Analog Devices AD9445 Service Manual

14-Bit, 105/125 MSPS, IF Sampling ADC

FEATURES

125 MSPS guaranteed sampling rate (AD9445BSV-125)
78.3 dBFS SNR/92 dBFS SFDR with 30 MHz input (3.2 V p-p)
74.8 dBFS SNR/95 dBFS SFDR with 30 MHz input (2.0 V p-p)
77.0 dBFS SNR/87 dBFS SFDR with 170 MHz input (3.2 V p-p)
74.6 dBFS SNR/95 dBFS SFDR with 170 MHz input (2.0 V p-p)
73.0 dBFS SNR/88 dBFS SFDR with 300 MHz input (2.0 V p-p) 102 dBFS 2-tone SFDR with 30 MHz and 31 MHz 92 dBFS 2-tone SFDR with 170 MHz and 171 MHz 60 fsec rms jitter Excellent linearity
DNL = ±0.25 LSB typical INL = ±0.8 LSB typical
2.0 V p-p to 4.0 V p-p differential full-scale input Buffered analog inputs LVDS outputs (ANSI-644 compatible) or CMOS outputs Data format select (offset binary or twos complement) Output clock available
3.3 V and 5 V supply operation

APPLICATIONS

Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar Infrared imaging Medical imaging Communications instrumentation

GENERAL DESCRIPTION

The AD9445 is a 14-bit, monolithic, sampling analog-to-digital converter (ADC) with an on-chip IF sampling track-and-hold circuit. It is optimized for performance, small size, and ease of use. The product operates at up to a 125 MSPS conversion rate and is designed for multicarrier, multimode receivers, such as those found in cellular infrastructure equipment.
The ADC requires 3.3 V and 5.0 V power supplies and a low voltage differential input clock for full performance operation. No external reference or driver components are required for many applications. Data outputs are CMOS or LVDS compatible (ANSI-644 compatible) and include the means to reduce the overall current needed for short trace distances.
AD9445

FUNCTIONAL BLOCK DIAGRAM

AGND DRGND DRVDD
AVDD1 AVDD2
2
28
2
RF ENABLE DFS DCS MODE OUTPUT MODE OR
D13 TO D0
DCO
AD9445
VIN+ VIN–
CLK+ CLK–
BUFFER
CLOCK
AND TIMING
MANAGEMENT
T/H
PIPELINE
VREF
ADC
REF
Figure 1.
14
CMOS
OR
LVDS
OUTPUT
STAGING
REFBSENSE REFT
Optional features allow users to implement various selectable operating conditions, including input range, data format select, high IF sampling mode, and output data mode.
The AD9445 is available in a Pb-free, 100-lead, surface-mount, plastic package (100-lead TQFP/EP) specified over the industrial temperature range −40°C to +85°C.

PRODUCT HIGHLIGHTS

1. High performance: outstanding SFDR performance for IF
sampling applications such as multicarrier, multimode 3G, and 4G cellular base station receivers.
2. Ease of use: on-chip reference and high input impedance
track-and-hold with adjustable analog input range and an output clock simplifies data capture.
3. Packaged in a Pb-free, 100-lead TQFP/EP package.
4. Clock duty cycle stabilizer (DCS) maintains overall ADC
performance over a wide range of clock pulse widths.
5. OR (out-of-range) outputs indicate when the signal is
beyond the selected input range.
6. RF enable pin allows users to configure the device for
optimum SFDR when sampling frequencies above 210 MHz (AD9445-125) or 240 MHz (AD9445-105).
05489-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
AD9445
TABLE OF CONTENTS
Features.............................................................................................. 1
Terminology.......................................................................................9
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Product Highlights ........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
DC Specifications ......................................................................... 3
AC Specifications.......................................................................... 4
Digital Specifications ................................................................... 6
Switching Specifications.............................................................. 6
Timing Diagrams.......................................................................... 7
Absolute Maximum Ratings............................................................ 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Pin Configurations and Function Descriptions......................... 10
Equivalent Circuits......................................................................... 15
Typical Performance Characteristics........................................... 16
Theory of Operation ...................................................................... 24
Analog Input and Reference Overview ................................... 24
Clock Input Considerations...................................................... 26
Power Considerations................................................................ 27
Digital Outputs........................................................................... 27
Timing ......................................................................................... 27
Operational Mode Selection ..................................................... 28
Evaluation Board............................................................................ 29
Outline Dimensions....................................................................... 37
Ordering Guide .......................................................................... 37

REVISION HISTORY

10/05—Revision 0: Initial Version
Rev. 0 | Page 2 of 40
AD9445

SPECIFICATIONS

DC SPECIFICATIONS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sampling rate, 2.0 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = −1.0 dBFS, DCS on, unless otherwise noted. RF ENABLE = AGND.
Table 1.
AD9445BSVZ-105 AD9445BSVZ-125 Parameter Te mp Min Typ Max Min Typ Max Unit
RESOLUTION Full 14 14 Bits ACCURACY
No Missing Codes Full Guaranteed Guaranteed Offset Error Full −7 +7 −7 +7 mV 25°C ±3 ±3 mV Gain Error Full −3 +3 −3 +3 % FSR 25°C −2 +2 −2 +2 % FSR Differential Nonlinearity (DNL) 5 5 Integral Nonlinearity (INL)1 25°C ±0.65 ±0.8 LSB Full −1.6 +1.6 −2 +2 LSB
VOLTAGE REFERENCE
Output Voltage VREF = 1.0 V Full 0.9 1.0 1.1 0.9 1.0 1.1 V Load Regulation @ 1.0 mA Full ±2 ±2 mV
Reference Input Current (External VREF = 1.6 V) Full µA INPUT REFERRED NOISE 25°C 1.0 1.0 LSB rms ANALOG INPUT
Input Span
VREF = 1.6 V Full 3.2 3.2 V p-p
VREF = 1.0 V Full 2.0 2.0 V p-p Internal Input Common-Mode Voltage Full 3.5 3.5 V External Input Common-Mode Voltage Full 3.1 Input Resistance Input Capacitance
2
2
POWER SUPPLIES
Supply Voltage
AVDD1 Full 3.14 3.3 3.46 3.14 3.3 3.46 V
AVDD2 Full 4.75 5.0 5.25 4.75 5.0 5.25 V
DRVDD—LVDS Outputs Full 3.0
DRVDD—CMOS Outputs Full 3.0 3.3 3.6 3.0 3.3 3.6 V Supply Current
1
AVDD1 Full 335 364 384 424 mA
1, 3
AVDD2
1
I
—LVDS Outputs Full 63 78 63 78 mA
DRVDD
1
I
—CMOS Outputs Full 14 14 mA
DRVDD
PSRR
Offset Full 1 1 mV/V
Gain Full 0.2 0.2 %/V
POWER CONSUMPTION
LVDS Outputs Full 2.2 2.4 2.3 2.6 W CMOS Outputs (DC Input) Full 2.0 2.1 W
1
Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and
approximately 5 pF loading on each output bit for CMOS output mode.
2
Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input structure.
3
For RF ENABLE = AVDD1, I
AVDD2
1
Full −0.6 ±0.25 +0.65 −0.6 ±0.25 +0.65 LSB
Full 1 1 kΩ Full 6 6 pF
Full 169 196 172 199 mA
increases by ~30 mA, which increases power dissipation.
3.9 3.1 3.9 V
3.6 3.0 3.6 V
Rev. 0 | Page 3 of 40
AD9445

AC SPECIFICATIONS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sample rate, 2.0 V p-p differential input, internal trimmed reference (1.0 V mode), A
Table 2.
Parameter Temp
SIGNAL-TO-NOISE RATIO (SNR)
fIN = 10 MHz 25°C 74.3 74.1 dB fIN = 30 MHz 25°C 73.3 74.3 72.9 73.8 dB Full 73 72.5 dB fIN = 170 MHz 25°C 72.9 73.6 72.3 73.2 dB fIN = 225 MHz
1
Full 72.2 71.4 dB fIN = 300 MHz fIN = 400 MHz fIN = 450 MHz
2
2
2
fIN = 10 MHz (3.2 V p-p Input) 25°C 77.6 77.3 dB fIN = 30 MHz (3.2 V p-p Input) 25°C 77.5 77.3 dB fIN = 170 MHz (3.2 V p-p Input) 25°C 76 76 dB fIN = 225 MHz (3.2 V p-p Input) fIN = 300 MHz (3.2 V p-p Input)
SIGNAL-TO-NOISE AND DISTORTION (SINAD)
fIN = 10 MHz 25°C 74.2 73.9 dB fIN = 30 MHz 25°C 73.2 74.2 72.8 73.7 dB Full 72.8 72.3 dB fIN = 170 MHz 25°C 72.3 73.3 72.4 73.0 dB fIN = 225 MHz
1
Full 71.3 70.7 dB fIN = 300 MHz fIN = 400 MHz fIN = 450 MHz
2
2
2
fIN = 10 MHz (3.2 V p-p Input) 25°C 77.4 76.9 dB fIN = 30 MHz (3.2 V p-p Input) 25°C 77.3 76.8 dB fIN = 170 MHz (3.2 V p-p Input) 25°C 75.7 75.4 dB fIN = 225 MHz (3.2 V p-p Input) fIN = 300 MHz (3.2 V p-p Input)
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 10 MHz 25°C 12.2 12.2 Bits fIN = 30 MHz 25°C 12.2 12.1 Bits fIN = 170 MHz 25°C 12.1 12.0 Bits fIN = 225 MHz fIN = 300 MHz fIN = 400 MHz fIN = 450 MHz
1
2
2
2
= −1.0 dBFS, DCS on, RF ENABLE = ground, unless otherwise noted.
IN
AD9445BSVZ-105 AD9445BSVZ-125
Min Typ Max Min Typ Max Unit
25°C 72.2 73 72 72.9
25°C 71.4 72.1 71.3 72 dB 25°C 71 71 dB 25°C 70.5 70.5 dB
1
2
25°C 75.3 75.4 dB 25°C 73.7 73.5 dB
25°C 71.4 72.5 71.9 72.5
25°C 70.2 71.7 69.3 71.5 dB 25°C 67.2 66.3 dB 25°C 65.2 64.3 dB
1
2
25°C 75.1 75.2 dB 25°C 72.5 71.8 dB
25°C 12.0 12.0 Bits 25°C 11.8 11.8 Bits 25°C 11.7 11.7 Bits 25°C 11.6 11.6 Bits
dB
dB
Rev. 0 | Page 4 of 40
AD9445
AD9445BSVZ-105 AD9445BSVZ-125
Parameter Temp
SPURIOUS-FREE DYNAMIC RANGE
(SFDR, Second or Third Harmonic) fIN = 10 MHz 25°C 95 95 dBc fIN = 30 MHz 25°C 84 92 85 94 dBc Full 83 82 dBc fIN = 170 MHz 25°C 82 94 80 91 dBc fIN = 225 MHz
1
25°C 76 87 83 88 Full 75 75 dBc fIN = 300 MHz fIN = 400 MHz fIN = 450 MHz
2
2
2
25°C 76 87 75 87 dBc
25°C 75 73 dBc
25°C 70 69 dBc
fIN = 10 MHz (3.2 V p-p Input) 25°C 92 92 dBc fIN = 30 MHz (3.2 V p-p Input) 25°C 88 91 dBc fIN = 170 MHz (3.2 V p-p Input) 25°C 86 86 dBc fIN = 225 MHz (3.2 V p-p Input) fIN = 300 MHz (3.2 V p-p Input)
WORST SPUR EXCLUDING SECOND OR
1
2
25°C 81 80 dBc
25°C 77 76 dBc
THIRD HARMONICS fIN = 10 MHz 25°C −97 −97 dBc fIN = 30 MHz 25°C −99 −90 −98 −89 dBc Full −90 −88 dBc fIN = 170 MHz 25°C −99 −92 −93 −85 dBc fIN = 225 MHz
1
25°C −94 −88 −94 −84 dBc Full −86 −80 dBc fIN = 300 MHz fIN = 400 MHz fIN = 450 MHz
2
2
2
25°C −97 −90 −92 −82 dBc
25°C −93 −93 dBc
25°C −82 −87 dBc
fIN = 10 MHz (3.2 V p-p Input) 25°C −97 −95 dBc fIN = 30 MHz (3.2 V p-p Input) 25°C −97 −95 dBc fIN = 170 MHz (3.2 V p-p Input) 25°C −97 −95 dBc fIN = 225 MHz (3.2 V p-p Input) fIN = 300 MHz (3.2 V p-p Input)
1
2
25°C −95 −94 dBc
25°C −93 −91 dBc
TWO-TONE SFDR
fIN = 30.3 MHz @ −7 dBFS,
25°C 102 102 dBFS
31.3 MHz @ −7 dBFS
fIN = 170.3 MHz @ −7 dBFS,
25°C 92 91 dBFS
171.3 MHz @ −7 dBFS
ANALOG BANDWIDTH Full 615 615 MHz
1
RF ENABLE = low (AGND ) for AD9445-105; RF ENABLE = high (AVDD1) for AD9445-125.
2
RF ENABLE = high (AVDD1).
Min Typ Max Min Typ Max Unit
dBc
Rev. 0 | Page 5 of 40
AD9445

