Analog Devices AD9260 Datasheet

High-Speed Oversampling CMOS
ADC with 16-Bit Resolution
a
FEATURES Monolithic 16-Bit, Oversampled A/D Converter 8 Oversampling Mode, 20 MSPS Clock
2.5 MHz Output Word Rate
1.01 MHz Signal Passband w/0.004 dB Ripple Signal-to-Noise Ratio: 88.5 dB Total Harmonic Distortion: –96 dB Spurious Free Dynamic Range: 100 dB Input Referred Noise: 0.6 LSB Selectable Oversampling Ratio: 1, 2, 4, 8 Selectable Power Dissipation: 150 mW to 585 mW 85 dB Stopband Attenuation
0.004 dB Passband Ripple Linear Phase Single +5 V Analog Supply, +5 V/+3 V Digital Supply Synchronize Capability for Parallel ADC Interface Twos-Complement Output Data 44-Lead MQFP
at a 2.5 MHz Output Word Rate
AD9260
FUNCTIONAL BLOCK DIAGRAM
VINA
VINB
REF TOP
REF
BOTTOM
COMMON
MODE
VREF
SENSE
REFCOM
AVSS
AVDD
MULTIBIT
SIGMA-DELTA
MODULATOR
AD9260
REFERENCE
BUFFER
BANDGAP
REFERENCE
AVDD
AVSS
RESET/
AVSS
AVDD
12-BIT: 20MHz
16-BIT: 10MHz
16-BIT: 5MHz
16-BIT: 2.5MHz
BIAS
CIRCUIT
SYNC
DVSS DVDD
DIGITAL
DEMODULATOR
STAGE 1:2X
DECIMATION
FILTER
STAGE 2:2X
DECIMATION
FILTER
STAGE 3:2X
DECIMATION
FILTER
CLOCK
BUFFER
MODE
REGISTER
DRVSS
DRVDD
OUTPUT REGISTER
OUTPUT MODE MULTIPLEXER
OTR
BIT1–BIT16
DAV
READ
PRODUCT DESCRIPTION
The AD9260 is a 16-bit, high-speed oversampled analog-to­digital converter (ADC) that offers exceptional dynamic range over a wide bandwidth. The AD9260 is manufactured on an advanced CMOS process. High dynamic range is achieved with an oversampling ratio of 8× through the use of a proprietary technique that combines the advantages of sigma-delta and pipeline converter technologies.
The AD9260 is a switched-capacitor ADC with a nominal full­scale input range of 4 V. It offers a differential input with 60 dB of common-mode rejection of common-mode signals. The sig­nal range of each differential input is ±1 V centered on a 2.0 V common-mode level.
The on-chip decimation filter is configured for maximum per­formance and flexibility. A series of three half-band FIR filter stages provide 8× decimation filtering with 85 dB of stopband attenuation and 0.004 dB of passband ripple. An onboard digi­tal multiplexer allows the user to access data from the various stages of the decimation filter.
The on-chip programmable reference and reference buffer am­plifier are configured for maximum accuracy and flexibility. An external reference can also be chosen to suit the user’s specific dc accuracy and drift requirements.
MODECLKBIAS ADJUST
CS
The AD9260 operates on a single +5 V supply, typically con­suming 585 mW of power. A power scaling circuit is provided allowing the AD9260 to operate at power consumption levels as low as 150 mW at reduced clock and data rates. The AD9260 is available in a 44-lead MQFP package and is specified to operate over the industrial temperature range.
PRODUCT HIGHLIGHTS
The AD9260 is fabricated on a very cost effective CMOS process. High-speed, precision mixed-signal analog circuits are combined with high-density digital filter circuits.
The AD9260 offers a complete single-chip 16-bit sampling ADC with a 2.5 MHz output data rate in a 44-lead MQFP.
Selectable Internal Decimation Filtering—The AD9260 provides a high-performance decimation filter with 0.004 dB passband ripple and 85 dB of stopband attenuation. The filter is configurable with options for 1×, 2×, 4×, and 8× decimation.
Power Scaling—The AD9260 consumes a low 585 mW of power at 16-bit resolution and 2.5 MHz output data rate. Its power can be scaled down to as low as 150 mW at reduced clock rates.
