ANALOG DEVICES AD9518-2 Service Manual

6-Output Clock Generator with
www.BDTIC.com/ADI

FEATURES

Low phase noise, phase-locked loop
On-chip VCO tunes from 2.05 GHz to 2.33 GHz External VCO/VCXO to 2.4 GHz optional 1 differential or 2 single-ended reference inputs Reference monitoring capability Auto and manual reference switchover/holdover modes Autorecover from holdover Accepts references to 250 MHz Programmable delays in path to PFD Digital or analog lock detect, selectable
3 pairs of 1.6 GHz LVPECL outputs
Each pair shares 1 to 32 dividers with coarse phase delay Additive output jitter 225 fs rms
Channel-to-channel skew paired outputs <10 ps Automatic synchronization of all outputs on power-up Manual synchronization of outputs as needed Serial control port 48-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs High performance wireless transceivers High performance instrumentation Broadband infrastructure AT E

GENERAL DESCRIPTION

The AD9518-21 provides a multi-output clock distribution function with subpicosecond jitter performance, along with an on-chip PLL and VCO. The on-chip VCO tunes from 2.05 GHz to 2.33 GHz. Optionally, an external VCO/VCXO of up to
2.4 GHz may be used.
The AD9518-2 emphasizes low jitter and phase noise to max
imize data converter performance, and can benefit other
applications with demanding phase noise and jitter requirements.
Integrated 2.2 GHz VCO
AD9518-2

FUNCTIONAL BLOCK DIAGRAM

PLL
LF
VCO
LVPECL
LVPECL
LVPECL
AD9518-2
STATUS
MONITOR
CP
REF1
REFIN
REF2
SWITCHOVER
AND MONITOR
CLK
SERIAL CONT ROL PORT
DIVIDER
AND MUXs
DIV/Φ
DIV/Φ
DIV/Φ
AND
DIGITAL LOGIC
Figure 1.
The AD9518-2 features six LVPECL outputs (in three pairs). The LVPECL outputs operate to 1.6 GHz.
Each pair of outputs has dividers that allow both the divide r
atio and coarse delay (or phase) to be set. The range of division
for the LVPECL outputs is 1 to 32.
The AD9518-2 is available in a 48-lead LFCSP and can be op
erated from a single 3.3 V supply. An external VCO, which requires an extended voltage range, can be accommodated by connecting the charge pump supply (VCP) to 5.5 V. A separate LVPECL power supply can be from 2.375 V to 3.6 V.
The AD9518-2 is specified for operation over the industrial ra
nge of −40°C to +85°C.
1
AD9518 is used throughout to refer to all the members of the AD9518
family. However, when AD9518-2 is used, it is referring to that specific member of the AD9518 family.
OUT0 OUT1 OUT2 OUT3 OUT4 OUT5
6431-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.
AD9518-2
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
Specifications..................................................................................... 4
Power Supply Requirements ....................................................... 4
PLL Characteristics ...................................................................... 4
Clock Inputs.................................................................................. 6
Clock Outputs............................................................................... 6
Timing Characteristics ................................................................ 7
Clock Output Additive Phase Noise (Distribution Only; VCO
Divider Not Used) ........................................................................ 7
Clock Output Absolute Phase Noise (Internal VCO Used).... 8
Clock Output Absolute Time Jitter (Clock Generation Using
Internal VCO) ............................................................................... 8
Clock Output Absolute Time Jitter (Clock Cleanup Using
Internal VCO) ............................................................................... 9
Clock Output Absolute Time Jitter (Clock Generation Using
External VCXO) ........................................................................... 9
Clock Output Additive Time Jitter (VCO Divider Not Used) 9
Clock Output Additive Time Jitter (VCO Divider Used)....... 9
Serial Control Port .....................................................................10
SYNC
PD
,
LD, STATUS, and REFMON Pins............................................ 11
Power Dissipation....................................................................... 11
Timing Diagrams............................................................................ 12
Absolute Maximum Ratings.......................................................... 13
Thermal Resistance .................................................................... 13
ESD Caution................................................................................ 13
Pin Configuration and Function Descriptions........................... 14
Typical Performance Characteristics ........................................... 16
Te r mi n ol o g y .................................................................................... 20
Detailed Block Diagram ................................................................ 21
Theory of Operation ...................................................................... 22
Operational Configurations...................................................... 22
High Frequency Clock Distribution—CLK or External
VCO >1600 MHz ...................................................................22
Internal VCO and Clock Distribution.................................24
Clock Distribution or External VCO <1600 MHz............. 25
Phase-Locked Loop (PLL) .................................................... 27
, and
RESET
Pins ..................................................... 10
Rev. 0 | Page 2 of 64
Configuration of the PLL ...................................................... 27
Phase Frequency Detector (PFD) ........................................ 27
Charge Pump (CP)................................................................. 28
On-Chip VCO ........................................................................ 28
PLL External Loop Filter....................................................... 28
PLL Reference Inputs............................................................. 28
Reference Switchover............................................................. 29
Reference Divider R............................................................... 29
VCXO/VCO Feedback Divider N: P, A, B, R ..................... 29
Digital Lock Detect (DLD) ....................................................... 31
Analog Lock Detect (ALD)................................................... 31
Current Source Digital Lock Detect (DLD) ....................... 31
External VCXO/VCO Clock Input (CLK/
Holdover .................................................................................. 32
Manual Holdover Mode ........................................................ 32
Automatic/Internal Holdover Mode.................................... 32
Frequency Status Monitors................................................... 33
VCO Calibration .................................................................... 34
Clock Distribution ..................................................................... 35
Internal VCO or External CLK as Clock Source ............... 35
CLK or VCO Direct to LVPECL Outputs........................... 35
Clock Frequency Division..................................................... 36
VCO Divider ........................................................................... 36
Channel Dividers—LVPECL Outputs................................. 36
Synchronizing the Outputs—SYNC Function ................... 37
LVPECL Clock Outputs: OUT0 to OUT5 .......................... 39
Reset Modes ................................................................................ 39
Power-On Reset—Start-Up Conditions When VS Is
Applied .................................................................................... 39
Asynchronous Reset via the
Soft Reset via 0x00<5> .......................................................... 40
Power-Down Modes .................................................................. 40
Chip Power-Down via
PLL Power-Down................................................................... 40
Distribution Power-Down .................................................... 40
Individual Clock Output Power-Down............................... 40
Individual Circuit Block Power-Down................................ 40
Serial Control Port ......................................................................... 41
Serial Control Port Pin Descriptions....................................... 41
General Operation of Serial Control Port............................... 41
.................................................... 40
PD
Pin ............................. 40
RESET
)................ 31
CLK
AD9518-2
www.BDTIC.com/ADI
Communication Cycle—Instruction Plus Data..................41
Wr it e .........................................................................................41
Read ..........................................................................................42
The Instruction Word (16 Bits).................................................42
MSB/LSB First Transfers............................................................42
Register Map Overview ..................................................................45
Register Map Descriptions.............................................................48