DIGITAL SPECIFICATIONS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, R
Table 3.
AD9445BSVZ-105 AD9445BSVZ-125 Parameter Te mp Min Typ Max Min Typ Max Unit
CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE)
High Level Input Voltage Full 2.0 2.0 V Low Level Input Voltage Full 0.8 0.8 V High Level Input Current Full Low Level Input Current Full −10 Input Capacitance Full
DIGITAL OUTPUT BITS—CMOS MODE (D0 to D13, OTR)
DRVDD = 3.3 V
High Level Output Voltage Full 3.25 Low Level Output Voltage Full
DIGITAL OUTPUT BITS—LVDS MODE (D0 to D13, OTR)
VOD Differential Output Voltage
2
VOS Output Offset Voltage Full 1.125
CLOCK INPUTS (CLK+, CLK−)
Differential Input Voltage Full 0.2 Common-Mode Voltage Full 1.3 1.5 1.6 1.3 1.5 1.6 V Differential Input Resistance Full 1.1 1.4 1.7 1.1 1.4 1.7 kΩ Differential Input Capacitance Full
1
Output voltage levels measured with 5 pF load on each output.
2
LVDS R
= 100 Ω.
TERM
= 3.74 kΩ, unless otherwise noted.
LVD S_ BI AS
1
Full 247
200 200 µA +10 −10 +10 µA
2
0.2 0.2 V
545 247 545 mV
1.375 1.125 1.375 V
2
2 pF
3.25 V
0.2 V
2 pF

SWITCHING SPECIFICATIONS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted.
Table 4.
AD9445BSVZ-105 AD9445BSVZ-125 Parameter Te mp Min Typ Max Min Typ Max Unit
CLOCK INPUT PARAMETERS
Maximum Conversion Rate Full 105 125 MSPS Minimum Conversion Rate Full 10 10 MSPS CLK Period Full 9.5 8.0 ns CLK Pulse Width High1 (t CLK Pulse Width Low1 (t
DATA OUTPUT PARAMETERS
Output Propagation Delay—CMOS (tPD)2 (Dx, DCO+) Full 3.35 3.35 ns Output Propagation Delay—LVDS (tPD)3 (Dx+), (t Pipeline Delay (Latency) Full 13 13 Cycles Aperture Delay (tA) Full Aperture Uncertainty (Jitter, tJ) Full 60 60
1
With duty cycle stabilizer (DCS) enabled.
2
Output propagation delay is measured from clock 50% transition to data 50% transition with 5 pF load.
3
LVDS R
= 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition.
TERM
) Full 3.8 3.2 ns
CLKH
) Full 3.8
CLKL
)3 (DCO+) Full 2.1 3.6 4.8 2.3 3.6 4.8 ns
CPD
3.2 ns
ns
fsec rms
Rev. 0 | Page 6 of 40
AD9445

TIMING DIAGRAMS

A
CLK+
CLK–
N–1
IN
t
CLKH
t
CLKL
N
N + 1
1/
f
S
t
PD
DATA OUT
DCO+
DCO–
VIN
CLK–
CLK+
DX
DCO+
DCO–
N–1
t
CLKH
N + 1
05489-002
t
CPD
N – 13
13 CLOCK CYCLES
N–12
N
Figure 2. LVDS Mode Timing Diagram
N
N + 1
t
CLKL
t
PD
N – 13 N – 12 N – 1 N
N + 2
13 CLOCK CYCLES
05489-003
Figure 3. CMOS Timing Diagram
Rev. 0 | Page 7 of 40
AD9445

ABSOLUTE MAXIMUM RATINGS

Table 5.
With Respect
Parameter
ELECTRICAL
AVDD1 AGND −0.3 V to +4 V AVDD2 AGND −0.3 V to +6 V DRVDD DGND −0.3 V to +4 V AGND DGND −0.3 V to +0.3 V AVDD1 DRVDD −4 V to +4 V AVDD2 DRVDD −4 V to +6 V AVDD2 AVDD1 −4 V to +6 V D0± to D13± DGND –0.3 V to DRVDD + 0.3 V CLK+/CLK− AGND –0.3 V to AVDD1 + 0.3 V OUTPUT MODE, DCS
MODE, DFS, SFDR,
RF ENABLE VIN+, VIN− AGND –0.3 V to AVDD2 + 0.3 V VREF AGND –0.3 V to AVDD1 + 0.3 V SENSE AGND –0.3 V to AVDD1 + 0.3 V REFT, REFB AGND –0.3 V to AVDD1 + 0.3 V
ENVIRONMENTAL
Storage Temperature
Range Operating Temperature
Range Lead Temperature
(Soldering 10 sec) Junction Temperature 150°C
To
AGND –0.3 V to AVDD1 + 0.3 V
–65°C to +125°C
–40°C to +85°C
300°C
Rating
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

The heat sink of the AD9445 package must be soldered to ground.
Table 6.
Package Type θJA θ
100-lead TQFP/EP 19.8 8.3 2 °C/W
Typical θJA = 19.8°C/W (heat sink soldered) for multilayer board in still air.
Typical θ
= 8.3°C/W (heat sink soldered) for multilayer board
JB
in still air.
Typical θ
= 2°C/W (junction to exposed heat sink) represents
JC
the thermal resistance through heat sink path.
Airflow increases heat dissipation, effectively reducing θ more metal directly in contact with the package leads from metal traces through holes, ground, and power planes reduces the θ
. It is required that the exposed heat sink be soldered to
JA
the ground plane.
θJC Unit
JB
. Also,
JA

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 8 of 40
AD9445

TERMINOLOGY

Analog Bandwidth (Full Power Bandwidth) Minimum Conversion Rate
The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB.
The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.
Aperture Delay (t
) Offset Error
A
The delay between the 50% point of the rising edge of the clock and the instant at which the analog input is sampled.
Aperture Uncertainty (Jitter, t
)
J
The sample-to-sample variation in aperture delay.
Clock Pulse Width and Duty Cycle
Pulse width high is the minimum amount of time that the clock pulse should be left in the Logic 1 state to achieve rated performance. Pulse width low is the minimum time the clock pulse should be left in the low state. At a given clock rate, these specifications define an acceptable clock duty cycle.
Differential Nonlinearity (DNL, No Missing Codes)
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 14-bit resolution indicates that all 16,384 codes must be present over all operating ranges.
Effective Number of Bits (ENOB)
The effective number of bits for a sine wave input at a given input frequency can be calculated directly from its measured SINAD using the following formula:
ENOB
()
SINAD
=
6.02
1.76
Gain Error
The first code transition should occur at an analog value of ½ LSB above negative full scale. The last transition should occur at an analog value of 1½ LSB below the positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.
Integral Nonlinearity (INL)
The deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is defined as a level 1½ LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.
Maximum Conversion Rate
The clock rate at which parametric testing is performed.
The major carry transition should occur for an analog value of ½ LSB below VIN+ = VIN−. Offset error is defined as the deviation of the actual transition from that point.
Out-of-Range Recovery Time
The time it takes for the ADC to reacquire the analog input after a transition from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale.
Output Propagation Delay (tPD)
The delay between the clock rising edge and the time when all bits are within valid logic levels.
Power-Supply Rejection Ratio
The change in full scale from the value with the supply at the minimum limit to the value with the supply at the maximum limit.
Signal-to-Noise and Distortion (SINAD)
The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc.
Signal-to-Noise Ratio (SNR)
The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc.
Spurious-Free Dynamic Range (SFDR)
The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may be a harmonic. SFDR can be reported in dBc (that is, degrades as signal level is lowered) or dBFS (always related back to converter full scale).
Tem p er at u re Dr i ft
The temperature drift for offset error and gain error specifies the maximum change from the initial (25°C) value to the value at T
MIN
or T
MAX
.
Total Harmonic Distortion (THD)
The ratio of the rms input signal amplitude to the rms value of the sum of the first six harmonic components.
Two -Tone SFDR
The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product.
Rev. 0 | Page 9 of 40
AD9445