Single Supply— Both of the analog and digital portions of the AD9260 can operate off of a single +5 V supply simplifying system power supply design. The digital logic will also accom­modate a single +3 V supply for reduced power.
REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2000
AD9260–SPECIFICATIONS
CLOCK INPUT FREQUENCY RANGE
Parameter—Decimation Factor (N) AD9260 (8) AD9260 (4) AD9260 (2) AD9260 (1) Units
CLOCK INPUT (Modulator Sample Rate, f
)1111kHz min
CLOCK
20 20 20 20 MHz max
OUTPUT WORD RATE (FS = f
/N) 0.125 0.250 0.500 1 kHz min
CLOCK
2.5 5 10 20 MHz max
Specifications subject to change without notice
(AVDD = +5 V, DVDD = +3 V, DRVDD = +3 V, f
DC SPECIFICATIONS
P
arameter—Decimation Factor (N) AD9260 (8) AD9260 (4) AD9260 (2) AD9260 (1) Units
unless otherwise noted, R
BIAS
= 2 k)
= 20 MSPS, V
CLOCK
= +2.5 V, Input CML = 2.0 V T
REF
MIN
to T
RESOLUTION 16 16 16 12 Bits min
INPUT REFERRED NOISE (TYP)
1.0 V Reference 1.40 2.4 6.0 1.3 LSB rms typ
2.5 V Reference
1
0.68 (90.6) 1.2 (86) 3.7 (76) 1.0 (63.2) LSB rms typ (dB typ)
ACCURACY
Integral Nonlinearity (INL) ± 0.75 ± 0.75 ± 0.75 ± 0.3 LSB typ Differential Nonlinearity (DNL) ±0.50 ± 0.50 ± 0.50 ± 0.25 LSB typ No Missing Codes 16 16 16 12 Bits Guaranteed Offset Error 0.9 (0.5) (0.5) (0.5) (0.5) % FSR max (typ @ +25°C) Gain Error Gain Error
2
3
2.75 (0.66) (0.66) (0.66) (0.66) % FSR max (typ @ +25°C)
1.35 (0.7) (0.7) (0.7) (0.7) % FSR max (typ @ +25°C)
TEMPERATURE DRIFT
Offset Error 2.5 2.5 2.5 2.5 ppm/°C typ Gain Error Gain Error
2
3
22 22 22 22 ppm/°C typ
7.0 7.0 7.0 7.0 ppm/°C typ
MAX
POWER SUPPLY REJECTION
AVDD, DVDD, DRVDD (+5 V ± 0.25 V) 0.06 0.06 0.06 0.06 % FSR max
ANALOG INPUT
Input Span
= 1.0 V 1.6 1.6 1.6 1.6 V p-p Diff. max
V
REF
= 2.5 V 4.0 4.0 4.0 4.0 V p-p Diff. max
V
REF
Input (VINA or VINB) Range +0.5 +0.5 +0.5 +0.5 V min
+AVDD – 0.5 +AVDD – 0.5 +AVDD – 0.5 +AVDD – 0.5 V max
Input Capacitance 10.2 10.2 10.2 10.2 pF typ
INTERNAL VOLTAGE REFERENCE
Output Voltage (1 V Mode) 1111 V typ Output Voltage Error (1 V Mode) ± 14 ±14 ± 14 ±14 mV max Output Voltage (2.5 V Mode) 2.5 2.5 2.5 2.5 V typ Output Voltage Error (2.5 V Mode) ± 35 ± 35 ± 35 ± 35 mV max Load Regulation
4
1 V REF 0.5 0.5 0.5 0.5 mV max
2.5 V REF 2.0 2.0 2.0 2.0 mV max
REFERENCE INPUT RESISTANCE 8888 k
–2–
REV. B
P
arameter—Decimation Factor (N) AD9260 (8) AD9260 (4) AD9260 (2) AD9260 (1) Units
POWER SUPPLIES
Supply Voltages
AVDD +5 +5 +5 +5 V (± 5%) DVDD and DRVDD +5.5 +5.5 +5.5 +5.5 V max
+2.7 +2.7 +2.7 +2.7 V min
Supply Current
IAVDD 115 115 115 115 mA typ
134 mA max
IDVDD 12.5 10.3 6.5 2.4 mA typ
3.5 mA max
IDRVDD 0.450 0.850 1.7 2.6 mA typ
POWER CONSUMPTION 613 608 600 585 mW typ
630 mW max
NOTES
1
VINA and VINB Connect to DUT CML.
