–125
–135
–140
–145
–150
–155
–160
10 100M10M1M100k10k1k100
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
06432-026
–110
–120
–130
–140
–150
–160
10 100M10M1M100k10k1k100
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
06432-027
–100
–110
–120
–130
–140
–150
10 100M10M1M100k10k1k100
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
06432-128
Figure 17. Internal VCO Phase Noise (Absolute) Direct to LVPECL at 2250 MHz
Figure 18. Internal VCO Phase Noise (Absolute) Direct to LVPECL at 2000 MHz
Figure 20. Phase Noise (Additive) LVPECL at 245.76 MHz, Divide-by-1
Figure 21. Phase Noise (Additive) LVPECL at 200 MHz, Divide-by-5
Figure 19. Internal VCO Phase Noise (Absolute) Direct to LVPECL at 1750 MHz
Figure 22. Phase Noise (Additive) LVPECL at 1600 MHz, Divide-by-1
Rev. C | Page 18 of 64
Data Sheet AD9518-3
–100
–110
–120
–160
–150
–140
–130
1k 100M10M1M100k10k
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
06432-141
–90
–100
–110
–120
–130
–140
–150
–160
1k 100M10M1M100k10k
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
06432-139
–120
–160
–150
–140
–130
1k 100M10M1M100k10k
PHASE NOISE (dBc/Hz)
FREQUENCY ( Hz )
06432-140
1000
100
10
1
0.1
0.01 0.1 1 10 100 1000
INPUT JITTER AMPLITUDE (UI p-p)
JITTER F RE QUENCY (kHz)
06432-148
OC-48 OBJECTIVE MASK AD9518
NOTE: 375UI M AX AT 10Hz OFF S E T IS THE
MAXIMUM JITTER THAT CAN BE GENERATED BY THE TEST EQUIPMENT. FAILURE POINT IS GREATER THAN 375UI .
f
OBJ
Figure 23. Phase Noise (Absolute) Clock Generation; Internal VCO at
1.97 GHz; PFD = 15.36 MHz; LBW = 143 kHz; LVPECL Output = 122.88 MHz
Figure 24. Phase Noise (Absolute) Clock Cleanup; Internal VCO at 1.87 GHz;
PFD = 19.44 MHz; LBW = 12.8 kHz; LVPECL Output = 155.52 MHz
Figure 25. Phase No ise (Absolute); External VCXO (Toyocom TCO-2112) at
245.76 MHz; PFD = 15.36 MHz; LBW = 25 0 Hz; LVPECL Output = 245.76 MHz
Figure 26. GR-253 Jitter Tolerance Plot
Rev. C | Page 19 of 64
AD9518-3 Data Sheet

TERMINOLOGY

Phase Jitter and Phase Noise
An ideal sine wave can be thought of as having a continuous and even progression of phase with time from 0° to 360° for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as being Gaussian (normal) in distribution.
This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are dBc/Hz at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in dB) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.
It is meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.
Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.
Time Jitter
Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings varies. In a square wave, the time jitter is a displacement of the
edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Because these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.
Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the signal-to-noise ratio (SNR) and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.
Additive Phase Noise
Additive phase noise is the amount of phase noise that can be attributed to the device or subsystem being measured. The phase noise of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contributes its own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise. When there are multiple contributors to phase noise, the total is the square root of the sum of squares of the individual contributors.
Additive Time Jitter
Additive time jitter is the amount of time jitter that can be attributed to the device or subsystem being measured. The time jitter of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contributes its own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.
Rev. C | Page 20 of 64
Loading...
+ 44 hidden pages