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

RF ENABLE99AGND98AGND97AVDD196AVDD195AVDD194AVDD193AVDD192AVDD191AGND90OR+89OR–88DRVDD87DRGND86D13+ (MSB)85D13–84D12+83D12–82D11+81D11–80D10+79D10–78D9+77D9–76DRVDD
100
DNC
DFS
AVDD1 SENSE
VREF
AGND
REFT
REFB AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1
AGND
VIN+ VIN–
AGND
AVDD2
1 2 3 4 5 6 7 8 9
10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
DCS MODE
OUTPUT MODE
LVDS_BIAS
DNC = DO NOT CONNECT
PIN 1
AD9445
LVDS MODE
TOP VIEW
(Not to Scale)
26
AVDD227AVDD228AVDD229AVDD230AVDD231AVDD232AVDD133AVDD134AVDD135AVDD236AVDD137AVDD238AVDD1
39
40
AGND
41
CLK+
42
CLK–
AGND
Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode
43
AVDD144AVDD145AVDD1
46
47
AGND
48
DRVDD
DRGND
49
DNC50DNC
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
DRGND D8+ D8– D7+ D7– D6+ D6– DCO+ DCO– D5+ D5– DRVDD DRGND D4+ D4– D3+ D3– D2+ D2– D1+ D1– D0+ D0– (LSB) DNC DNC
05489-004
Rev. 0 | Page 10 of 40
AD9445
Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode
Pin No. Mnemonic Description
1 DCS MODE
2, 49 to 52 DNC Do Not Connect. These pins should float. 3 OUTPUT MODE
4 DFS
5 LVDS_BIAS Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND. 6, 18 to 20, 32 to 34, 36, 38,
43 to 45, 92 to 97 7 SENSE
8 VREF
9, 21, 24, 39, 42, 46, 91, 98, 99, Exposed Heat Sink
10 REFT
11 REFB
12 to 17, 25 to 31, 35, 37 AVDD2 5.0 V Analog Supply (±5%). 22 VIN+ Analog Input—True. 23 VIN− Analog Input—Complement. 40 CLK+ Clock Input—True. 41 CLK− Clock Input—Complement. 47, 63, 75, 87 DRGND Digital Output Ground. 48, 64, 76, 88 DRVDD 3.3 V Digital Output Supply (3.0 V to 3.6 V). 53 D0− (LSB) D0 Complement Output Bit (LVDS Levels). 54 D0+ D0 True Output Bit. 55 D1− D1 Complement Output Bit. 56 D1+ D1 True Output Bit. 57 D2− D2 Complement Output Bit. 58 D2+ D2 True Output Bit. 59 D3− D3 Complement Output Bit. 60 D3+ D3 True Output Bit. 61 D4− D4 Complement Output Bit. 62 D4+ D4 True Output Bit. 65 D5− D5 Complement Output Bit. 66 D5+ D5 True Output Bit. 67 DCO− Data Clock Output—Complement. 68 DCO+ Data Clock Output—True. 69 D6− D6 Complement Output Bit. 70 D6+ D6 True Output Bit. 71 D7− D7 Complement Output Bit. 72 D7+ D7 True Output Bit. 73 D8− D8 Complement Output Bit. 74 D8+ D8 True Output Bit. 77 D9− D9 Complement Output Bit. 78 D9+ D9 True Output Bit. 79 D10− D10 Complement Output Bit. 80 D10+ D10 True Output Bit. 81 D11− D11 Complement Output Bit. 82 D11+ D11 True Output Bit.
AVDD1 3.3 V (±5%) Analog Supply.
AGND
Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (recommended); DCS = high (AVDD1) to disable DCS.
CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode; OUTPUT MODE = 1 (AVDD1) for LVDS outputs.
Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format.
Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1 for external reference.
1.0 V Reference I/O. Function dependent on SENSE and external programming resistors. Decouple to ground with 0.1 µF and 10 µF capacitors.
Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND.
Differential Reference Output. Decoupled to ground with 0.1 µF capacitor and to REFB (Pin 14) with 0.1 µF and 10 µF capacitors.
Differential Reference Output. Decoupled to ground with a 0.1 µF capacitor and to REFT (Pin 13) with 0.1 µF and 10 µF capacitors.
Rev. 0 | Page 11 of 40
AD9445
Pin No. Mnemonic Description
83 D12− D12 Complement Output Bit. 84 D12+ D12 True Output Bit. 85 D13− D13 Complement Output Bit. 86 D13+ (MSB) D13 True Output Bit. 89 OR− Out-of-Range Complement Output Bit. 90 OR+ Out-of-Range True Output Bit. 100 RF ENABLE
RF ENABLE Control Pin. CMOS-compatible control pin to optimize the configuration of the AD9445 analog front end. Connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <210 MHz for 125 MSPS speed grade and <230 MHz for the 105 MSPS speed grade. For applications with analog inputs >225 MHz for the 125 MSPS speed grade and >230 MHz for the 105 MSPS speed grade, this pin should be connected to AVDD1 for optimum SFDR performance. Power dissipation from AVDD2 increases by 150 mW to 200 mW.
Rev. 0 | Page 12 of 40
AD9445
RF ENABLE99AGND98AGND97AVDD196AVDD195AVDD194AVDD193AVDD192AVDD191AGND90OR89D13 (MSB)88DRVDD87DRGND86D1285D1184D1083D982D881D780D679D578D477D376DRVDD
100
DNC
DFS
AVDD1 SENSE
VREF
AGND
REFT
REFB AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1
AGND
VIN+ VIN–
AGND
AVDD2
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
DCS MODE
OUTPUT MODE
LVDS_BIAS
DNC = DO NOT CONNECT
PIN 1
AD9445
CMOS MODE
TOP VIEW
(Not to Scale)
26
AVDD227AVDD228AVDD229AVDD230AVDD231AVDD232AVDD133AVDD134AVDD135AVDD236AVDD137AVDD238AVDD1
39
40
AGND
41
CLK+
42
CLK–
43
AGND
Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode
AVDD144AVDD145AVDD1
46
47
AGND
48
DRVDD
DRGND
49
DNC50DNC
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
DRGND D2 D1 D0 (LSB) DNC DNC DNC DCO+ DCO– DNC DNC DRVDD DRGND DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
05489-005
Rev. 0 | Page 13 of 40
AD9445
Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode
Pin No. Mnemonic Description
1 DCS MODE
2, 49 to 62, 65 to 66, 69 to 71 DNC Do Not Connect. These pins should float. 3
4 DFS
5 LVDS_BIAS Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND. 6, 18 to 20, 32 to 34, 36, 38,
43 to 45, 92 to 97 7 SENSE
8 VREF
9, 21, 24, 39, 42, 46, 91, 98, 99, Exposed Heat Sink
10 REFT
11 REFB
12 to 17, 25 to 31, 35, 37 AVDD2 5.0 V Analog Supply (±5%). 22 VIN+ Analog Input—True. 23 VIN− Analog Input—Complement. 40 CLK+ Clock Input—True. 41 CLK− Clock Input—Complement. 47, 63, 75, 87 DRGND Digital Output Ground. 48, 64, 76, 88 DRVDD 3.3 V Digital Output Supply (3.0 V to 3.6 V). 67 DCO− Data Clock Output—Complement. 68 DCO+ Data Clock Output—True. 72 D0 (LSB) D0 True Output Bit (CMOS levels). 73 D1 D1 True Output Bit. 74 D2 D2 True Output Bit. 77 D3 D3 True Output Bit. 78 D4 D4 True Output Bit. 79 D5 D5 True Output Bit. 80 D6 D6 True Output Bit. 81 D7 D7 True Output Bit. 82 D8 D8 True Output Bit. 83 D9 D9 True Output Bit. 84 D10 D10 True Output Bit. 85 D11 D11 True Output Bit. 86 D12 D12 True Output Bit. 89 D13 (MSB) D13 True Output Bit. 90 OR Out-of-Range True Output Bit. 100 RF ENABLE
OUTPUT MODE
AVDD1 3.3 V (±5%) Analog Supply.
AGND
Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (recommended); DCS = high (AVDD1) to disable DCS.
CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode; OUTPUT MODE = 1 (AVDD1) for LVDS outputs.
Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format.
Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1 for external reference.
1.0 V Reference I/O. Function dependent on SENSE and external programming resistors. Decouple to ground with 0.1 µF and 10 µF capacitors.
Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND.
Differential Reference Output. Decoupled to ground with 0.1 µF capacitor and to REFB (Pin 14) with 0.1 µF and 10 µF capacitors.
Differential Reference Output. Decoupled to ground with a 0.1 µF capacitor and to REFT (Pin 13) with 0.1 µF and 10 µF capacitors.
RF ENABLE CMOS-compatible Control Pin. Optimizes the configuration of the analog front end. Connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <210 MHz for 125 MSPS speed grade and <230 MHz for the 105 MSPS speed grade. For applications with analog inputs >225 MHz for the 125 MSPS speed grade and >230 MHz for the 105 MSPS speed grade, this pin should be connected to AVDD1 for optimum SFDR. Power dissipation from AVDD2 increases by 150 mW to 200 mW.
Rev. 0 | Page 14 of 40
AD9445

EQUIVALENT CIRCUITS

AVDD2
VIN+
VIN–
3.5V
6pF
6pF
X1
AVDD2
1k
Ω
1k
Ω
Figure 6. Equivalent Analog Input Circuit
DRVDD DRVDD
1.2V
LVDS_BIAS
3.74k
Ω
I
LVDSOUT
Figure 7. Equivalent LVDS_BIAS Circuit
T/H
DRVDD
DX
05489-006
05489-009
Figure 9. Equivalent CMOS Digital Output Circuit
VDD
K
05489-007
RF ENABLE, DCS
MODE, OUTPUT
MODE, DFS
30kΩ
05489-010
Figure 10. Equivalent Digital Input Circuit,
DFS, DCS MODE, OUTPUT MODE
AVDD2
DRVDD
3k
V
DX– DX+
V
V
V
05489-008
Figure 8. Equivalent LVDS Digital Output Circuit
CLK+
Ω
2.5k
Ω
Figure 11. Equivalent Sample Clock Input Circuit
3k
Ω
CLK–
2.5k
Ω
05489-011
Rev. 0 | Page 15 of 40
AD9445