2
Including Internal 2.5 V reference.
3
Excluding Internal 2.5 V reference.
4
Load regulation with 1 mA load Current (in addition to that required by AD9260).
Specifications subject to change without notice.
AC SPECIFICATIONS
(AVDD = +5 V, DVDD = +3 V, DRVDD = +3 V, f unless otherwise noted, R
= 2 k)
BIAS
= 20 MSPS, V
CLOCK
= +2.5 V, Input CML = 2.0 V T
REF
Parameter—Decimation Factor (N) AD9260(8) AD9260(4) AD9260(2) AD9260(1) Units
DYNAMIC PERFORMANCE
INPUT TEST FREQUENCY: 100 kHz (typ)
Signal-to-Noise Ratio (SNR)
Input Amplitude = –0.5 dBFS 88.5 82 74 63 dB typ Input Amplitude = –6.0 dBFS 82.5 78 68 58 dB typ
SNR and Distortion (SINAD)
Input Amplitude = –0.5 dBFS 87.5 82 74 63 dB typ Input Amplitude = –6.0 dBFS 82 77.5 69 58 dB typ
Total Harmonic Distortion (THD)
Input Amplitude = –0.5 dBFS –96 –96 –97 –98 dB typ Input Amplitude = –6.0 dBFS –93 –98 –96 –98 dB typ
Spurious Free Dynamic Range (SFDR)
Input Amplitude = –0.5 dBFS 100 98 98 88 dB typ Input Amplitude = –6.0 dBFS 94 100 94 84 dB typ
INPUT TEST FREQUENCY: 500 kHz
Signal-to-Noise Ratio (SNR)
Input Amplitude = –0.5 dBFS 86.5 82 74 63 dB typ
80.5 dB min
Input Amplitude = –6.0 dBFS 82.5 77 68 58 dB typ
SNR and Distortion (SINAD)
Input Amplitude = –0.5 dBFS 86.0 81 74 63 dB typ
80.0 dB min
Input Amplitude = –6.0 dBFS 82.0 77 68 58 dB typ
Total Harmonic Distortion (THD)
Input Amplitude = –0.5 dBFS –97.0 –92 –89 86 dB typ
–90.0 dB max
Input Amplitude = –6.0 dBFS –95.5 –96 –89 86 dB typ
Spurious Free Dynamic Range (SFDR)
Input Amplitude = –0.5 dBFS 99.0 92 91 88 dB typ
90.0 dB max
Input Amplitude = –6.0 dBFS 98 100 91 82 dB typ
AD9260
to T
MIN
MAX
–3–REV. B
AD9260–SPECIFICATIONS
AC SPECIFICATIONS (Continued)
Parameter—Decimation Factor (N) AD9260 (8) AD9260 (4) AD9260 (2) AD9260 (1) Units
DYNAMIC PERFORMANCE (Continued)
INPUT TEST FREQUENCY: 1.0 MHz (typ)
Signal-to-Noise Ratio (SNR)
Input Amplitude = –0.5 dBFS 85 82 74 63 dB typ Input Amplitude = –6.0 dBFS 80 76 68 58 dB typ
SNR and Distortion (SINAD)
Input Amplitude = –0.5 dBFS 84.5 81 74 63 dB typ Input Amplitude = –6.0 dBFS 80 76 69 58 dB typ
Total Harmonic Distortion (THD)
Input Amplitude = –0.5 dBFS –102 –96 –82 –79 dB typ Input Amplitude = –6.0 dBFS –96 –94 –84 –77 dB typ
Spurious Free Dynamic Range (SFDR)
Input Amplitude = –0.5 dBFS 105 98 83 80 dB typ Input Amplitude = –6.0 dBFS 98 96 87 80 dB typ
INPUT TEST FREQUENCY: 2.0 MHz (typ)
Signal-to-Noise Ratio (SNR)
Input Amplitude = –0.5 dBFS 82 74 63 dB typ Input Amplitude = –6.0 dBFS 76 68 58 dB typ
SNR and Distortion (SINAD)
Input Amplitude = –0.5 dBFS 81 73 62 dB typ Input Amplitude = –6.0 dBFS 76 69 58 dB typ
