Analog Devices AD9514 Service Manual

1.6 GHz Clock Distribution IC,
Dividers, Delay Adjust, Three Outputs

FEATURES

1.6 GHz differential clock input 3 programmable dividers
Divide-by in range from1 to 32 Phase select for coarse delay adjust
2 independent 1.6 GHz LVPECL clock outputs
Additive broadband output jitter 225 fs rms
1 independent 800 MHz/250 MHz LVDS/CMOS clock output
Additive broadband output jitter 300 fs rms/290 fs rms
Time delays up to 10 ns Device configured with 4-level logic pins Space-saving, 32-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs High performance wireless transceivers High performance instrumentation Broadband infrastructure AT E

GENERAL DESCRIPTION

FUNCTIONAL BLOCK DIAGRAM

RSET VS GND
AD9514
/1. . . /32
CLK
CLKB
SYNCB
VREF S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0
/1. . . /32
/1. . . /32
SETUP LOGIC
Figure 1.
Δ
t
AD9514
LVPECL
OUT0
OUT0B
LVPECL
OUT1
OUT1B
LVDS/CMOS
OUT2
OUT2B
05596-001
The AD9514 features a multi-output clock distribution IC in a design that emphasizes low jitter and phase noise to maximize data converter performance. Other applications with demanding phase noise and jitter requirements also benefit from this part.
There are three independent clock outputs. Two of the outputs are LVPECL, and the third output can be set to either LVDS or CMOS levels. The LVPECL outputs operate to 1.6 GHz, and the third output operates to 800 MHz in LVDS mode and to 250 MHz in CMOS mode.
Each output has a programmable divider that can be set to divide by a selected set of integers ranging from 1 to 32. The phase of one clock output relative to another clock output can be set by means of a divider phase select function that serves as a coarse timing adjustment.
The LVDS/CMOS output features a delay element with three selectable full-scale delay values (1.5 ns, 5 ns, and 10 ns), each with 16 steps of fine adjustment.
The AD9514 does not require an external controller for operation or setup. The device is programmed by means of 11 pins (S0 to S10) using 4-level logic. The programming pins are internally biased to ⅓ V ⅔ V
. VS (3.3 V) and GND (0 V) provide the other two logic levels.
S
. The VREF pin provides a level of
S
The AD9514 is ideally suited for data converter clocking applications where maximum converter performance is achieved by encode signals with subpicosecond jitter.
The AD9514 is available in a 32-lead LFCSP and operates from a single 3.3 V supply. The temperature range is −40°C to +85°C.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
AD9514

TABLE OF CONTENTS

Features .............................................................................................. 1
Power-On SYNC .................................................................... 18
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Clock Input.................................................................................... 3
Clock Outputs............................................................................... 3
Timing Characteristics ................................................................ 4
Clock Output Phase Noise ..........................................................5
Clock Output Additive Time Jitter............................................. 8
SYNCB, VREF, and Setup Pins................................................. 10
Power ............................................................................................10
Timing Diagrams............................................................................ 11
Absolute Maximum Ratings.......................................................... 12
Thermal Characteristics ............................................................ 12
SYNCB .....................................................................................18
R
Resistor ................................................................................ 19
SET
VREF............................................................................................ 19
Setup Configuration................................................................... 19
Divider Phase Offset.................................................................. 22
Delay Block ................................................................................. 22
Outputs........................................................................................ 23
Power Supply............................................................................... 23
Exposed Metal Paddle ........................................................... 24
Power Management ................................................................... 24
Applications..................................................................................... 25
Using the AD9514 Outputs for ADC Clock Applications.... 25
LVPECL Clock Distribution ..................................................... 25
LVDS Clock Distribution.......................................................... 26
CMOS Clock Distribution ........................................................26
ESD Caution................................................................................ 12
Pin Configuration and Function Descriptions........................... 13
Te r mi n ol o g y .................................................................................... 14
Typical Performance Characteristics........................................... 15
Functional Description ..................................................................18
Overall.......................................................................................... 18
CLK, CLKB—Differential Clock Input ...................................18
Synchronization ..........................................................................18