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, rated sample rate, LVDS mode, DCS enabled, TA = 25°C, 2.0 V p-p differential input, AIN = −1.0 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted.
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 62.500
15.625 31.250 46.875 FREQUENCY (MHz)
125MSPS
30.3MHz @ –1.0dBFS SNR = 73.4dB ENOB = 12.1BITS SFDR = 94dBc
05489-012
Figure 12. AD9445-125 64k Point Single-Tone FFT/125 MSPS/30.3 MHz Figure 15. AD9445-125 64k Point Single-Tone FFT/125 MSPS/225.3 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 62.500
15.625 31.250 46.875 FREQUENCY (MHz)
125MSPS
225.3MHz @ –1.0dBFS SNR = 72.9dB ENOB = 12.1BITS SFDR = 88dBc
05489-015
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 62.500
15.625 31.250 46.875 FREQUENCY (MHz)
125MSPS
100.3MHz @ –1.0dBFS SNR = 0dB ENOB = 12.1BITS SFDR = 96dBc
05489-013
0
125MSPS
–10
300.3MHz @ –1.0dBFS SNR = 72.0dB
–20
ENOB = 11.8BITS SFDR = 87dBc
–30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90 –100 –110 –120 –130
0 62.500
15.625 31.250 46.875 FREQUENCY (MHz)
05489-016
Figure 13. AD9445-125 64k Point Single-Tone FFT/125 MSPS/100.3 MHz Figure 16. AD9445-125 64k Point Single-Tone FFT/125 MSPS/300.3 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 62.500
15.625 31.250 46.875 FREQUENCY (MHz)
125MSPS
170.3MHz @ –1.0dBFS SNR = 73.2dB ENOB = 12.0BITS SFDR = 91dBc
05489-014
0
125MSPS
–10
450.3MHz @ –1.0dBFS SNR = 70.5dB
–20
ENOB = 11.6BITS SFDR = 69dBc
–30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90 –100 –110 –120 –130
0 62.500
15.625 31.250 46.875 FREQUENCY (MHz)
05489-017
Figure 14. AD9445-125 64k Point Single-Tone FFT/125 MSPS/170.3 MHz Figure 17. AD9445-125 64k Point Single-Tone FFT/125 MSPS/450.3 MHz
Rev. 0 | Page 16 of 40
AD9445
100
95
90
85
SNR +25°C
80
(dB)
75
70
65
60
55
0 50 100 150 200 250 300 350 400 450
SNR +85°C
ANALOG INPUT FREQUENCY (MHz)
SFDR +85°C
SFDR +25°C
SFDR –40°C
SNR –40°C
Figure 18. AD9445-125 SNR/SFDR vs. Analog Input Frequency,
125 MSPS, 2.0 V p-p Input Range
05489-018
100
95
90
85
80
(dB)
75
70
65
60
55
0 50 100 150 200 250 300 350 400 450
SFDR –40°C
SNR +25°C
ANALOG INPUT FREQUENCY (MHz)
SFDR +85°C
SFDR +25°C
SNR –40°C
SNR +85°C
Figure 21. AD9445-125 SNR/SFDR vs. Analog Input Frequency,
125 MSPS, 3.2 V p-p Input Range
05489-021
100
95
90
85
SNR +25°C
80
(dB)
75
70
65
60
55
0 100
SFDR +25°C
SNR –40°C
SNR +85°C
20 30 40 50 60 70 80 90
10
ANALOG INPUT FREQUENCY (MHz)
SFDR +85°C
SFDR –40°C
Figure 19. AD9445-125 SNR/SFDR vs. Analog Input Frequency,
3.2 V p-p Input Range, 125 MSPS, CMOS Output Mode
(dB)
120
100
80
60
SFDR dBFS
SNR dBFS
105
125M SFDR dBc
100
95
90
(dB)
85
80
75
05489-019
70
0
105M SFDR dBc
125M SNR dB
105M SNR dB
20 40 60 80 100 120 140
SAMPLE RATE (MSPS)
Figure 22. AD9445 Single-Tone SNR/SFDR vs. Sample Rate 2.3 MHz
120
SFDR dBFS
100
80
SNR dBFS
60
(dB)
05489-022
40
SFDR dBc
20
0
–90 –80 –70 –60 –50 –40 –30 –20 –10
–100 0
SNR dB
ANALOG INPUT AMPLITUDE (dB)
Figure 20. AD9445-125 SNR/SFDR vs. Analog Input Level,
125 MSPS/225.3 MHz
40
20
05489-020
0 –100 0
SFDR dBc
SNR dB
–90 –80 –70 –60 –50 –40 –30 –20 –10
ANALOG INPUT AMPLITUDE (dB)
Figure 23. AD9445-125 SNR/SFDR vs. Analog Input Level,
125 MSPS/225.3 MHz, CMOS Output Mode
Rev. 0 | Page 17 of 40
05489-023
AD9445
0
105MSPS
–10
30.3MHz @ –1.0dBFS SNR = 74.3dB
–20
ENOB = 12.2BITS SFDR = 92dBc
–30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90 –100 –110 –120 –130
0 52.500
13.125 26.250 39.375 FREQUENCY (MHz)
05489-024
Figure 24. AD9445-105 64k Point Single-Tone FFT/105 MSPS/30.3 MHz Figure 27. AD9445-105 64k Point Single-Tone FFT/105 MSPS/225.3 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 52.500
13.125 26.250 39.375 FREQUENCY (MHz)
105MSPS
225.3MHz @ –1.0dBFS SNR = 73.0dB ENOB = 12.0BITS SFDR = 87dBc
05489-027
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 52.500
13.125 26.250 39.375 FREQUENCY (MHz)
105MSPS
100.3MHz @ –1.0dBFS SNR = 73.5dB ENOB = 11.8BITS SFDR = 93dBc
05489-025
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 52.500
13.125 26.250 39.375 FREQUENCY (MHz)
105MSPS
300.3MHz @ –1.0dBFS SNR = 72.1dB ENOB = 11.8BITS SFDR = 87dBc
05489-028
Figure 25. AD9445-105 64k Point Single-Tone FFT/105 MSPS/100.3 MHz Figure 28. AD9445-105 64k Point Single-Tone FFT/105 MSPS/300.3 MHz
0
105MSPS
–10
170.3MHz @ –1.0dBFS SNR = 73.6dB
–20
ENOB = 12.1BITS SFDR = 94dBc
–30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90 –100 –110 –120 –130
0 52.500
13.125 26.250 39.375 FREQUENCY (MHz)
05489-026
0 –10 –20 –30 –40 –50 –60 –70 –80
AMPLITUDE (dBFS)
–90
–100 –110 –120 –130
0 52.500
13.125 26.250 39.375 FREQUENCY (MHz)
105MSPS
450.3MHz @ –1.0dBFS SNR = 70.5dB ENOB = 11.6BITS SFDR = 70dBc
05489-029
Figure 26. AD9445-105 64k Point Single-Tone FFT/105 MSPS/170.3 MHz Figure 29. AD9445-105 64k Point Single-Tone FFT/105 MSPS/450.3 MHz
Rev. 0 | Page 18 of 40
AD9445
(dB)
100
95
90
85
80
75
70
65
60
55
SFDR +25°C
SNR +85°C
0 50 100 150 200 250 300 350 400 450
ANALOG INPUT FREQUENCY (MHz)
SFDR –40°C
SFDR +85°C
SNR –40°C
SNR +25°C
Figure 30. AD9445-105 SNR/SFDR vs. Analog Input Frequency,
105 MSPS, 2.0 V p-p
05489-030
100
95
SFDR +25°C
SFDR –40°C
SNR –40°C
SNR +85°C
(dB)
90
85
80
75
70
65
60
55
SFDR +85°C
SNR +25°C
0 50 100 150 200 250 300 350 400 450
ANALOG INPUT FREQUENCY (MHz)
Figure 33. AD9445-105 SNR/SFDR vs. Analog Input Frequency,
105 MSPS, 3.2 V p-p
05489-033
100
95
90
85
80
SNR –40°C
(dB)
75
70
SNR +25°C
65
60
55
20 40 60 80 100 120 140 160
0 180
ANALOG INPUT FREQUENCY (MHz)
SFDR +25°C
SNR +85°C
SFDR +85°C
SFDR –40°C
Figure 31. AD9445-105 SNR/SFDR vs. Analog Input Frequency,
3.2 V p-p Input Range, 105 MSPS, CMOS Output Mode
120
SFDR dBFS
100
80
SNR dBFS
60
(dB)
05489-031
100
95
90
85
80
(dB)
75
70
65
60
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 ANALOG INPUT COMMON-MODE VOLTAGE
SFDR dBc
SNR dB
Figure 34. AD9445-105 SNR/SFDR vs. Analog Input Common Mode,
105 MSPS/10.3 MHz
120
SFDR dBFS
100
80
SNR dBFS
60
(dB)
05489-034
40
20
SFDR dBc
0
–90 –80 –70 –60 –50 –40 –30 –20 –10
–100 0
SNR dB
ANALOG INPUT AMPLITUDE (dB)
Figure 32. AD9445-105 SNR/SFDR vs. Analog Input Level,
105 MSPS/225.3 MHz
05489-032
Rev. 0 | Page 19 of 40
40
SFDR dBc
20
0
–90 –80 –70 –60 –50 –40 –30 –20 –10
–100 0
SNR dB
ANALOG INPUT AMPLITUDE (dB)
Figure 35. AD9445-105 SNR/SFDR vs. Analog Input Level,
105 MSPS/225.3 MHz, CMOS Output Mode
05489-035
AD9445
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
AMPLITUDE (dBFS)
–100 –110 –120 –130 –140
0 54.500
125MSPS
30.3MHz @ –7.0dBFS
31.3MHz @ –7.0dBFS SFDR = 102dBFS
13.625 27.250 40.875 FREQUENCY (MHz)
Figure 36. AD9445-125 64k Point Two-Tone FFT/
125 MSPS/30.3 MHz, 31.3 MHz
0 –10 –20 –30 –40
WORST IMD3 dBc
–50 –60 –70 –80
SPUR AND IMD3 (dB)
05489-037
–90
–100 –110 –120
SFDR dBFS
WORST IMD3 dBFS
–90 –80 –70 –60 –50 –40 –30 –20 –10
–100 0
SFDR dBc
FUNDAMENTAL LEVEL (dB)
Figure 39. AD9445-125 Two-Tone SFDR vs. Analog Input Level
125 MSPS/170.3 MHz, 171.3 MHz
05489-041
0 –10 –20 –30 –40 –50 –60 –70 –80
SPUR AND IMD3 (dB)
–90
–100 –110 –120
–100 0
WORST IMD3 dBc
SFDR dBFS
–90 –80 –70 –60 –50 –40 –30 –20 –10
SFDR dBc
WORST IMD3 dBFS
FUNDAMENTAL LEVEL (dB)
Figure 37. AD9445-125 Two-Tone SFDR vs. Analog Input Level
125 MSPS/30.3 MHz, 31.3 MHz
0
125MSPS
–10
170.3MHz @ –7.0dBFS
171.3MHz @ –7.0dBFS
–20
SFDR = 91dBFS
–30 –40 –50 –60 –70 –80 –90
AMPLITUDE (dBFS)
–100 –110 –120 –130 –140
0 54.500
13.625 27.250 40.875 FREQUENCY (MHz)
Figure 38. AD9445-125 64k Point Two-Tone FFT/
125 MSPS/170.3 MHz, 171.3 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80 –90
AMPLITUDE (dBFS)
–100 –110 –120
05489-038
–130 –140
0 52.50013.125 26.250 39.375
0
FREQUENCY (MHz)
105MSPS
30.3MHz @ –7.0dBFS
31.3MHz @ –7.0dBFS SFDR = 102dBFS
Figure 40. AD9445-105 64k Point Two-Tone FFT/105 MSPS/30.3 MHz, 31.3 MHz
0 –10 –20 –30 –40 –50 –60 –70 –80
SPUR AND IMD3 (dB)
–90
–100
05489-040
–110 –120
–100 0
WORST IMD3 dBc
SFDR dBFS
WORST IMD3 dBFS
–90 –80 –70 –60 –50 –40 –30 –20 –10
FUNDAMENTAL LEVEL (dB)
SFDR dBc
Figure 41. AD9445-105 Two-Tone SFDR vs. Analog Input Level
105 MSPS/30.3 MHz, 31.3 MHz
05489-042
05489-043
Rev. 0 | Page 20 of 40
AD9445
25000
20000
23754
22190
30000
25000
26294
SAMPLE SIZE = 65538
15000
10000
FREQUENCY
5000
62
0
N – 4 N – 3 N – 2 N – 1 N N + 1 N + 2 N + 3
7968
1127
OUTPUT CODE
9003
1355
75
2
05489-044
N + 4
Figure 42. AD9445-125 Grounded Input Histogram Figure 45. AD9445-105 Grounded Input Histogram
0
105MSPS
–10
170.3MHz @ –7.0dBFS
171.3MHz @ –7.0dBFS
–20
SFDR = 92dBFS
–30 –40 –50 –60 –70 –80 –90
AMPLITUDE (dBFS)
–100 –110 –120 –130 –140
0 52.50013.125 26.250 39.375
0
FREQUENCY (MHz)
05489-045
Figure 43. AD9445-105 64k Point Two-Tone FFT/105 MSPS/170.3 MHz, 171.3 MHz
20000
15000
FREQUENCY
10000
5000
307
3
0
N – 4 N – 3 N – 2 N – 1 N N + 1 N + 2 N + 3
0
–0.1
–0.2
–0.3
–0.4
–0.5
GAIN ERROR (%FSR)
–0.6
–0.7
–0.8
–40
–20 0 20 40 60 80
15743
3350
OUTPUT CODE
TEMPERATURE (°C)
Figure 46. AD9445-125 Gain vs. Temperature
16117
3493
227
2
N + 4
05489-047
05489-048
0 –10 –20 –30 –40 –50
WORST IMD3 dBc
–60 –70 –80
SPUR AND IMD3 (dB)
–90
–100 –110 –120
–100 0
SFDR dBFS
WORST IMD3 dBFS
–90 –80 –70 –60 –50 –40 –30 –20 –10
SFDR dBc
FUNDAMENTAL LEVEL (dB)
Figure 44. AD9445-105 Two-Tone SFDR vs. Analog Input Level
105 MSPS/170.3 MHz, 171.3 MHz
05489-046
Rev. 0 | Page 21 of 40
0.4
0.3
0.2
0.1
0
–0.1
DNL ERROR (LSB)
–0.2
–0.3
–0.4
0
0 16384
4096 8192 12288
OUTPUT CODE
Figure 47. AD9445-105 DNL Error vs. Output Code, 105 MSPS, 10.3 MHz
05489-049
AD9445
0.4
0.3
0.2
0.1
0
–0.1
DNL ERROR (LSB)
–0.2
–0.3
–0.4
0
0 16384
4096 8192 12288
OUTPUT CODE
05489-050
Figure 48. AD9445-125 DNL Error vs. Output Code, 125 MSPS, 10.3 MHz Figure 51. AD9445-125 INL Error vs. Output Code, 125 MSPS, 10.3 MHz
1.0
0.8
0.6
0.4
0.2
0
–0.2
INL ERROR (LSB)
–0.4
–0.6
–0.8
–1.0
0
0 163844096 8192 12288
OUTPUT CODE
05489-053
1.014
1.012
1.010
1.008
VREF
1.006
1.004
1.002 –40
–20 0 20 40 60 80
TEMPERATURE (°C)
Figure 49. AD9445-125 VREF vs. Temperature
0.5
0.4
0.3
0.2
0.1
0
–0.1
INL ERROR (LSB)
–0.2
–0.3
–0.4
–0.5
0
0 163844096 8192 12288
OUTPUT CODE
Figure 50. AD9445-105 INL Error vs. Output Code, 105 MSPS, 10.3 MHz
05489-051
05489-052
400
350
(mA)
SUPPLY
I
300
250
200
150
100
AVDD1
AVDD2
DRVDD
50
0
20 40 60 80 100 120 140
0
SAMPLE RATE (MSPS)
160
05489-066
Figure 52. AD9445-105 Power Supply Current vs. Sample Rate
10.3 MHz @ −1 dBFS
78
(dB)
77
76
75
74
73
72
71
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.8 ANALOG INPUT RANGE (V p-p)
170.3MHz SNR dB
225.3MHz SNR dB
300.3MHz SNR dB
4.2
05489-067
Figure 53. AD9445-125 SNR vs. Analog Input Range, 125 MSPS/170.3 MHz,
225.3 MHz, 300.3 MHz
Rev. 0 | Page 22 of 40
AD9445
78
95
(dB)
77
76
75
74
73
72
71
1.8 ANALOG INPUT RANGE (V p-p)
170.3MHz SFDR dBc
225.3MHz SFDR dBc
300.3MHz SFDR dBc
Figure 54. AD9445-105 SNR vs. Analog Input Range,
105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz
400
350
(mA)
SUPPLY
I
300
250
200
150
100
AVDD1
AVDD2
DRVDD
50
0
20 40 60 80 100 120 140
0
SAMPLE RATE (MSPS)
Figure 55. AD9445-125 Power Supply Current vs. Sample Rate
10.3 MHz @ −1 dBFS
90
170.3MHz SFDR dBc
85
(dB)
80
75
05489-068
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
70
1.8 ANALOG INPUT RANGE (V p-p)
225.3MHz SFDR dBc
300.3MHz SFDR dBc
Figure 57. AD9445-105 SFDR vs. Analog Input Range,
105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz
81
80
79
78
(dB)
77
76
75
160
05489-069
74
105M SNR dBFS
125M SNR dBFS
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.8 4.2 ANALOG INPUT RANGE (V p-p)
Figure 58. SNR vs. Analog Input Range, 2.3 MHz @ −30 dBFS
05489-071
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
05489-039
95
(dB)
90
85
80
75
70
1.8 ANALOG INPUT RANGE (V p-p)
170.3MHz SFDR dBc
225.3MHz SFDR dBc
300.3MHz SFDR dBc
05489-070
4.22.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Figure 56. AD9445-125 SFDR vs. Analog Input Range, 125 MSPS/170.3 MHz,
225.3 MHz, 300.3 MHz
Rev. 0 | Page 23 of 40
AD9445