REVISION HISTORY

9/07—Revision 0: Initial Version
Application Notes............................................................................61
Using the AD9518 Outputs for ADC Clock Applications ....61
LVPECL Clock D i s t ribut io n ......................................................61
Outline Dimensions........................................................................62
Ordering Guide...........................................................................62
Rev. 0 | Page 3 of 64
AD9518-2
www.BDTIC.com/ADI

SPECIFICATIONS

Typical (typ) is given for VS = V unless otherwise noted. Minimum (min) and maximum (max) values are given over full V

POWER SUPPLY REQUIREMENTS

Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
V
S
V
S_LVPECL
V
CP
3.135 3.3 3.465 V This is 3.3 V ± 5%
2.375 V V
S
RSET Pin Resistor 4.12 Sets internal biasing currents; connect to ground CPRSET Pin Resistor 5.1
BYPASS Pin Capacitor 220 nF Bypass for internal LDO regulator; necessary for LDO stability; connect to ground

PLL CHARACTERISTICS

Table 2.
Parameter Min Typ Max Unit Test Conditions/Comments
VCO (ON-CHIP)
Frequency Range 2050 2335 MHz See Figure 11 VCO Gain (K Tunin g Volt age (VT) 0.5 VCP − 0.5 V
Frequency Pushing (Open-Loop) 1 MHz/V Phase Noise @ 100 kHz Offset −107 dBc/Hz f = 2175 MHz Phase Noise @ 1 MHz Offset −124 dBc/Hz f = 2175 MHz
REFERENCE INPUTS
Differential Mode (REFIN, REFIN)
Input Frequency 0 250 MHz
Input Sensitivity 250 mV p-p
Self-Bias Voltage, REFIN 1.35 1.60 1.75 V Self-bias voltage of REFIN Self-Bias Voltage, REFIN Input Resistance, REFIN 4.0 4.8 5.9 Self-biased Input Resistance, REFIN
Dual Single-Ended Mode (REF1, REF2) Two single-ended CMOS-compatible inputs
Input Frequency (AC-Coupled) 20 250 MHz Slew rate > 50 V/μs Input Frequency (DC-Coupled) 0 250 MHz Slew rate > 50 V/μs; CMOS levels Input Sensitivity (AC-Coupled) 0.8 V p-p Should not exceed VS p-p Input Logic High 2.0 V Input Logic Low 0.8 V Input Current −100 +100 μA
Input Capacitance 2 pF
) 50 MHz/V See Figure 6
VCO
= 3.3 V ± 5%; VS ≤ VCP ≤ 5.25 V; TA = 25°C; R
S_LVPECL
V This is nominally 2.5 V to 3.3 V ± 5%
S
SET
5.25 V This is nominally 3.3 V to 5.0 V ± 5%
Sets internal CP current range, nominally 4.8 mA (CP_lsb = 600 μA);
tual current can be calculated by CP_lsb = 3.06/CPRSET; connect to ground
ac
1.30 1.50 1.60 V
4.4 5.3 6.4 kΩ Self-biased
= 4.12 kΩ; CP and TA (−40°C to +85°C) variation.
S
≤ VS when using internal VCO; outside of
V
CP
= 5.1 kΩ,
RSET
this range, the CP spurs may increase due to CP up/down mismatch
Differential mode (can accommodate single­ended input by ac grounding undriven input)
Frequencies below about 1 MHz should be
coupled; be careful to match V
dc-
(self-bias voltage)
CM
PLL figure of merit increases with increasing
te; see Figure 10
slew ra
Self-bias voltage of REFIN
1
1
Each pin, REFIN/REFIN
1
1
(REF1/REF2)
Rev. 0 | Page 4 of 64
AD9518-2
www.BDTIC.com/ADI
Parameter Min Typ Max Unit Test Conditions/Comments
PHASE/FREQUENCY DETECTOR (PFD)
PFD Input Frequency 100 MHz Antibacklash pulse width = 1.3 ns, 2.9 ns 45 MHz Antibacklash pulse width = 6.0 ns Antibacklash Pulse Width 1.3 ns 0x17<1:0> = 01b
2.9 ns 0x17<1:0> = 00b; 0x17<1:0> = 11b
6.0 ns 0x17<1:0> = 10b
CHARGE PUMP (CP)
ICP Sink/Source Programmable
High Value 4.8 mA With CP
Low Value 0.60 mA
Absolute Accuracy 2.5 % CPV = VCP/2 V
CP
Range 2.7/10
RSET
ICP High Impedance Mode Leakage 1 nA Sink-and-Source Current Matching 2 % 0.5 < CPV < VCP − 0.5 V ICP vs. CP ICP vs. Temperature 2 % CPV = VCP/2 V