REVISION HISTORY

7/05—Revision 0: Initial Version
Setup Pins (S0 to S10)................................................................ 26
Power and Grounding Considerations and Power Supply
Rejection...................................................................................... 26
Phase Noise and Jitter Measurement Setups........................... 27
Outline Dimensions .......................................................................28
Ordering Guide .......................................................................... 28
Rev. 0 | Page 2 of 28
AD9514

SPECIFICATIONS

Typical (typ) is given for VS = 3.3 V ± 5%, TA = 25°C, R and maximum (max) values are given over full V
S

CLOCK INPUT

Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
CLOCK INPUT (CLK)
Input Frequency Input Sensitivity Input Common-Mode Voltage, V Input Common-Mode Range, V
1
1
CM
CMR
0 1.6 GHz 150 mV p-p
1.5 1.6 1.7 V Self-biased; enables ac coupling
1.3 1.8 V With 200 mV p-p signal applied; dc-coupled Input Sensitivity, Single-Ended 150 mV p-p CLK ac-coupled; CLKB ac-bypassed to RF ground Input Resistance 4.0 4.8 5.6 Self-biased Input Capacitance 2 pF
1
A slew rate of 1 V/ns is required to meet jitter, phase noise, and propagation delay specifications.

CLOCK OUTPUTS

Table 2.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL CLOCK OUTPUTS Termination = 50 Ω to VS − 2 V
(OUT0, OUT1) Differential Output Frequency 0 1.6 GHz Output High Voltage (VOH) VS − 1.1 VS − 0.96 VS − 0.82 V Output Low Voltage (VOL) VS − 1.90 VS − 1.76 VS − 1.52 V Output Differential Voltage (VOD) 640 790 960 mV
LVDS CLOCK OUTPUT Termination = 100 Ω differential
(OUT2) Differential Output Frequency 0 800 MHz Differential Output Voltage (VOD) 250 350 450 mV Delta V
OD
Output Offset Voltage (VOS) 1.125 1.23 1.375 V Delta V
OS
Short-Circuit Current (ISA, ISB) 14 24 mA Output shorted to GND
CMOS CLOCK OUTPUT Single-ended measurements; termination open
(OUT2) Single-Ended Complementary output on (OUT2B) Output Frequency 0 250 MHz With 5 pF load Output Voltage High (VOH) VS − 0.1 V @ 1 mA load Output Voltage Low (VOL) 0.1 V @ 1 mA load
30 mV
25 mV
= 4.12 kΩ, LVPECL VOD = 790 mV, unless otherwise noted. Minimum (min)
SET
and TA (−40°C to +85°C) variation.
Rev. 0 | Page 3 of 28
AD9514