THEORY OF OPERATION

The AD9445 architecture is optimized for high speed and ease of use. The analog inputs drive an integrated, high bandwidth track-and-hold circuit that samples the signal prior to quantization by the 14-bit pipeline ADC core. The device includes an on-board reference and input logic that accepts TTL, CMOS, or LVPECL levels. The digital output logic levels are user selectable as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT MODE pin.

ANALOG INPUT AND REFERENCE OVERVIEW

A stable and accurate 0.5 V band gap voltage reference is built into the AD9445. The input range can be adjusted by varying the reference voltage applied to the AD9445, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly.

Internal Reference Connection

A comparator within the AD9445 detects the potential at the SENSE pin and configures the reference into three possible states, which are summarized in reference amplifier switch is connected to the internal resistor divider (see
Figure 59), setting VREF to ~1.0 V. Connecting the SENSE pin to VREF switches the reference amplifier output to the SENSE pin, completing the loop and providing a ~1.0 V reference output. If a resistor divider is connected as shown in Figure 60, the switch again sets to the SENSE pin. This puts the reference amplifier in a noninverting mode with the VREF output defined as
VVREF 15.0
In all reference configurations, REFT and REFB drive the analog-to-digital conversion core and establish its input span. The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference.

Internal Reference Trim

The internal reference voltage is trimmed during the production test to adjust the gain (analog input voltage range) of the AD9445. Therefore, there is little advantage to the user supplying an external voltage reference to the AD9445. The gain trim is performed with the AD9445 input range set to 2.0 V p-p nominal (SENSE
Table 9. Reference Configuration Summary
Selected Mode SENSE Voltage Resulting VREF (V) Resulting Differential Span (V p-p)
External Reference AVDD1 N/A 2 × external reference Programmable Reference 0.2 V to VREF
Internal Fixed Reference AGND to 0.2 V 1.0 2.0
Tabl e 9 . If SENSE is grounded, the
R2
+×=
R1
R2
+×
10.5
R1
connected to AGND). Because of this trim and the maximum ac performance provided by the 2.0 V p-p analog input range, there is little benefit to using analog input ranges <2 V p-p. Users are cautioned that the differential nonlinearity of the ADC varies with the reference voltage. Configurations that use <2.0 V p-p may exhibit missing codes and, therefore, degraded noise and distortion performance.
VIN+
10μF+0.1μF
10μF+0.1μF
(See Figure 60)
⎟ ⎠
VIN–
ADC
CORE
VREF
SELECT
LOGIC
SENSE
0.5V
AD9445
Figure 59. Internal Reference Configuration
VIN+
VIN–
VREF
R2
SENSE
R1
Figure 60. Programmable Reference Configuration
SELECT
LOGIC
0.5V
AD9445
2 × VREF
ADC
CORE
REFT
0.1μF
0.1μF 10μF
REFB
0.1μF
REFT
0.1μF
0.1μF 10μF
REFB
0.1μF
+
05489-054
+
05489-055
Rev. 0 | Page 24 of 40
AD9445

External Reference Operation

The AD9445’s internal reference is trimmed to enhance the gain accuracy of the ADC. An external reference may be more stable over temperature, but the gain of the ADC is not likely to improve. Figure 49 shows the typical drift characteristics of the internal reference in both 1 V and 0.5 V modes.
1V p-p
VIN+
3.5V
When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent 7 kΩ load. The internal buffer still generates the positive and negative full-scale references, REFT and REFB, for the ADC core. The input span is always twice the value of the reference voltage; therefore, the external reference must be limited to a maximum of 1.6 V.

Analog Inputs

As with most new high speed, high dynamic range ADCs, the analog input to the AD9445 is differential. Differential inputs improve on-chip performance because signals are processed through attenuation and gain stages. Most of the improvement is a result of differential analog stages having high rejection of even-order harmonics. There are also benefits at the PCB level. First, differential inputs have high common-mode rejection of stray signals, such as ground and power noise. Second, they provide good rejection of common-mode signals, such as local oscillator feedthrough. The specified noise and distortion of the AD9445 cannot be realized with a single-ended analog input, so such configurations are discouraged. Contact sales for recommendations of other 14-bit ADCs that support single­ended analog input configurations.
With the 1 V reference, which is the nominal value (see the Internal Reference Trim section), the differential input range of the AD9445 analog input is nominally 2.0 V p-p or 1.0 V p-p on each input (VIN+ or VIN−).
The AD9445 analog input voltage range is offset from ground by 3.5 V. Each analog input connects through a 1 kΩ resistor to the 3.5 V bias voltage and to the input of a differential buffer. The internal bias network on the input properly biases the buffer for maximum linearity and range (see the Circuits
section).
Equivalent
VIN–
DIGITAL OUT = ALL 1s DIGITAL OUT = ALL 0s
Figure 61. Differential Analog Input Range for VREF = 1.0 V
Therefore, the analog source driving the AD9445 should be ac­coupled to the input pins. The recommended method for driving the analog input of the AD9445 is to use an RF transformer to convert single-ended signals to differential (see
Figure 62). Series resistors between the output of the transformer and the AD9445 analog inputs help isolate the analog input source from switching transients caused by the internal sample-and-hold circuit. The series resistors, along with the 1 kΩ resisters connected to the internal 3.5 V bias, must be considered in impedance matching the transformer input. For example, if R 51 Ω, R
is set to 33 Ω, and there is a 1:1 impedance ratio trans-
S
is set to
T
former, the input will match a 50 Ω source with a full-scale drive of 10.0 dBm. The 50 Ω impedance matching can also be incor­porated on the secondary side of the transformer, as shown in
0.1
μF
Figure 67).
R
S
VIN+
AD9445
R
S
VIN–
05489-057
the evaluation board schematic (see
R
T
ADT1–1WT
ANALOG
INPUT
SIGNAL
Figure 62. Transformer-Coupled Analog Input Circuit

High IF Applications

In applications where the analog input frequency range is >100 MHz, the phase and amplitude matching at the analog inputs becomes critical to optimize performance of the ADC. The circuit in
Figure 63 can be used to optimize the matching of these parameters. This configuration uses a double balun config­uration that has low parasitics, high bandwidth, and parasitic cancellation.
ETC1–1–13ETC1–1–13
33
Ω
VIN+
AD9445
33
Ω
μF
VIN–
50
SOURCE
25
Ω
CT
Ω
Figure 63. Double Balun-Coupled Analog Input Circuit
0.1μF 25
0.1
Ω
05489-056
05489-058
Rev. 0 | Page 25 of 40
AD9445