PRESCALER (PART OF N DIVIDER)
Prescaler Input Frequency
Prescaler Output Frequency 300 MHz
PLL DIVIDER DELAYS 0x19: R<5:3>, N<2:0>; see Tab le 43
000 Off 001 330 ps 010 440 ps 011 550 ps 100 660 ps 101 770 ps 110 880 ps 111 990 ps
NOISE CHARACTERISTICS
In-Band Phase Noise of the Charge Pump/Phase Frequency Detector (In-Band Means Within the LBW of the PLL)
PLL Figure of Merit (FOM) −220 dBc/Hz
V
P = 1 FD 300 MHz
P = 2 FD 600 MHz
P = 3 FD 900 MHz
P = 2 DM (2/3) 600 MHz
P = 4 DM (4/5) 1000 MHz
P = 8 DM (8/9) 2400 MHz
P = 16 DM (16/17) 3000 MHz
P = 32 DM (32/33) 3000 MHz
@ 500 kHz PFD Frequency −165 dBc/Hz
@ 1 MHz PFD Frequency −162 dBc/Hz
@ 10 MHz PFD Frequency −151 dBc/Hz
@ 50 MHz PFD Frequency −143 dBc/Hz
1.5 % 0.5 < CPV < VCP − 0.5 V
A, B counter input frequency (prescaler input fr
The PLL in-band phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log(N) (where N is the value of the N divider)
Reference slew rate > 0.25 V/ns; FOM + 10 log(f is an approximation of the PFD/CP in-band phase noise (in the flat region) inside the PLL loop bandwidth; when running closed loop, the phase noise, as observed at the VCO output, is increased by 20 log(N)
= 5.1 kΩ
RSET
equency divided by P)
PFD
)
Rev. 0 | Page 5 of 64
AD9518-2
www.BDTIC.com/ADI
Parameter Min Typ Max Unit Test Conditions/Comments
PLL DIGITAL LOCK DETECT WINDOW
Required to Lock (Coincidence of Edges) Selected by 0x17<1:0> and 0x18<4>
Low Range (ABP 1.3 ns, 2.9 ns) 3.5 ns 0x17<1:0> = 00b, 01b, 11b; 0x18<4> = 1b High Range (ABP 1.3 ns, 2.9 ns) 7.5 ns 0x17<1:0> = 00b, 01b, 11b; 0x18<4> = 0b High Range (ABP 6 ns) 3.5 ns 0x17<1:0> = 10b; 0x18<4> = 0b
To Unlock After Lock (Hysteresis)
Low Range (ABP 1.3 ns, 2.9 ns) 7 ns 0x17<1:0> = 00b, 01b, 11b; 0x18<4> = 1b High Range (ABP 1.3 ns, 2.9 ns) 15 ns 0x17<1:0> = 00b, 01b, 11b; 0x18<4> = 0b High Range (ABP 6 ns) 11 ns 0x17<1:0> = 10b; 0x18<4> = 0b
1
REFIN and
2
For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the unlock-after-lock time.
REFIN
self-bias points are offset slightly to avoid chatter on an open input condition.

CLOCK INPUTS

Table 3.
Parameter Min Typ Max Unit Test Conditions/Comments
CLOCK INPUTS (CLK, CLK)
Input Frequency 0 0 Input Sensitivity, Differential 150 mV p-p
Input Level, Differential 2 V p-p
Input Common-Mode Voltage, V Input Common-Mode Range, V Input Sensitivity, Single-Ended 150 mV p-p
Input Resistance 3.9 4.7 5.7 Self-biased Input Capacitance 2 pF
1
Below about 1 MHz, the input should be dc-coupled. Care should be taken to match VCM.
CMR
2
2
Signal available at LD, STATUS, and REFMON pins when se
lected by appropriate register settings
Differential input
1
2.4 GHz High frequency distribution (VCO divider)
1
1.6 GHz Distribution only (VCO divider bypassed) Measured at 2.4 GHz; jitter performance is improved
w rates > 1 V/ns
with sle Larger voltage swings may turn on the protection
diodes and can degr
CM
1.3 1.57 1.8 V Self-biased; enables ac coupling
ade jitter performance
1.3 1.8 V With 200 mV p-p signal applied; dc-coupled CLK ac-coupled; CLK
ac-bypassed to RF ground

CLOCK OUTPUTS

Table 4.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL CLOCK OUTPUTS Termination = 50 Ω to VS − 2 V
OUT0, OUT1, OUT2, OUT3, OUT4, OUT5
Differential (OUT, OUT Output Frequency, Maximum 2950 MHz Using direct to output; see Figure 16 Output High Voltage (VOH) VS − 1.12 VS − 0.98 VS − 0.84 V Output Low Voltage (VOL) VS − 2.03 VS − 1.77 VS − 1.49 V Output Differential Voltage (VOD) 550 790 980 mV
Rev. 0 | Page 6 of 64
)
AD9518-2
www.BDTIC.com/ADI