Total Harmonic Distortion (THD)
Input Amplitude = –0.5 dBFS –101 –80 –75 dB typ Input Amplitude = –6.0 dBFS –95 –80 –76 dB typ
Spurious Free Dynamic Range (SFDR)
Input Amplitude = –0.5 dBFS 104 80 78 dB typ Input Amplitude = –6.0 dBFS 100 83 79 dB typ
INPUT TEST FREQUENCY: 5.0 MHz (typ)
Signal-to-Noise Ratio (SNR)
Input Amplitude = –0.5 dBFS 59 dB typ Input Amplitude = –6.0 dBFS 57 dB typ
SNR and Distortion (SINAD)
Input Amplitude = –0.5 dBFS 58 dB typ Input Amplitude = –6.0 dBFS 57 dB typ
Total Harmonic Distortion (THD)
Input Amplitude = –0.5 dBFS –58 dB typ Input Amplitude = –6.0 dBFS –67 dB typ
Spurious Free Dynamic Range (SFDR)
Input Amplitude = –0.5 dBFS 59 dB typ Input Amplitude = –6.0 dBFS 70 dB typ
INTERMODULATION DISTORTION
1 = 475 kHz, fIN2 = 525 kHz –93 –91 –91 83 dBFS typ
f
IN
fIN1 = 950 kHz, fIN2 = 1.050 MHz –95 –86 –85 83 dBFS typ
DYNAMIC CHARACTERISTICS
Full Power Bandwidth 75 75 75 75 MHz typ Small Signal Bandwidth (AIN = –20 dBFS) 75 75 75 75 MHz typ Aperture Jitter 2222ps rms typ
Specifications subject to change without notice.
–4–
REV. B
AD9260
DIGITAL FILTER CHARACTERISTICS
Parameter AD9260 Units
8× DECIMATION (N = 8)
Passband Ripple 0.00125 dB max Stopband Attenuation 82.5 dB min Passband 0 MHz min
0.605 × (f
Stopband 1.870 × (f
18.130 × (f
Passband/Transition Band Frequency
(–0.1 dB Point) 0.807 × (f
(–3.0 dB Point) 1.136 × (f Absolute Group Delay Group Delay Variation 0 µs max Settling Time (to ±0.0007%)
1
1
13.55 × (20 MHz/f
24.2 × (20 MHz/f
4× DECIMATION (N = 4)
Passband Ripple 0.001 dB max Stopband Attenuation 82.5 dB min Passband 0 MHz min
1.24 × (f
Stopband 3.75 × (f
16.25 × (f
Passband/Transition Band Frequency
(–0.1 dB Point) 1.61 × (f
(–3.0 dB Point) 2.272 × (f Absolute Group Delay Group Delay Variation 0 µs max Settling Time (to ±0.0007%)
1
1
2.90 × (20 MHz/f
5.05 × (20 MHz/f
2× DECIMATION (N = 2)
Passband Ripple 0.0005 dB max Stopband Attenuation 85.5 dB min Passband 0 MHz min
2.491 × (f
Stopband 7.519 × (f
12.481 × (f
Passband/Transition Band Frequency
(–0.1 dB Point) 3.231 × (f
(–3.0 dB Point) 4.535 × (f Absolute Group Delay Group Delay Variation 0 µs max Settling Time (to ±0.0007%)
1
1
0.80 × (20 MHz/f
1.40 × (20 MHz/f
1× DECIMATION (N = 1)
Propagation Delay: t
PROP
13 ns max
Absolute Group Delay (225 × (20 MHz/f
NOTES
1
To determine overall Absolute Group Delay and/or Settling Time inclusive of delay from the sigma-delta modulator, add Absolute Group Delay and/or Settling Time pertaining to specific decimation mode to the Absolute Group Delay specified in 1 × decimation.