CLOCK INPUT CONSIDERATIONS

Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock is combined with the desired signal at the analog-to­digital output. For that reason, considerable care was taken in the design of the clock inputs of the AD9445, and the user is advised to give careful thought to the clock source.
Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, may be sensitive to the clock duty cycle. Commonly a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9445 contains a clock duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. Noise and distortion performance are nearly flat for a 30% to 70% duty cycle with the DCS enabled. The DCS circuit locks to the rising edge of CLK+ and optimizes timing internally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates of less than 30 MHz nominally. The loop is associated with a time constant that should be considered in applications where the clock rate can change dynamically, requiring a wait time of 1.5 μs to 5 μs after a dynamic clock frequency increase or decrease before the DCS loop is relocked to the input signal. During the time that the loop is not locked, the DCS loop is bypassed, and the internal device timing is dependent on the duty cycle of the input clock signal. In such an application, it may be appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance.
The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the duty cycle stabilizer, and logic high (AVDD1 = 3.3 V) disables the controller.
The AD9445 input sample clock signal must be a high quality, extremely low phase noise source to prevent degradation of performance. Maintaining 14-bit accuracy places a premium on the encode clock phase noise. SNR performance can easily degrade by 3 dB to 4 dB with 70 MHz analog input signals when using a high jitter clock source. (See the
Application Note
Performance
, Aperture Uncertainty and ADC System
.) For optimum performance, the AD9445 must be clocked differentially. The sample clock inputs are internally biased to ~2.2 V, and the input signal is usually ac-coupled into the CLK+ and CLK− pins via a transformer or capacitors. Figure 64 shows one preferred method for clocking the AD9445. The clock source (low jitter) is converted from single­ended to differential using an RF transformer. The back-to-back
AN-501
Schottky diodes across the secondary of the transformer limit clock excursions into the AD9445 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9445 and limits the noise presented to the sample clock inputs.
If a low jitter clock is available, it may help to band-pass filter the clock reference before driving the ADC clock inputs. Another option is to ac couple a differential ECL/PECL signal to the encode input pins, as shown in Figure 65.
CLOCK
SOURCE
Figure 64. Crystal Clock Oscillator, Differential Encode
ECL/
PECL
ADT1–1WT
0.1
μF
HSMS2812
DIODES
VT
0.1
μF
0.1μF
VT
Figure 65. Differential ECL for Encode
CLK+
AD9445
CLK–
ENCODE
AD9445
ENCODE
05489-060
05489-059

Jitter Considerations

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input
f
frequency (
t
) can be calculated using the following equation:
(
J
SNR = 20 log[2πf
) and rms amplitude due only to aperture jitter
INPUT
× tJ]
INPUT
In the equation, the rms aperture jitter represents the root­mean-square of all jitter sources, which includes the clock input, analog input signal, and ADC aperture jitter specification. IF undersampling applications are particularly sensitive to jitter, see
Figure 66.
The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9445. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or another method), it should be synchronized by the original clock during the last step.
Rev. 0 | Page 26 of 40
AD9445
75
70
65
60
55
SNR (dBc)
50
45
40
1
Figure 66. SNR vs. Input Frequency and Jitter
INPUT FREQUENCY (MHz)
0.2ps
0.5ps
1.0ps
1.5ps
2.0ps
2.5ps
3.0ps
100010010
05489-061

POWER CONSIDERATIONS

Care should be taken when selecting a power source. The use of linear dc supplies is highly recommended. Switching supplies tend to have radiated components that may be received by the AD9445. Each of the power supply pins should be decoupled as closely to the package as possible using 0.1 μF chip capacitors.
The AD9445 has separate digital and analog power supply pins. The analog supplies are denoted AVDD1 (3.3 V) and AVDD2 (5 V), and the digital supply pins are denoted DRVDD. Although the AVDD1 and DRVDD supplies can be tied together, best performance is achieved when the supplies are separate. This is because the fast digital output swings can couple switching current back into the analog supplies. Note that both AVDD1 and AVDD2 must be held within 5% of the specified voltage.
The DRVDD supply of the AD9445 is a dedicated supply for the digital outputs in either LVDS or CMOS output mode. When in LVDS mode, the DRVDD should be set to 3.3 V. In CMOS mode, the DRVDD supply can be connected from 2.5 V to
3.6 V for compatibility with the receiving logic.

DIGITAL OUTPUTS

LVDS Mode

The off-chip drivers on the chip can be configured to provide LVDS-compatible output levels via Pin 3 (OUTPUT MODE). LVDS outputs are available when OUTPUT MODE is CMOS logic high (or AVDD1 for convenience) and a 3.74 kΩ R
SET
resistor is placed at Pin 5 (LVDS_BIAS) to ground. Dynamic performance, including both SFDR and SNR, is maximized when the AD9445 is used in LVDS mode; designers are encouraged to take advantage of this mode. The AD9445 outputs include complimentary LVDS outputs for each data bit (Dx+/Dx−), the overrange output (OR+/OR−), and the output data clock output (DCO+/DCO−). The R
resistor current is
SET
multiplied on-chip, setting the output current at each output equal to a nominal 3.5 mA (11 × I
). A 100 Ω differential
R
SET
termination resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver. LVDS mode facilitates interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended, with a 100 Ω termination resistor placed as close to the receiver as possible. It is recommended to keep the trace length less than 2 inches and to keep differential output trace lengths as equal as possible.

CMOS Mode

In applications that can tolerate a slight degradation in dynamic performance, the AD9445 output drivers can be configured to interface with 2.5 V or 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. CMOS outputs are available when OUTPUT MODE is CMOS logic low (or AGND for convenience). In this mode, the output data bits, Dx, are single-ended CMOS, as is the overrange output, OR. The output clock is provided as a differential CMOS signal, DCO+/DCO−. Lower supply voltages are recommended to avoid coupling switching transients back to the sensitive analog sections of the ADC. The capacitive load to the CMOS outputs should be minimized, and each output should be connected to a single gate through a series resistor (220 Ω) to minimize switching transients caused by the capacitive loading.

TIMING

The AD9445 provides latched data outputs with a pipeline delay of 13 clock cycles. Data outputs are available one propagation delay (t
) after the rising edge of CLK+. Refer to
PD
Figure 3 for detailed timing diagrams.
Figure 2 and
Rev. 0 | Page 27 of 40
AD9445

OPERATIONAL MODE SELECTION

Data Format Select

The data format select (DFS) pin of the AD9445 determines the coding format of the output data. This pin is 3.3 V CMOS­compatible, with logic high (or AVDD1, 3.3 V) selecting twos complement and DFS logic low (AGND) selecting offset binary
Tabl e 1 0 summarizes the output coding.
format.

Output Mode Select

The OUPUT MODE pin controls the logic compatibility, as well as the pinout of the digital outputs. This pin is a CMOS-compatible input. With OUTPUT MODE = 0 (AGND), the AD9445 outputs are CMOS compatible, and the pin assignment for the device is as defined in V), the AD9445 outputs are LVDS compatible, and the pin assignment for the device is as defined in

Duty Cycle Stabilizer

The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the DCS, and logic high (AVDD1, 3.3 V) disables the controller.
Table 10. Digital Output Coding
Code
16,383 +1.600 +1.000 11 1111 1111 1111 01 1111 1111 1111 8192 0 0 10 0000 0000 0000 00 0000 0000 0000 8191 −0.000195 −0.000122 01 1111 1111 1111 11 1111 1111 1111 0 −1.60 −1.00 00 0000 0000 0000 10 0000 0000 0000
Tabl e 8 . With OUTPUT MODE = 1 (AVDD1, 3.3
Tabl e 7.
VIN+ − VIN− Input Span = 3.2 V p-p (V)
VIN+ − VIN− Input Span = 2 V p-p (V)

RF ENABLE

The RF ENABLE pin is a CMOS-compatible control pin that optimizes the configuration of the AD9445 analog front end. The crossover analog input frequency for determining the RF ENABLE connection differs for the 105 MSPS and 125 MSPS speed grades. For the 125 MSPS speed grade, connecting the RF ENABLE to AGND optimizes SFDR performance for appli­cations with analog input frequencies <210 MHz. For applications with analog inputs >210 MHz, this pin should be connected to AVDD1 for optimum SFDR performance. Connecting this pin to AVDD1 reconfigures the ADC, thereby improving high IF and RF spurious performance. Operating in this mode increases power dis­sipation from AVDD2 by 150 mW to 200 mW. For the 105 MSPS speed grade, connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <230 MHz. For applications with analog inputs >230 MHz, this pin should be connected to AVDD1 to optimize performance.
Digital Output Offset Binary (D13••••••D0)
Digital Output Twos Complement (D13••••••D0)
Rev. 0 | Page 28 of 40
AD9445