TIMING CHARACTERISTICS

Table 5.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL Termination = 50 Ω to VS − 2 V; level = 810 mV
Output Rise Time, t Output Fall Time, t
PROPAGATION DELAY, t
High Frequency Clock Distribution Configuration 835 995 1180 ps See Figure 27 Clock Distribution Configuration 773 933 1090 ps See Figure 29 Variation with Temperature 0.8 ps/°C
OUTPUT SKEW, LVPECL OUTPUTS
LVPECL Outputs That Share the Same Divider 5 15 ps LVPECL Outputs on Different Dividers 13 40 ps All LVPECL Outputs Across Multiple Parts 220 ps
1
This is the difference between any two similar delay paths while operating at the same voltage and temperature.
RP
FP
, CLK-TO-LVPECL OUTPUT
PECL
1

CLOCK OUTPUT ADDITIVE PHASE NOISE (DISTRIBUTION ONLY; VCO DIVIDER NOT USED)

Table 6.
Parameter Min Typ Max Unit Test Conditions/Comments
CLK-TO-LVPECL ADDITIVE PHASE NOISE
CLK = 1 GHz, OUTPUT = 1 GHz Input slew rate > 1 V/ns Divider = 1
@ 10 Hz Offset −109 dBc/Hz @ 100 Hz Offset −118 dBc/Hz @ 1 kHz Offset −130 dBc/Hz @ 10 kHz Offset −139 dBc/Hz @ 100 kHz Offset −144 dBc/Hz @ 1 MHz Offset −146 dBc/Hz
@ 10 MHz Offset −147 dBc/Hz
@ 100 MHz Offset −149 dBc/Hz CLK = 1 GHz, OUTPUT = 200 MHz Input slew rate > 1 V/ns Divider = 5
@ 10 Hz Offset −120 dBc/Hz @ 100 Hz Offset −126 dBc/Hz @ 1 kHz Offset −139 dBc/Hz @ 10 kHz Offset −150 dBc/Hz @ 100 kHz Offset −155 dBc/Hz @ 1 MHz Offset −157 dBc/Hz
>10 MHz Offset −157 dBc/Hz
70 180 ps 20% to 80%, measured differentially 70 180 ps 80% to 20%, measured differentially
Distribution section only; does not include PLL and
VCO
Rev. 0 | Page 7 of 64
AD9518-2
www.BDTIC.com/ADI

CLOCK OUTPUT ABSOLUTE PHASE NOISE (INTERNAL VCO USED)

Table 7.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL ABSOLUTE PHASE NOISE Internal VCO; direct to LVPECL output
VCO = 2.335 GHz; OUTPUT = 2.335 GHz
@ 1 kHz Offset −46 dBc/Hz @ 10 kHz Offset −78 dBc/Hz @ 100 kHz Offset −105 dBc/Hz @ 1 MHz Offset −124 dBc/Hz @ 10 MHz Offset −141 dBc/Hz @ 40 MHz Offset −146 dBc/Hz
VCO = 2.175 GHz; OUTPUT = 2.175 GHz
@ 1 kHz Offset −51 dBc/Hz @ 10 kHz Offset −80 dBc/Hz @ 100 kHz Offset −107 dBc/Hz @ 1 MHz Offset −124 dBc/Hz @ 10 MHz Offset −142 dBc/Hz @ 40 MHz Offset −146 dBc/Hz
VCO = 2.05 GHz; OUTPUT = 2.05 GHz
@ 1 kHz Offset −53 dBc/Hz @ 10 kHz Offset −82 dBc/Hz @ 100 kHz Offset −108 dBc/Hz @ 1 MHz Offset −127 dBc/Hz @ 10 MHz Offset −142 dBc/Hz @ 40 MHz Offset −147 dBc/Hz

CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING INTERNAL VCO)

Table 8.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ABSOLUTE TIME JITTER
VCO = 2.21 GHz; LVPECL = 245.76 MHz; PLL LBW = 138 kHz 146 fs rms Integration BW = 200 kHz to 10 MHz 329 fs rms Integration BW = 12 kHz to 20 MHz VCO = 2.21 GHz; LVPECL = 122.88 MHz; PLL LBW = 138 kHz 151 fs rms Integration BW = 200 kHz to 10 MHz 329 fs rms Integration BW = 12 kHz to 20 MHz VCO = 2.21 GHz; LVPECL = 61.44 MHz; PLL LBW = 138 kHz 203 fs rms Integration BW = 200 kHz to 10 MHz 376 fs rms Integration BW = 12 kHz to 20 MHz
Application example based on a typical setup wher clean, so a wider PLL loop bandwidth is used; reference = 15.36 MHz; R = 1
e the reference source is
Rev. 0 | Page 8 of 64
AD9518-2
www.BDTIC.com/ADI

CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK CLEANUP USING INTERNAL VCO)

Table 9.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ABSOLUTE TIME JITTER
VCO = 2.18 GHz; LVPECL = 155.52 MHz; PLL LBW = 125 Hz 515 fs rms Integration BW = 12 kHz to 20 MHz VCO = 2.21 GHz; LVPECL = 122.88 MHz; PLL LBW = 125 Hz 570 fs rms Integration BW = 12 kHz to 20 MHz

CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL VCXO)