Specifications subject to change without notice.
/20 MHz) MHz max
CLOCK
/20 MHz) MHz min
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz min
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz min
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz max
CLOCK
/20 MHz) MHz max
CLOCK
) µs max
CLOCK
) µs max
CLOCK
) µs max
CLOCK
) µs max
CLOCK
) µs max
CLOCK
) µs max
CLOCK
)) + t
CLOCK
PROP
ns max
–5–REV. B
)
AD9260
–Digital Filter Characteristics
0
20
40
60
MAGNITUDE dB
80
100
120
0 1.0
0.2 0.4 0.6 0.8 FREQUENCY (NORMALIZED TO
Figure 1a. 8× FIR Filter Frequency Response
0
20
40
60
1.2
1.0
0.8
0.6
0.4
0.2
0
NORMALIZED OUTPUT RESPONSE
0.2
0.4
0 300200100
CLOCK PERIODS – RELATIVE TO CLK
400 500
Figure 1b. 8× FIR Filter Impulse Response
1.0
0.8
0.6
0.4
MAGNITUDE – dB
80
100
120
0.2 0.4 0.6 0.8
0 1.0
FREQUENCY (NORMALIZED TO )
Figure 2a. 4× FIR Filter Frequency Response
0
20
40
60
MAGNITUDE dB
80
100
120
0.2 0.4 0.6 0.8
0 1.0
FREQUENCY (NORMALIZED TO )
Figure 3a. 2× FIR Filter Frequency Response
1.2
1.2
0.2
0
NORMALIZED OUTPUT RESPONSE
–0.2
10 100 11020 30 40 50 60 70 80 90
0
CLOCK PERIODS – RELATIVE TO CLK
Figure 2b. 4× FIR Filter Impulse Response
1.0
0.8
0.6
0.4
0.2
0
NORMALIZED OUTPUT RESPONSE
–0.2
0
5
CLOCK PERIODS – RELATIVE TO CLK
Figure 3b. 2× FIR Filter Impulse Response
201510
–6–
REV. B
AD9260
Table I. Integer Filter Coefficients for First Stage Decimation Filter (23-Tap Halfband FIR Filter)
Lower Upper Integer Coefficient Coefficient Value
H(1) H(23) –1 H(2) H(22) 0 H(3) H(21) 13 H(4) H(20) 0 H(5) H(19) –66 H(6) H(18) 0 H(7) H(17) 224 H(8) H(16) 0 H(9) H(15) –642 H(10) H(14) 0 H(11) H(13) 2496 H(12) 4048
Table II. Integer Filter Coefficients for Second Stage Decima­tion Filter (43-Tap Halfband FIR Filter)
Lower Upper Integer Coefficient Coefficient Value
H(1) H(43) 3 H(2) H(42) 0 H(3) H(41) –12 H(4) H(40) 0 H(5) H(39) 35 H(6) H(38) 0 H(7) H(37) –83 H(8) H(36) 0 H(9) H(35) 172 H(10) H(34) 0 H(11) H(33) –324 H(12) H(32) 0 H(13) H(31) 572 H(14) H(30) 0 H(15) H(29) –976 H(16) H(28) 0 H(17) H(27) 1680 H(18) H(26) 0 H(19) H(25) –3204 H(20) H(24) 0 H(21) H(23) 10274 H(22) 16274
NOTE: The composite filter undecimated coefficients (i.e., impulse response) in the 4× decimation mode can be determined by convolving the first stage filter taps with a zero stuffed version of the second stage filter taps (i.e., insert one zero be­tween samples). Similarly, the composite filter coefficients in the 8× decimation mode can be determined by convolving the taps of the composite 4× decimation mode (as previously deter­mined) with a zero stuffed version of the third stage filter taps (i.e., insert three zeros between samples).