TIMING CHARACTERISTICS

CLK input slew rate = 1 V/ns or greater.
Table 3.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL Termination = 50 Ω to VS − 2 V
Output Rise Time, t Output Fall Time, t
PROPAGATION DELAY, t
RP
FP
, CLK-TO-LVPECL OUT
PECL
Divide = 1 355 480 635 ps Divide = 2 − 32 395 530 710 ps Variation with Temperature 0.5 ps/°C
OUTPUT SKEW, LVPECL
OUT0 to OUT1 on Same Part, t Both LVPECL Outputs Across Multiple Parts, t Same LVPECL Output Across Multiple Parts, t
SKP
1
2
SKP_AB
2
SKP_AB
LVDS Termination = 100 Ω differential, 3.5 mA
Output Rise Time, t Output Fall Time, t
PROPAGATION DELAY, t
RL
FL
, CLK-TO-LVDS OUT Optional delay off
LVDS
Divide = 1 1.00 1.25 1.55 ns Divide = 2 − 32 1.05 1.30 1.60 ns Variation with Temperature 0.9 ps/°C
OUTPUT SKEW, LVDS Optional delay off
LVDS Output Across Multiple Parts, t
SKV_AB
2
CMOS B outputs are inverted; termination = open
Output Rise Time, t Output Fall Time, t
PROPAGATION DELAY, t
RC
FC
, CLK-TO-CMOS OUT Optional delay off
CMOS
Divide = 1 1.10 1.45 1.75 ns Divide = 2 − 32 1.15 1.50 1.80 ns Variation with Temperature 1 ps/°C
OUTPUT SKEW, CMOS Optional delay off
CMOS Output Across Multiple Parts, t
SKC_AB
2
LVPECL-TO-LVDS OUT
Output Delay, t
SKV_C
LVPECL-TO-CMOS OUT
Output Delay, t
SKV_C
DELAY ADJUST (OUT2; LVDS and CMOS)
S0 = 1/3
Zero Scale Delay Time
3
Zero Scale Variation with Temperature 0.20 ps/°C
Full Scale Time Delay
3
Full Scale Variation with Temperature −0.38 ps/°C
S0 = 2/3
Zero Scale Delay Time
3
Zero Scale Variation with Temperature 0.31 ps/°C
Full Scale Time Delay
3
Full Scale Variation with Temperature −1.3 ps/°C
60 100 ps 20% to 80%, measured differentially 60 100 ps 80% to 20%, measured differentially
−50 0 +55 ps 125 ps 125 ps
200 350 ps 20% to 80%, measured differentially 210 350 ps 80% to 20%, measured differentially
230 ps
650 865 ps 20% to 80%; C 650 990 ps 80% to 20%; C
= 3 pF single-ended
LOAD
= 3 pF single-ended
LOAD
300 ps
560 790 950 ps
700 970 1150 ps
0.34 ns
1.7 ns
0.45 ns
5.9 ns
Rev. 0 | Page 4 of 28
AD9514
Parameter Min Typ Max Unit Test Conditions/Comments
S0 = 1
Zero Scale Delay Time
Zero Scale Variation with Temperature 0.47 ps/°C
Full Scale Time Delay
Full Scale Variation with Temperature −5 ps/°C Linearity, DNL 0.2 LSB Linearity, INL 0.2 LSB
1
This is the difference between any two similar delay paths within a single device operating at the same voltage and temperature.
2
This is the difference between any two similar delay paths across multiple devices operating at the same voltage and temperature.
3
Incremental delay; does not include propagation delay.