Table 10.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ABSOLUTE TIME JITTER
LVPECL = 245.76 MHz; PLL LBW = 125 Hz 54 fs rms Integration BW = 200 kHz to 5 MHz 77 fs rms Integration BW = 200 kHz to 10 MHz 109 fs rms Integration BW = 12 kHz to 20 MHz LVPECL = 122.88 MHz; PLL LBW = 125 Hz 79 fs rms Integration BW = 200 kHz to 5 MHz 114 fs rms Integration BW = 200 kHz to 10 MHz 163 fs rms Integration BW = 12 kHz to 20 MHz LVPECL = 61.44 MHz; PLL LBW = 125 Hz 124 fs rms Integration BW = 200 kHz to 5 MHz 176 fs rms Integration BW = 200 kHz to 10 MHz 259 fs rms Integration BW = 12 kHz to 20 MHz
Application example based on a typical setup using an
ternal 245.76 MHz VCXO (Toyocom TCO-2112);
ex reference = 15.36 MHz; R = 1
Application example based on a typical setup wher jittery, so a narrower PLL loop bandwidth is used; reference = 10.0 MHz; R = 20
e the reference source is

CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER NOT USED)

Table 11.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER
CLK = 622.08 MHz; LVPECL = 622.08 MHz; Divider = 1 40 fs rms BW = 12 kHz to 20 MHz CLK = 622.08 MHz; LVPECL = 155.52 MHz; Divider = 4 80 fs rms BW = 12 kHz to 20 MHz CLK = 1.6 GHz; LVPECL = 100 MHz; Divider = 16 215 fs rms
CLK = 500 MHz; LVPECL = 100 MHz; Divider = 5 245 fs rms Calculated from SNR of ADC method; DCC on
Distribution section only; does not include PLL VCO; uses rising edge of clock signal
Calculated from SNR of ADC method; DCC not used
or even divides
f

CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER USED)

Table 12.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER
CLK = 2.4 GHz; VCO DIV = 2; LVPECL = 100 MHz; Divider = 12; Duty-Cycle Correction = Off
210 fs rms Calculated from SNR of ADC method
Distribution section only; does not include PLL and VCO;
ising edge of clock signal
uses r
and
Rev. 0 | Page 9 of 64
AD9518-2
www.BDTIC.com/ADI

SERIAL CONTROL PORT

Table 13.
Parameter Min Typ Max Unit Test Conditions/Comments
CS (INPUT)
Input Logic 1 Voltage 2.0 V Input Logic 0 Voltage 0.8 V Input Logic 1 Current 3 μA Input Logic 0 Current 110 μA Input Capacitance 2 pF
SCLK (INPUT) SCLK has an internal 30 kΩ pull-down resistor
Input Logic 1 Voltage 2.0 V Input Logic 0 Voltage 0.8 V Input Logic 1 Current 110 μA Input Logic 0 Current 1 μA Input Capacitance 2 pF
SDIO (WHEN INPUT)
Input Logic 1 Voltage 2.0 V Input Logic 0 Voltage 0.8 V Input Logic 1 Current 10 nA Input Logic 0 Current 20 nA Input Capacitance 2 pF
SDIO, SDO (OUTPUTS)
Output Logic 1 Voltage 2.7 V Output Logic 0 Voltage 0.4 V
TIMING
Clock Rate (SCLK, 1/t Pulse Width High, t Pulse Width Low, t SDIO to SCLK Setup, t SCLK to SDIO Hold, t SCLK to Valid SDIO and SDO, t CS to SCLK Setup and Hold, tS, t
CS Minimum Pulse Width High, t
) 25 MHz
SCLK
HI
LO
DS
DH
DV
H
PWH
16 ns 16 ns 2 ns
1.1 ns 8 ns 2 ns
3 ns
CS has an internal 30 kΩ pull-up resistor

PD, SYNC, AND RESET PINS

Table 14.
Parameter Min Typ Max Unit Test Conditions/Comments
INPUT CHARACTERISTICS These pins each have a 30 kΩ internal pull-up resistor
Logic 1 Voltage 2.0 V Logic 0 Voltage 0.8 V Logic 1 Current 110 μA Logic 0 Current 1 μA Capacitance 2 pF
RESET TIMING
Pulse Width Low 50 ns
SYNC TIMING
Pulse Width Low 1.5 High speed clock cycles High speed clock is CLK input signal
Rev. 0 | Page 10 of 64
AD9518-2
www.BDTIC.com/ADI

LD, STATUS, AND REFMON PINS

Table 15.
Parameter Min Typ Max Unit Test Conditions/Comments
OUTPUT CHARACTERISTICS
Output Voltage High (VOH) 2.7 V Output Voltage Low (VOL) 0.4 V
MAXIMUM TOGGLE RATE 100 MHz
ANALOG LOCK DETECT
Capacitance 3 pF
REF1, REF2, AND VCO FREQUENCY STATUS MONITOR
Normal Range 1.02 MHz
Extended Range (REF1 and REF2 Only) 8 kHz
LD PIN COMPARATOR
Trip Point 1.6 V Hysteresis 260 mV
When selected as a digital output (CMOS); there are other
in which these pins are not CMOS digital outputs;
modes see Table 43, 0x17, 0x1A, and 0x1B
Applies when mux is set to any divid or PFD up/down pulse; also applies in analog lock detect mode; usually debug mode only; beware that spurs may couple to output when any of these pins are toggling
On-chip capacitance; used to calculate RC time constant
or analog lock detect readback; use a pull-up resistor
f
Frequency above which the monitor indicates the
esence of the reference
pr Frequency above which the monitor indicates the
esence of the reference
pr
er or counter output,