EVALUATION BOARD

Evaluation boards are offered to configure the AD9445 in either CMOS or LVDS mode only. This design represents a recommended configuration for using the device over a wide range of sampling rates and analog input frequencies. These evaluation boards provide all the support circuitry required to operate the ADC in its various modes and configurations. Complete schematics are shown in Gerber files are available from engineering applications demon­strating the proper routing and grounding techniques that should be applied at the system level.
Figure 67 through Figure 70.
The LVDS mode evaluation boards include an LVDS-to-CMOS translator, making them compatible with the high speed ADC FIFO evaluation kit (HSC-ADC-EVALA-SC). The kit includes a high speed data capture board that provides a hardware solution for capturing up to 32 kB samples of high speed ADC output data in a FIFO memory chip (user upgradeable to 256 kB samples). Software is provided to enable the user to download the captured data to a PC via the USB port. This software also includes a behavioral model of the AD9445 and many other high speed ADCs.
It is critical that signal sources with very low phase noise (<60 fsec rms jitter) be used to realize the ultimate performance of the converter. Proper filtering of the input signal to remove harmonics and lower the integrated noise at the input is also necessary to achieve the specified noise performance.
The evaluation boards are shipped with a 115 V ac to 6 V dc power supply. The evaluation boards include low dropout regulators to generate the various dc supplies required by the AD9445 and its support circuitry. Separate power supplies are provided to isolate the DUT from the support circuitry. Each input configuration can be selected by proper connection of various jumpers (see
Figure 67).
Behavioral modeling of the AD9445 is also available at www.analog.com/ADIsimADC. The ADIsimADC™ software supports virtual ADC evaluation using ADI proprietary behavioral modeling technology. This allows rapid comparison between the AD9445 and other high speed ADCs with or without hardware evaluation boards.
The user can choose to remove the translator and terminations to access the LVDS outputs directly.
Rev. 0 | Page 29 of 40
AD9445
P21
P22
GND
DRGND
1
P1
2
P2
3
P3
4
P4
PTMICRO4
1
P1
2
P2
3
P3
4
P4
PTMICRO4
DRGND
GND
GND
H4 MTHOLE6
H3 MTHOLE6
H1 MTHOLE6
H2 MTHOLE6
XTALPWR EXTREF
DRVDD
VCC
5V
(MSB) D15_T/D15_Y
DRVDD D11_C/D6_Y D11_T/D7_Y D12_C/D8_Y D12_T/D9_Y
D13_C/D10_Y D13_T/D11_Y D14_C/D12_Y D14_T/D13_Y D15_C/D14_Y
DRGND
DRVDD
DOR_C
DOR_T/DOR_Y
GND
VCC VCC VCC
VCC VCC VCC GND
100
101
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
DRVDD D11_C D11_T D12_C D12_T D13_C D13_T D14_C D14_T D15_C D15_T DRGND DRVDD OR_C OR_T AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AGND
EPAD
DRGND
D10_T/D5_Y
74
75
D10_T
DRGND
D9_C/D2_Y
D9_T/D3_Y
D10_C/D4_Y
72
73
71
D9_T
D9_C
D10_C
D8_C/D0_Y
D8_T/D1_Y
68
69
70
D8_T
D8_C
DR
67
DCO
DRB
66
DCOB
D7_T
65
D7_T
D7_C
DRVDD
64
D7_C
DRVDD
U1
AD9445/AD9446
DRGND
62
63
DRGND
D6_T
D6_T
D6_C
61
D6_C
60
D5_T
D5_T
59
D5_C
58
D5_C
D4_T
57
D4_T
D4_C
56
D4_C
D3_T
55
D3_T
D3_C
54
D3_C
D2_T
53
D2_T
D2_C
52
D1_T
D2_C
DRVDD DRGND
AGND AVDD1 AVDD1 AVDD1
AGND
ENCB
AGND AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2
D1_T
51
D0_T
D0_C
ENC
D1_C
D1_C
50
D0_T
49
D0_C (LSB)
48
DRVDD
47
DRGND
46
GND
45
VCC
44
VCC
43
VCC
42
GND
41
ENCB
40
ENC
39
GND
38
VCC
37
5V
36
VCC
35
5V
34
VCC
33
VCC
32
VCC
31 30 29 28 27 26
5V
E19
VCC
E66
E18
GND
E4
VCC
DCS MODE
DNC
OUTPUT MODE
DFS
LVDSBIAS
AVDD1
SENSE
VREF
AGND
REFT
REFB
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD1
AVDD1
AVDD1
AGND
VIN+
VIN–
AGND
6
VCC
GND
GND
7
C86
E26
VCC
8
0.1μF
E25
9
E27
E41
GND
R1
11
10
GND
E24
EXTREF
DNP
R3
3.74kΩ
C3
12
0.1μF
+
GND
5V
13
C2
C51
C40
GND
R2
5V
0.1μF
10μF
0.1μF
GND
14
C9
C39
DNP
15
16
5V
5V
0.1μF
GND
10μF
20
21
19
18
17
5V
5V
C98
GND
DNP
VCC
VCC
GND
GND
VCC
T1
ETC1-1-13
R5
234
E14
R11
E2
GND
5
GND
1kΩ
VCC
1
GND
E10
E5
E6
GND
VCC
E1
GND
SCLK
E3
E9
VCC
23
22
24
GND
R28
33Ω
C7
0.1μF
GND
GND
TOUT
C12
CT
2
15
GND
L1
10nH
DNP
J4
SMBMST
AVDD2
25
5V
C13
OPTIONAL
R9
R4
36Ω
ETC1-1-13
125
T2
3
PRI SEC
TOUTB
0.1μF
34
PRI SEC
TINB
C5
0.1μF
ANALOG
DNP
DNP
4
C91
0.1μF
R6
E15
36Ω
T5
ADT1-1WT
GND
GND
TOUT
624
153
GND
R35
33Ω
C8
0.1μF
CT
PRI SEC
NC
TINB TOUTB
05489-062
Figure 67. AD9445 Evaluation Board Schematic
Rev. 0 | Page 30 of 40
AD9445
X
VIN
U6
GND
5
NC
ECLOSC
C42
4
XTALINPUT
8
OUTVCC
14
VXTAL
ENCB
3
1 2
GND
0.1μF
SEC
PRI
C41
0.1μF
C1
10μF
+
5V
E31
0Ω
GND
XTALPWR
C44
10μF
+
E30
E20
VXTAL
ENC
CR1
2
1
3
CR2
DNP
6
T3
123
ADT1-1WT
C36
DNP
VXTAL
OPTIONAL ENCODE CIRCUITS
LOADING SYMMETRICAL
CR2 TO MAKE LAYOUT AND PARASITIC
ENCODE
GND
R39
1
VEE ~OUT
7
GND
L5
FERRITE
DRVDDXDRVDD
VCCXVCC
L4
FERRITE
L2
DNP
L3
FERRITE
DRGNDGND
5VX5V
U3
3.3V
ADP3338
U7
3.3V
ADP3338
5V
U14
ADP3338
DRGND
1
GND
GND
1
GND
GND
1
GND
DRVDD
OUT1
OUT
DRVDDX
VCCX
OUT1
OUT
VCCX
5VX
OUT1
OUT
C4
10μF
+
342
IN
VIN
C6
10μF
+
342
IN
VIN
C34
10μF
+
342
IN
DRGND
C88
10μF
+
C87
10μF
+
C89
10μF
+
DRGND
GND
GND
GND
GND
GND
R7
DNP
J5
SMBMST
C26
0.1μF
GND
R8
50Ω
J1
SMBMST
XTALINPUT
POWER OPTIONS
P4
2
PJ-102A
GND
2
5VX
VIN
C33
10μF
+
1
3
1
3
GND
05489-063
Figure 68. AD9445 Evaluation Board Schematic (Continued)
Rev. 0 | Page 31 of 40
AD9445
BYPASS CAPACITORS
VCC
+
C64 10μF
GND
C43
0.1μF
C35
0.1μF
C32
0.1μF
C30
0.01μF
C28
0.1μF
C27
0.1μF
C90
0.1μF
C50
0.1μF
C60
0.1μF
C10
0.1μF
C61
0.1μF
C75
0.1μF
VCC
GND
DRVDD
DRGND
GND
GND
GND
C11XXC14
+
C65
C47
0.1μF
C85
0.1μF
C23
0.1μF
10μF
5V
+
C56 10μF
5V
5V
C17XXC16XXC15
XX
C53
C52
0.1μF
0.1μF
C72XXC73
XX
C94
C95
0.1μF
0.1μF
C21
0.1μF
C58
0.01μF
C22
0.1μF
C20
0.1μF
C31 XX
XX
C108XXC109
XX
C59
C93
0.1μF
0.1μF
DRVDD
DRGND
C38XXC29XXC19
C69XXC70
C37
0.1μF
C110 XX
C96
C97
0.1μF
0.1μF
XX
C48
0.1μF
C84
0.1μF
XX
C45XXC49
EXTREF
C18
0.1μF GND
C46
0.1μF
XX
+
C55 10μF
05489-064
Figure 69. AD9445 Evaluation Board Schematic (Continued)
Rev. 0 | Page 32 of 40
AD9445
DRVDD
DRO
R190ΩR10
DRVDD
0Ω
DRGND
ORO
DRVDD
DRO
GNDN
DRGND
35
37
39
P35
P37
P39
P36
P38
P40
36
38
40
ORO
DRGND
D14O
D15O
16151413121110
220
R3R1R2
RSO16ISO
RZ5
DRVDD
DRGND
DRVDD
DRGND
DRVDD
312
33
34
D13O
D15O
P33
P34
7
8
D2O
6
DRVDD
D2O
P7
P8
R7
DRGND
D0O
D1O
DRGND
1
3
5
P1
P3
P5
P7
C40MS
P2
P4
P6
2
4
6
DRGND
D1O
D0O
9
R8
RZ4
8
7
DRVDD
DRVDD
DRGND
D13O
D11O
D9O
D8O
D10O
D12O
D14O
23
25
27
29
31
P23
P25
P27
P29
P31
P24
P26
P28
P30
P32
24
26
28
30
32
D8O
D9O
D10O
D11O
D12O
9
R8
R7
R6
R5
R4
8
7
6
5
4
DRVDD
DRGND
DRVDD
D7O
17
19
21
P17
P19
P21
P18
P20
P22
18
20
22
D7O
16151413121110
220
RSO16ISO
DRVDD
DRGND
15
16
D6O
P15
D6O
P16
D4O
D3O
D5O
9
11
13
P9
P11
P13
P10
P12
P14
10
12
14
D4O
D5O
D3O
R6
R5
R4
R3R1R2
5
4
312
DRVDD
91011
12
13
14
15
16
4Y
3Y
2Y
1Y
VCC
GND
EN_1_2
U15
2A
1B
1A
SN75LVDT390
1
DR
DRB
EN_3_4
4B
4A
3B
3A
2B
8765432
DOR_C
DOR_T/DOR_Y
64
D4Y
D3Y
D2Y
D1Y
C4Y
C3Y
C2Y
VCC3
B4B
16
D8_C/D0_Y
D9_C/D2_Y
23
P23
P24
24
D9_T/D3_Y
C1Y
VCC4
GND3
C2A
C1B
C1A
19
18
17
D7_T
D6_T
D7_C
D8_C/DO_Y
DRB
19
21
P19
P21
P20
P22
20
22
DR
D8_T/D1_Y
ENC
C4B
C4A
C3B
C3A
C2B
24
23
22
21
20
D5_T
D4_T
D6_C
D5_C
D4_C
D7_C
D5_C
D6_C
13
15
17
P13
P15
P17
P14
P16
P18
14
16
18
D7_T
D5_T
D6_T
END
VCC6
VCC5
GND5
GND4
D4B
D4A
D3B
D3A
D2B
D2A
D1B
D1A
32
31
30
29
28
27
26
25
D3_T
D2_T
D1_T
D2_C
7
8
D2_C
P7
P8
D2_T
D0_T
D1_C
D0_C
D0_C
D1_C
DRGND
1
3
5
P1
P3
P5
P2
P4
P6
2
4
6
D0_T
D1_T
DRGND
11
12
D4_C
P11
P12
D4_T
D3_C
D3_C
9
P9
P10
10
D3_T
C78
0.1μF
C77
0.1μF
C82
0.1μF
C76
0.1μF
DRVDD
DRGND
P6
C40MS
05489-065
A1Y
VCC1
A1B
D15_C/D14_Y
39
40
VCC2
GND1
A2B
A2A
D14_T/D13_Y
D14_C/D12_Y
DOR_C
DRGND
37
P37
P39
P38
P40
38
DRGND
DOR_T/DOR_Y
ENA
A3A
D13_T/D11_Y
35
36
A3B
D13_C/D10_Y
GND
U8
A1A
SN75LVDS386
D15_T/D15_Y
D15_C/D14_Y
P35
P36
D15_T/D15_Y
A4A
D12_T/D9_Y
33
34
A4B
D12_C/D8_Y
D14_C/D12_Y
P33
P34
D14_T/D13_Y
987654321
B1A
D11_T/D7_Y
D13_C/D10_Y
31
P31
32
D13_T/D11_Y
10
P32
ENB
B1B
D11_C/D6_Y
GND2
B4A
B3B
B3A
B2B
B2A
15
14
13
12
11
D9_T/D3_Y
D8_T/D1_Y
D9_C/D2_Y
D10_T/D5_Y
D10_C/D4_Y
D12_C/D8_Y
D10_C/D4_Y
D11_C/D6_Y
25
27
29
P25
P27
P29
P26
P28
P30
26
28
30
D12_T/D9_Y
D10_T/D5_Y
D11_T/D7_Y
B4Y
B3Y
B2Y
B1Y
A4Y
A3Y
A2Y
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Figure 70. AD9445 Evaluation Board Schematic (Continued)
Rev. 0 | Page 33 of 40
AD9445
Table 11. AD9445-125 Baseband Customer Evaluation Board Bill of Materials
Item Qty. Reference Designator Description Package Value Manufacturer Mfg. Part No.
1 7
C4, C6, C33, C34, C87, C88, C89
2 44
C2, C3, C5, C7, C8, C9, C10, C11, C12, C15, C20, C21, C22, C23, C26, C27, C28, C32, C35, C38, C40, C42, C43, C46, C47, C48, C50, C52, C53, C59, C60, C76, C77, C78, C82, C84, C85, C86, C90, C91, C94,
C95, C96, C97 3 2 C30, C58 Capacitor 201 0.01 F Digi-Key Corporation 445-1796-1-ND 4 4 C39, C56, C64, C65 Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2 5 1 C51 Capacitor 805 10 F Digi-Key Corporation 490-1717-1-ND 6 1 CR1 Diode SOT23M5 Digi-Key Corporation MA3X71600LCT-ND 7 1 CR2 Diode SOT23M5 Digi-Key Corporation MA3X71600LCT-ND 8 20
E1, E2, E3, E4, E5, E6,
E9, E10, E14, E18, E19,
E20, E24, E25, E26, E27,
E30, E31, E36, E41 9 2 J1, J4 SMA SMA Digi-Key Corporation ARFX1231-ND 10 1 L1 Inductor 0603A 10 nH Coilcraft, Inc. 0603CS-10NXGBU 11 3 L3, L4, L5
12 1 P4 PJ-002A PJ-002A Digi-Key Corporation CP-002A-ND 13 1 P7 Header C40MS Samtec, Inc. TSW-120-08-L-D-RA 14 1 R3 Resistor 402 3.74 kΩ Digi-Key Corporation P3.74KLCT-ND 15 1 R8 Resistor 402 50 Ω Digi-Key Corporation P49.9LCT-ND 16 4 R10, R19, R39, L2 Resistor 402 0 Ω Digi-Key Corporation P0.0JCT-ND 17 1 R11 BRES402 402 1 kΩ Digi-Key Corporation P1.0KLCT-ND 18 2 R28, R35 Resistor 402 33 Ω Digi-Key Corporation P33JCT-ND 19 2 RZ4, RZ5 Resistor array 16PIN 22 Ω Digi-Key Corporation 742C163220JCT-ND 20 2 T3, T5 Transformer ADT1-1WT Mini-Circuits ADT1-1WT 21 1 U1 AD9445BSVZ-125 SV-100-3 Analog Devices, Inc. AD9445BSVZ-125 22 1 U14 ADP3338-5 SOT-223HS Analog Devices, Inc. ADP3338-5 23 2 U3, U7 ADP3338-3.3 SOT-223HS Analog Devices, Inc. ADP3338-33 24 1 U8 SN75LVDT386 TSSOP64 Arrow Electronics, Inc. SN75LVDT386DGG 25 1 U15 SN75LVDT390 SOIC16PW Arrow Electronics, Inc. SN75LVDT390PW 26 2 R4, R6 Resistor 402 36 Ω Digi-Key Corporation P36JCT-ND 27 2 C1, C44, C55 28 23
C13, C14, C16, C17,
1
C18, C19, C29, C31,
C36, C37, C41, C45,
C49, C61, C69, C70,
C72, C73, C75, C93,
C108, C109, C110 29 1 C98 30 E15 31 J5 32 P6 33 2 R1, R2
1
1
1
1
1
34 3 R5, R7, R9 35 1 U2
1
1
1
Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
Capacitor 402 0.1 F Digi-Key Corporation PCC2146CT-ND
Header EHOLE Mouser Electronics 517-6111TG
EMIFIL®
1206MIL Mouser Electronics 81-BLM31P500S
BLM31PG500SN1L
Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2 CAP402 402 XX
Capacitor 805 10 F Digi-Key Corporation 490-1717-1-ND Header EHOLE Mouser Electronics 517-6111TG SMA SMA Digi-Key Corporation ARFX1231-ND Header C40MS Samtec, Inc. TSW-120-08-L-D-RA BRES402 402 XX BRES402 402 XX ECLOSC DIP4(14)
Rev. 0 | Page 34 of 40
AD9445
Item Qty. Reference Designator Description Package Value Manufacturer Mfg. Part No.
36 4 H1, H2, H3, H4 37 2 T1, T2
1
38 2 P21, P22
1
Parts not populated.
Table 12. AD9445-125 IF Customer Evaluation Board Bill of Materials
Item Qty. Reference Designator Description Package Value Manufacturer MFG_PART_NO
1 7
C4, C6, C33, C34, C87, C88, C89
2 44
C2, C3, C5, C7, C8, C9, C10, C11, C12, C15, C20, C21, C22, C23, C26, C27, C28, C32, C35, C38, C40, C42, C43, C46, C47, C48, C50, C52, C53, C59, C60, C76, C77, C78, C82, C84, C85, C86, C90, C91, C94,
C95, C96, C97 3 2 C30, C58 Capacitor 201 0.01 F Digi-Key Corporation 445-1796-1-ND 4 4 C39, C56, C64, C65 Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2 5 1 C51 Capacitor 805 10 F Digi-Key Corporation 490-1717-1-ND 6 1 CR1 Diode SOT23M5 Digi-Key Corporation MA3X71600LCT-ND 7 1 CR2 Diode SOT23M5 Digi-Key Corporation MA3X71600LCT-ND 8 20
E1, E2, E3, E4, E5, E6,
E9, E10, E14, E18, E19,
E20, E24, E25, E26, E27,
E30, E31, E36, E41 9 2 J1, J4 SMA SMA Digi-Key Corporation ARFX1231-ND 10 1 L1 Inductor 0603A 10 nH Coilcraft, Inc. 0603CS-10NXGBU 11 3 L3, L4, L5 EMIFIL® BLM31PG500SN1L 1206MIL Mouser Electronics 81-BLM31P500S 12 1 P4 PJ-002A PJ-002A Digi-Key Corporation CP-002A-ND 13 1 P7 Header C40MS Samtec, Inc. TSW-120-08-L-D-RA 14 1 R3 Resistor 402 3.74 kΩ Digi-Key Corporation P3.74KLCT-ND 15 1 R8 Resistor 402 50 Ω Digi-Key Corporation P49.9LCT-ND 16 4 R10, R19, R39, L2 Resistor 402 0 Ω Digi-Key Corporation P0.0JCT-ND 17 1 R11 BRES402 402 1 kΩ Digi-Key Corporation P1.0KLCT-ND 18 2 R28, R35 Resistor 402 33 Ω Digi-Key Corporation P33JCT-ND 19 2 RZ4, RZ5 Resistor array 16PIN 22 Ω Digi-Key Corporation 742C163220JCT-ND 20 1 U1 AD9445BSVZ-125 SV-100-3 Analog Devices, Inc. AD9445BSVZ-125 21 1 U14 ADP3338-5
22 2 U3, U7 ADP3338-3.3 SOT-223HS Analog Devices, Inc. ADP3338-3.3 23 1 U8 SN75LVDT386 TSSOP64 Arrow Electronics, Inc. SN75LVDT386DGG 24 1 U15 SN75LVDT390 SOIC16PW Arrow Electronics, Inc. SN75LVDT390PW 25 2 T1, T2 Balun transformer SM-22 M/A-COM ETC-1-1-13 26 1 R5 Resistor 402 36 Ω Digi-Key Corporation P49.9LCT-ND 27 1 T3 Transformer ADT1-1WT Mini-Circuits ADT1-1WT 28 2 C1, C44, C55
1
MTHOLE6 MTHOLE6 Balun transformer SM-22 M/A-COM ETC1-1-13
1
Term strip PTMICRO4 Newark Electronics
Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
Capacitor 402 0.1 F Digi-Key Corporation PCC2146CT-ND
Header EHOLE Mouser Electronics 517-6111TG
SOT-
Analog Devices, Inc. ADP3338-5
223HS
1
Capacitor TAJD 10 F Digi-Key Corporation 478-1699-2
Rev. 0 | Page 35 of 40
AD9445
Item Qty. Reference Designator Description Package Value Manufacturer MFG_PART_NO
29 23
C13, C14, C16, C17, C18, C19, C29, C31, C36, C37, C41, C45, C49, C61, C69, C70, C72, C73, C75, C93,
C108, C109, C110 30 1 C98 31 E15 32 J5 33 P6 34 2 R1, R2 35 3 R5, R7, R9 36 1 U2
1
1
1
1
1
1
1
37 4 H1, H2, H3, H4 38 2 R4, R6 39 1 T5 40 2 P21, P22
1
Parts not populated.
1
1
1
1
1
CAP402 402 XX
Capacitor 805 10 F Digi-Key Corporation 409-1717-1-ND Header EHOLE Mouser Electronics 517-6111TG SMA SMA Digi-Key Corporation ARFX1231-ND Header C40MS Samtec, Inc. TSW-120-08-L-D-RA BRES402 402 XX BRES402 402 XX ECLOSC DIP4(14) MTHOLE6 MTHOLE6 Resistor 402 36 Digi-Key Corporation P36JCT-ND Transformer ADT1-1WT Mini-Circuits ADT1-1WT Term strip PTMICRO4 Newark Electronics
Rev. 0 | Page 36 of 40
AD9445