CLOCK OUTPUT PHASE NOISE

CLK input slew rate = 1 V/ns or greater.
Table 4.
Parameter Min Typ Max Unit Test Conditions/Comments
CLK-TO-LVPECL ADDITIVE PHASE NOISE
CLK = 622.08 MHz, OUT = 622.08 MHz Divide = 1
@ 10 Hz Offset −125 dBc/Hz @ 100 Hz Offset −132 dBc/Hz @ 1 kHz Offset −140 dBc/Hz @ 10 kHz Offset −148 dBc/Hz @ 100 kHz Offset −153 dBc/Hz
>1 MHz Offset −154 dBc/Hz CLK = 622.08 MHz, OUT = 155.52 MHz Divide = 4
@ 10 Hz Offset −128 dBc/Hz
@ 100 Hz Offset −140 dBc/Hz
@ 1 kHz Offset −148 dBc/Hz
@ 10 kHz Offset −155 dBc/Hz
@ 100 kHz Offset −161 dBc/Hz
>1 MHz Offset −161 dBc/Hz CLK = 622.08 MHz, OUT = 38.88 MHz Divide = 16
@ 10 Hz Offset −135 dBc/Hz
@ 100 Hz Offset −145 dBc/Hz
@ 1 kHz Offset −158 dBc/Hz
@ 10 kHz Offset −165 dBc/Hz
@ 100 kHz Offset −165 dBc/Hz
>1 MHz Offset −166 dBc/Hz CLK = 491.52 MHz, OUT = 61.44 MHz Divide = 8
@ 10 Hz Offset −131 dBc/Hz
@ 100 Hz Offset −142 dBc/Hz
@ 1 kHz Offset −153 dBc/Hz
@ 10 kHz Offset −160 dBc/Hz
@ 100 kHz Offset −165 dBc/Hz
>1 MHz Offset −165 dBc/Hz
3
3
0.56 ns
11.4 ns
Rev. 0 | Page 5 of 28
AD9514
Parameter Min Typ Max Unit Test Conditions/Comments
CLK = 491.52 MHz, OUT = 245.76 MHz Divide = 2
@ 10 Hz Offset −125 dBc/Hz @ 100 Hz Offset −132 dBc/Hz @ 1 kHz Offset −140 dBc/Hz @ 10 kHz Offset −151 dBc/Hz @ 100 kHz Offset −157 dBc/Hz
>1 MHz Offset −158 dBc/Hz CLK = 245.76 MHz, OUT = 61.44 MHz Divide = 4
@ 10 Hz Offset −138 dBc/Hz
@ 100 Hz Offset −144 dBc/Hz
@ 1 kHz Offset −154 dBc/Hz
@ 10 kHz Offset −163 dBc/Hz
@ 100 kHz Offset −164 dBc/Hz
>1 MHz Offset −165 dBc/Hz
CLK-TO-LVDS ADDITIVE PHASE NOISE
CLK = 622.08 MHz, OUT= 622.08 MHz Divide = 1
@ 10 Hz Offset −100 dBc/Hz
@ 100 Hz Offset −110 dBc/Hz
@ 1 kHz Offset −118 dBc/Hz
@ 10 kHz Offset −129 dBc/Hz
@ 100 kHz Offset −135 dBc/Hz
@ 1 MHz Offset −140 dBc/Hz
>10 MHz Offset −148 dBc/Hz CLK = 622.08 MHz, OUT = 155.52 MHz Divide = 4
@ 10 Hz Offset −112 dBc/Hz
@ 100 Hz Offset −122 dBc/Hz
@ 1 kHz Offset −132 dBc/Hz
@ 10 kHz Offset −142 dBc/Hz
@ 100 kHz Offset −148 dBc/Hz
@ 1 MHz Offset −152 dBc/Hz
>10 MHz Offset −155 dBc/Hz CLK = 491.52 MHz, OUT = 245.76 MHz Divide = 2
@ 10 Hz Offset −108 dBc/Hz
@ 100 Hz Offset −118 dBc/Hz
@ 1 kHz Offset −128 dBc/Hz
@ 10 kHz Offset −138 dBc/Hz
@ 100 kHz Offset −145 dBc/Hz
@ 1 MHz Offset −148 dBc/Hz
>10 MHz Offset −154 dBc/Hz
Rev. 0 | Page 6 of 28
AD9514
Parameter Min Typ Max Unit Test Conditions/Comments
CLK = 491.52 MHz, OUT = 122.88 MHz Divide = 4
@ 10 Hz Offset −118 dBc/Hz @ 100 Hz Offset −129 dBc/Hz @ 1 kHz Offset −136 dBc/Hz @ 10 kHz Offset −147 dBc/Hz @ 100 kHz Offset −153 dBc/Hz @ 1 MHz Offset −156 dBc/Hz
>10 MHz Offset −158 dBc/Hz CLK = 245.76 MHz, OUT = 245.76 MHz Divide = 1
@ 10 Hz Offset −108 dBc/Hz
@ 100 Hz Offset −118 dBc/Hz
@ 1 kHz Offset −128 dBc/Hz
@ 10 kHz Offset −138 dBc/Hz
@ 100 kHz Offset −145 dBc/Hz
@ 1 MHz Offset −148 dBc/Hz
>10 MHz Offset −155 dBc/Hz CLK = 245.76 MHz, OUT = 122.88 MHz Divide = 2
@ 10 Hz Offset −118 dBc/Hz
@ 100 Hz Offset −127 dBc/Hz
@ 1 kHz Offset −137 dBc/Hz
@ 10 kHz Offset −147 dBc/Hz
@ 100 kHz Offset −154 dBc/Hz
@ 1 MHz Offset −156 dBc/Hz
>10 MHz Offset −158 dBc/Hz
CLK-TO-CMOS ADDITIVE PHASE NOISE
CLK = 245.76 MHz, OUT = 245.76 MHz Divide = 1
@ 10 Hz Offset −110 dBc/Hz
@ 100 Hz Offset −121 dBc/Hz
@ 1 kHz Offset −130 dBc/Hz
@ 10 kHz Offset −140 dBc/Hz
@ 100 kHz Offset −145 dBc/Hz
@ 1 MHz Offset −149 dBc/Hz
>10 MHz Offset −156 dBc/Hz CLK = 245.76 MHz, OUT = 61.44 MHz Divide = 4
@ 10 Hz Offset −125 dBc/Hz
@ 100 Hz Offset −132 dBc/Hz
@ 1 kHz Offset −143 dBc/Hz
@ 10 kHz Offset −152 dBc/Hz
@ 100 kHz Offset −158 dBc/Hz
@ 1 MHz Offset −160 dBc/Hz
>10 MHz Offset −162 dBc/Hz
Rev. 0 | Page 7 of 28
AD9514
Parameter Min Typ Max Unit Test Conditions/Comments
CLK = 78.6432 MHz, OUT = 78.6432 MHz Divide = 1
@ 10 Hz Offset −122 dBc/Hz @ 100 Hz Offset −132 dBc/Hz @ 1 kHz Offset −140 dBc/Hz @ 10 kHz Offset −150 dBc/Hz @ 100 kHz Offset −155 dBc/Hz @ 1 MHz Offset −158 dBc/Hz
>10 MHz Offset −160 dBc/Hz CLK = 78.6432 MHz, OUT = 39.3216 MHz Divide = 2
@ 10 Hz Offset −128 dBc/Hz
@ 100 Hz Offset −136 dBc/Hz
@ 1 kHz Offset −146 dBc/Hz
@ 10 kHz Offset −155 dBc/Hz
@ 100 kHz Offset −161 dBc/Hz
>1 MHz Offset −162 dBc/Hz