POWER DISSIPATION

Table 16.
Parameter Min Typ Max Unit Test Conditions/Comments
POWER DISSIPATION, CHIP
Power-On Default 0.76 1.0 W
Full Operation 1.1 1.7 W
PD Power-Down
PD Power-Down, Maximum Sleep
VCP Supply 1.5 mW PLL operating; typical closed loop configuration
POWER DELTAS, INDIVIDUAL FUNCTIONS Power delta when a function is enabled/disabled
VCO Divider 30 mW VCO divider not used REFIN (Differential) 20 mW All references off to differential reference enabled REF1, REF2 (Single-Ended) 4 mW
VCO 70 mW CLK input selected to VCO selected PLL 75 mW PLL off to PLL on, normal operation; no reference enabled Channel Divider 30 mW Divider bypassed to divide-by-2 to divide-by-32 LVPECL Channel (Divider Plus Output Driver) 160 mW No LVPECL output on to one LVPECL output on LVPECL Driver 90 mW Second LVPECL output turned on, same channel
75 185 mW
31 mW
No clock; no programming; defa does not include power dissipated in external resistors
PLL on; internal VCO = 2335 MHz; VCO divider = 2;
annel dividers on; six LVPECL outputs @ 584 MHz;
all ch does not include power dissipated in external resistors
PD pin pulled low; does not include power dissipated in terminations
PD pin pulled low; PLL power-down 0x10<1:0> = 01b; SYNC power-down 0x230<2> = 1b; REF for distribution power-down 0x230<1> = 1b
All references off to REF1 or REF2 enabled; differential
ference not enabled
re
ult register values;
Rev. 0 | Page 11 of 64
AD9518-2
K
www.BDTIC.com/ADI

TIMING DIAGRAMS

t
CLK
CL
DIFFERENTIAL
80%
LVPECL
20%
t
PECL
Figure 2. CLK/
CLK
to Clock Output Timing, DIV = 1
t
06431-060
RP
Figure 3. LVPECL Timing, Differential
t
FP
06431-061
Rev. 0 | Page 12 of 64
AD9518-2
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 17.
With
Parameter or Pin
VS, VS_LVPECL GND −0.3 V to +3.6 V VCP GND −0.3 V to +5.8 V REFIN, REFIN REFIN RSET GND −0.3 V to VS + 0.3 V CPRSET GND −0.3 V to VS + 0.3 V CLK, CLK CLK
SCLK, SDIO, SDO, CS OUT0, OUT0, OUT1, OUT1,
OUT2, OUT2 OUT4, OUT4
SYNC REFMON, STATUS, LD GND −0.3 V to VS + 0.3 V Junction Temperature Storage Temperature Range −65°C to +150°C Lead Temperature (10 sec) 300°C
1
See Table 18 for θJA.
, OUT3, OUT3, , OUT5, OUT5
Respec
t To Rating
GND −0.3 V to VS + 0.3 V REFIN
GND −0.3 V to VS + 0.3 V CLK GND −0.3 V to VS + 0.3 V GND −0.3 V to VS + 0.3 V
GND −0.3 V to VS + 0.3 V
1
150°C
−3.3 V to +3.3 V
−1.2 V to +1.2 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 18.
Package Type
48-Lead LFCSP 28.5 °C/W
1
Thermal impedance measurements were taken on a 4-layer board in still air
in accordance with EIA/JESD51-7.
1
θ
JA
Unit

ESD CAUTION

Rev. 0 | Page 13 of 64
AD9518-2
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