OUTLINE DIMENSIONS

0.75
0.60
0.45
1.20
MAX
16.00 BSC SQ
1
PIN 1
14.00 BSC SQ
76100
76 100
75
75
1
1.05
1.00
0.95
0.15
SEATING
0.05
PLANE
VIEW A
ROTATED 90° CCW
BOTTO M V IEW
0.50 BSC
LEAD PITCH
EXPOSED
PAD
(PINS UP)
0.27
0.22
0.17
TOP VIEW
(PINS DOWN)
0° MIN
0.20
0.09 7°
3.5° 0°
0.08 MAX COPLANARITY
NOTES
1. CENTER FIGURES ARE TY P ICAL UNLESS O THERWISE NOTED.
2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEATAND ENSURE RELIABLE OPE RATION OF THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EX P OSED ON THE BO TTOM OF THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT I S RE COMMENDED THAT NO PCB SIGNAL TRACES OR VI AS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE DEVICE WHI CH MAY BE BENEFICIAL IN HIGH TEMPE RATURE ENVIRONM E NTS.
25
26 49
VIEW A
COMPLIANT TO JEDEC STANDARDS MS-026-AE D- HD
50
51
9.50 SQ
25
2650
Figure 71. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]
(SV-100-3)
Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range Package Description Package Option
AD9445BSVZ-125 –40°C to +85°C 100-Lead TQFP_EP SV-100-3 AD9445BSVZ-105 –40°C to +85°C 100-Lead TQFP_EP SV-100-3 AD9445-IF-LVDS/PCB AD9445-125 IF (>100 MHz) LVDS Mode Evaluation Board AD9445-BB-LVDS/PCB AD9445-125 Baseband (<100 MHz) LVDS Mode Evaluation Board
1
Z = Pb-free part.
1
1
Rev. 0 | Page 37 of 40
AD9445
NOTES
Rev. 0 | Page 38 of 40
AD9445
NOTES
Rev. 0 | Page 39 of 40
AD9445
NOTES
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05489–0–10/05(0)
Rev. 0 | Page 40 of 40
Loading...