CLOCK OUTPUT ADDITIVE TIME JITTER

Table 5.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER
CLK = 622.08 MHz 40 fs rms BW = 12 kHz − 20 MHz
LVPECL (OUT0 and OUT1) = 622.08 MHz OUT2 off
Divide = 1 CLK = 622.08 MHz 55 fs rms BW = 12 kHz − 20 MHz
LVPECL (OUT0 and OUT1) = 155.52 MHz OUT2 off
Divide = 4 CLK = 400 MHz 215 fs rms Calculated from SNR of ADC method;
LVPECL (OUT0 and OUT1) = 100 MHz OUT2 off
Divide = 4 CLK = 400 MHz 215 fs rms Calculated from SNR of ADC method;
LVPECL (OUT0, OUT1) = 100 MHz Other LVPECL and OUT2 LVDS at same frequency
Divide = 4 CLK = 400 MHz 225 fs rms Calculated from SNR of ADC method;
LVPECL (OUT0 or OUT1) = 100 MHz
Divide = 4
Other LVPECL = 50 MHz Interferer
LVDS (OUT2) = 50 MHz Interferer CLK = 400 MHz 230 fs rms Calculated from SNR of ADC method;
LVPECL (OUT0 or OUT1) = 100 MHz
Divide = 4
Other LVPECL = 50 MHz Interferer
CMOS (OUT2) = 50 MHz Interferer
LVDS OUTPUT ADDITIVE TIME JITTER Delay off
CLK = 400 MHz 300 fs rms Calculated from SNR of ADC method;
LVDS (OUT2) = 100 MHz OUT0 at same frequency; OUT1 off
Divide = 4
Rev. 0 | Page 8 of 28
AD9514
Parameter Min Typ Max Unit Test Conditions/Comments
CLK = 400 MHz 350 fs rms Calculated from SNR of ADC method
LVDS (OUT2) = 100 MHz Divide = 4 Both LVPECL = 50 MHz Interferer(s)
CMOS OUTPUT ADDITIVE TIME JITTER Delay off
CLK = 400 MHz 290 fs rms Calculated from SNR of ADC method
CMOS (OUT2) = 100 MHz OUT0 at same frequency; OUT1 off Divide = 4
CLK = 400 MHz 315 fs rms Calculated from SNR of ADC method
CMOS (OUT2) = 100 MHz Divide = 4 Both LVPECL = 50 MHz Interferer(s)
DELAY BLOCK ADDITIVE TIME JITTER
Delay FS = 1.5 ns Fine Adj. 00000 0.71 ps rms Delay FS = 1.5 ns Fine Adj. 11111 1.2 ps rms Delay FS = 5 ns Fine Adj. 00000 1.3 ps rms Delay FS = 5 ns Fine Adj. 11111 2.7 ps rms Delay FS = 10 ns Fine Adj. 00000 2.0 ps rms Delay FS = 10 ns Fine Adj. 11111 2.8 ps rms
1
This value is incremental. That is, it is in addition to the jitter of the LVDS or CMOS output without the delay. To estimate the total jitter, the LVDS or CMOS output jitter
should be added to this value using the root sum of the squares (RSS) method.
1
100 MHz output; incremental additive jitter
Rev. 0 | Page 9 of 28
Loading...
+ 19 hidden pages