REFMON
LD
VCP
CP
STATUS
REF_SEL
SYNC
BYPASS
VS
CLK
CLK
C
N
=
N
REFIN (REF1)REFIN (REF2)CPRSETVSRSETVSOUT0
4847464544434241403938
1
2
3
4
5
6
7
8
LF
9
10
11
12
O
O
C
13141516171819
SCLK
N
N
T
C
E
PIN 1 INDICATO R
CS
SDO
AD9518-2
TOP VIEW
(Not to Scale)
SDIO
RESET
PD
OUT4
OUT0
VS_LVPECL
OUT1
OUT1
2021222324
OUT4
OUT5
OUT5
VS_LVPECL
Figure 4. Pin Configuration
Table 19. Pin Function Descriptions
Pin No. Mnemonic Description
10, 24 to 26,
VS 3.3 V Power Pins.
35, 37, 43, 45 21, 30, 31, 40 VS_LVPECL Extended Voltage 2.5 V to 3.3 V LVPECL Power Pins. EPAD, 27, 34 GND 1 REFMON 2 LD 3 VCP 4 CP 5 STATUS 6 REF_SEL 7
SYNC
Ground; External Paddle (EPAD). Reference Monitor (Output). This pin has multiple selectable outputs; see Table 43, 0x1B. Lock Detect (Output). This pin has multiple selectable outputs; see Table 4 3 , 0x1A. Power Supply for Charge Pump (CP); VS < VCP < 5.0 V. Charge Pump (Output). Connects to external loop filter. Status (Output). This pin has multiple selectable outputs; see Table 43, 0x17. Reference Select. Selects REF1 (low) or REF2 (high). This pin has an internal 30 kΩ pull-down resistor. Manual Synchronizations and Manual Holdover. This pin initiates a manual synchronization and is also used
for manual holdover. Active low. This pin has an internal 30 kΩ pull-up resistor. 8 LF 9 BYPASS 11 CLK
12
CLK 13 SCLK 14
CS
Loop Filter (Input). Connects to VCO control voltage node internally. This pin is for bypassing the LDO to ground with a capacitor. Along with CLK, this is the differential input for the clock distribution section. Along with CLK, this is the differential input for the clock distribution section.
Serial Control Port Data Clock Signal.
Serial Control Port Chip Select; Active Low. This pin has an internal 30 kΩ pull-up resistor. 15 SDO Serial Control Port Unidirectional Serial Data Out. 16 SDIO 17 18
RESET PD
42 OUT0 41
OUT0 39 OUT1 38
OUT1
Serial Control Port Bidirectional Serial Data In/Out. Chip Reset; Active Low. This pin has an internal 30 kΩ pull-up resistor.
Chip Power Down; Active Low. This pin has an internal 30 kΩ pull-up resistor. LVPECL Output; One Side of a Differential LVPECL Output.
LVPECL Output; One Side of a Differential LVPECL Output. LVPECL Output; One Side of a Differential LVPECL Output.
LVPECL Output; One Side of a Differential LVPECL Output.
VS
37
VS
36
C
N
V
35
S
34
G
N
33
OUT2
32
OUT2
31
VS_LVPECL
30
VS_LVPECL
29
OUT3
28
OUT3
27
G
N
26
V
S
25
S
V
D
D
06431-003
Rev. 0 | Page 14 of 64
AD9518-2
www.BDTIC.com/ADI
Pin No. Mnemonic Description
33 OUT2 LVPECL Output; One Side of a Differential LVPECL Output. 32 29 OUT3 LVPECL Output; One Side of a Differential LVPECL Output. 28
19 OUT4 LVPECL Output; One Side of a Differential LVPECL Output. 20
22 OUT5 LVPECL Output; One Side of a Differential LVPECL Output. 23 44 RSET Resistor Connected Here Sets Internal Bias Currents. Nominal value = 4.12 kΩ. 46 CPRSET Resistor Connected Here Sets the CP Current Range. Nominal value = 5.1 kΩ. 47
48 REFIN (REF1)
36 NC No Connection.
OUT2
OUT3
OUT4
OUT5
(REF2) Along with REFIN, this is the differential input for the PLL reference. Alternatively, this pin is a single-ended
REFIN
LVPECL Output; One Side of a Differential LVPECL Output.
LVPECL Output; One Side of a Differential LVPECL Output.
LVPECL Output; One Side of a Differential LVPECL Output.
LVPECL Output; One Side of a Differential LVPECL Output.
input for REF2. Along with REFIN
input for REF1.
, this is the differential input for the PLL reference. Alternatively, this pin is a single-ended
Rev. 0 | Page 15 of 64
AD9518-2
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

300
280
260
240
220
200
180
CURRENT (mA)
160
140
120
100
0 500 1000 1500 2000 2500 3000
Figure 5. Current vs. Frequency, Di
3 CHANNELS—6 LVPECL
3 CHANNELS—3 LVPECL
2 CHANNELS—2 LVPECL
1 CHANNEL—1 LVPECL
FREQUENCY (MHz)
rect-to-Output, LVPECL Outputs
48
46
44
42
40
(MHz/V)
38
VCO
K
36
34
32
30
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35
VCO FREQUENCY (GHz)
Figure 6. K
VCO
vs. VCO Frequency
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
CURRENT FROM CP PIN (mA)
1.0
0.5
PUMP DOWN PUMP UP
0
0 0.5 1.0 1.5 2.0 2.5 3.0
Figure 7. Charge Pump Characteristics @ V
VOLTAGE ON CP PIN (V)
= 3.3 V
CP
06431-007
06431-010
06431-011
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
CURRENT FROM CP PIN (mA)
1.0
0.5
0
PUMP DOWN PUMP UP
0 0.5 1.0 1.5 2.0 3.0 4.02.5 3.5 5. 04.5
Figure 8. Charge Pump Characteristics @ V
VOLTAGE ON CP PIN (V)
= 5.0 V
CP
140
–145
–150
–155
(dBc/Hz)
–160
–165
PFD PHASE NOI SE REFERRED T O PFD INP UT
–170
0.1 1 10010
PFD FREQUENCY (MHz)
Figure 9. PFD Phase Noise Referred to PFD Input vs. PFD Frequency
210
–212
–214
–216
–218
–220
PLL FIGURE OF MERI T (dBc/Hz)
–222
–224
022.01.51.00.5
Figure 10. PLL Figure
SLEW RATE (V/n s)
of Merit (FOM) vs. Slew Rate at REFIN/
REFIN
06431-012
06431-013
.5
06431-136
Rev. 0 | Page 16 of 64
AD9518-2
www.BDTIC.com/ADI
1.9
1.0
1.8
1.7
1.6
1.5
1.4
VCO TUNING VO LTAGE (V)
1.3
1.2
2.0 2.42.32.22. 1
FREQUENCY (GHz)
Figure 11. VCO Tuning Voltage vs. Frequency
10
0
–10
–20
–30
–40
–50
–60
–70
RELATIVE POWER (dB)
–80
–90
–100
–110
CENTER 122.88MHz SPAN 50MHz5MHz/DIV
Figure 12. PFD/CP Spurs; 122.88 MHz; PFD = 15.36 MHz;
LBW
= 138 kHz; I
10
0
–10
–20
–30
–40
–50
–60
–70
RELATIVE POWER (dB)
–80
–90
–100
–110
CENTER 122. 88MHz SP AN 1MHz100kHz/DIV
= 3.0 mA; f
CP
= 2.21 GHz
VCO
Figure 13. Output Spectrum, LVPECL; 122.88 MHz; PFD = 15.36 MHz;
LBW
= 138 kHz; I
= 3.0 mA; f
CP
= 2.21 GHz
VCO
0.6
0.2
–0.2
DIFFERENT IAL OUTPUT (V)
–0.6
–1.0
022015105
06431-138
TIME (ns)
5
06431-014
Figure 14. LVPECL Output (Differential) @ 100 MHz
1.0
0.6
0.2
–0.2
DIFFERENT IAL OUTPUT (V)
–0.6
–1.0
06431-137
021
TIME (ns)
06431-015
Figure 15. LVPECL Output (Differential) @ 1600 MHz
1600
1400
1200
1000
DIFFERENTIAL SWING (mV p-p)
800
06431-135
0321
FREQUENCY (GHz)
06431-020
Figure 16. LVPECL Differential Swing vs. Frequency
Rev. 0 | Page 17 of 64
AD9518-2
www.BDTIC.com/ADI
70
120
–80
–90
–100
–110
–120
PHASE NOISE (dBc/Hz)
–130
–140
–150
10k 100M10M1M100k
FREQUENCY (Hz)
06431-023
Figure 17. Internal VCO Phase Noise (Absolute) Direct to LVPECL @ 2335 MHz
80
–90
–100
–110
–120
–130
PHASE NOISE (dBc/Hz)
–140
–125
–130
–135
–140
–145
PHASE NOISE (dBc/Hz)
–150
–155
–160
10 100M10M1M100k10k1k100
FREQUENCY (Hz)
Figure 20. Phase Noise (Additive) LV
110
–120
–130
–140
PHASE NOISE (dBc/Hz)
–150
PECL @ 245.76 MHz, Divide-by-1
06431-026
–150
10k 100M10M1M100k
FREQUENCY (Hz)
06431-024
Figure 18. Internal VCO Phase Noise (Absolute) Direct to LVPECL @ 2175 MHz
80
–90
–100
–110
–120
–130
PHASE NOISE (dBc/Hz)
–140
–150
10k 100M10M1M100k
FREQUENCY (Hz)
06431-025
Figure 19. Internal VCO Phase Noise (Absolute) Direct to LVPECL @ 2050 MHz
–160
10 100M10M1M100k10k1k100
Figure 21. Phase Noise (Additive) LVPECL @ 200 M
FREQUENCY (Hz)
Hz, Divide-by-5
100
–110
–120
–130
PHASE NOISE (dBc/Hz)
–140
–150
10 100M10M1M100k10k1k100
FREQUENCY (Hz)
Figure 22. Phase Noise (Additive) LVPECL @ 1600 MHz, D
ivide-by-1
06431-027
06431-128
Rev. 0 | Page 18 of 64
AD9518-2
www.BDTIC.com/ADI
110
120
–120
–130
–140
PHASE NOISE (dBc/Hz)
–150
–160
1k 100M10M1M100k10k
FREQUENCY (Hz)
Figure 23. Phase Noise (Absolute) Clock Generation; Internal VCO @
2.2
1 GHz; PFD = 15.36 MHz; LBW = 138 kHz; LVPECL Output = 122.88 MHz
80
–90
–100
–110
–120
–130
PHASE NOISE (dBc/Hz)
–140
–130
–140
PHASE NOISE (dBc/Hz)
–150
–160
1k 100M10M1M100k10k
06431-141
Figure 25. Phase Noise (Absolute); Ex
FREQUENCY (Hz)
ternal VCXO (Toyocom TCO-2112)
06431-140
@ 245.76 MHz; PFD = 15.36 MHz; LBW = 250 Hz; LVPECL Output = 245.76 MHz
–150
–160
1k 100M10M1M100k10k
FREQUENCY (Hz)
Figure 24. Phase Noise (Absolute) Clock Cleanup; Internal VCO @ 2.18 GHz;
P
FD = 19.44 MHz; LBW = 12.8 kHz; LVPECL Output = 155.52 MHz
06431-139
Rev. 0 | Page 19 of 64
AD9518-2
www.BDTIC.com/ADI

TERMINOLOGY

Phase Jitter and Phase Noise
An ideal sine wave can be thought of as having a continuous
nd even progression of phase with time from 0° to 360° for
a each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as being Gaussian (normal) in distribution.
This phase jitter leads to a spreading out of the energy of the sin
e wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are dBc/Hz at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in dB) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.
It is meaningful to integrate the total power contained within
ome interval of offset frequencies (for example, 10 kHz to
s 10 MHz). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.
Phase noise has a detrimental effect on the performance of
Cs, DACs, and RF mixers. It lowers the achievable dynamic
AD range of the converters and mixers, although they are affected in somewhat different ways.
Time Jitter
Phase noise is a frequency domain phenomenon. In the time do
main, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings varies. In a square wave, the time jitter is a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Because these variations are random in nature, the time jitter is specified in units of seconds root mean square (rms) or 1 sigma of the Gaussian distribution.
Time jitter that occurs on a sampling clock for a DAC or an
C decreases the signal-to-noise ratio (SNR) and dynamic
AD range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.
Additive Phase Noise
Additive phase noise is the amount of phase noise that is
ttributable to the device or subsystem being measured. The
a phase noise of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contributes its own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise. When there are multiple contributors to phase noise, the total is the square root of the sum of squares of the individual contributors.
Additive Time Jitter
Additive time jitter is the amount of time jitter that is
ttributable to the device or subsystem being measured. The
a time jitter of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contributes its own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.
Rev. 0 | Page 20 of 64
Loading...
+ 44 hidden pages