Table III. Integer Filter Coefficients for Third Stage Decima­tion Filter (107-Tap Halfband FIR Filter)
Lower Upper Integer Coefficient Coefficient Value
H(1) H(107) –1 H(2) H(106) 0 H(3) H(105) 2 H(4) H(104) 0 H(5) H(103) –2 H(6) H(102) 0 H(7) H(101) 3 H(8) H(100) 0 H(9) H(99) –3 H(10) H(98) 0 H(11) H(97) 1 H(12) H(96) 0 H(13) H(95) 3 H(14) H(94) 0 H(15) H(93) –12 H(16) H(92) 0 H(17) H(91) 27 H(18) H(90) 0 H(19) H(89) –50 H(20) H(88) 0 H(21) H(87) 85 H(22) H(86) 0 H(23) H(85) –135 H(24) H(84) 0 H(25) H(83) 204 H(26) H(82) 0 H(27) H(81) –297 H(28) H(80) 0 H(29) H(79) 420 H(30) H(78) 0 H(31) H(77) –579 H(32) H(76) 0 H(33) H(75) 784 H(34) H(74) 0 H(35) H(73) –1044 H(36) H(72) 0 H(37) H(71) 1376 H(38) H(70) 0 H(39) H(69) –1797 H(40) H(68) 0 H(41) H(67) 2344 H(42) H(66) 0 H(43) H(65) –3072 H(44) H(64) 0 H(45) H(63) 4089 H(46) H(62) 0 H(47) H(61) –5624 H(48) H(60) 0 H(49) H(59) 8280 H(50) H(58) 0 H(51) H(57) –14268 H(52) H(56) 0 H(53) H(55) 43520 H(54) 68508
–7–REV. B
AD9260–SPECIFICATIONS
DIGITAL SPECIFICATIONS
(AVDD = +5 V, DVDD = +5 V, T
MIN
to T
unless otherwise noted)
MAX
Parameter AD9260 Units
1
CLOCK
AND LOGIC INPUTS
High-Level Input Voltage
(DVDD = +5 V) +3.5 V min (DVDD = +3 V) +2.1 V max
Low-Level Input Voltage
(DVDD = +5 V) +1.0 V min
(DVDD = +3 V) +0.9 V max High-Level Input Current (V Low-Level Input Current (V
= DVDD) ± 10 µA max
IN
= 0 V) ± 10 µA max
IN
Input Capacitance 5 pF typ
LOGIC OUTPUTS (with DRVDD = 5 V)
High-Level Output Voltage (I High-Level Output Voltage (I Low-Level Output Voltage Low-Level Output Voltage (I
= 50 µA) +4.5 V min
OH
= 0.5 mA) +2.4 V min
OH
2
(IOL = 0.3 mA) +0.4 V max
= 50 µA) +0.1 V max
OL
Output Capacitance 5 pF typ
LOGIC OUTPUTS (with DRVDD = 3 V)
High-Level Output Voltage (I
= 50 µA) +2.4 V min
OH
Low-Level Output Voltage (IOL = 50 µA) +0.7 V max
NOTES
1
Since CLK is referenced to AVDD, +5 V logic input levels only apply.
2
The AD9260 is not guaranteed to meet VOL = 0.4 V max for standard TTL load of IOL = 1.6 mA.
Specifications subject to change without notice.
ANALOG INPUT
INPUT CLOCK
DATA OUTPUT
DAV
READ
CS
S1
t
CH
t
H
INPUT CLOCK
RESET
DAV
S2
t
C
t
CL
t
t
DAV
DS
t
OE
t
OD
t
DI
Figure 4a. Timing Diagram
t
RES-DAV
t
CLK-DAV
Figure 4b.
RESET
Timing Diagram
–8–
REV. B
AD9260
WARNING!
ESD SENSITIVE DEVICE
SWITCHING SPECIFICATIONS
(AVDD = +5 V, DVDD = +5 V, CL = 20 pF, T
MIN
to T
unless otherwise noted)
MAX
Parameters Symbol AD9260 Units
Clock Period t Data Available (DAV) Period t Data Invalid t Data Setup Time t Clock Pulsewidth High t Clock Pulsewidth Low t Data Hold Time t RESET to DAV Delay t CLOCK to DAV Delay t Three-State Output Disable Time t Three-State Output Enable Time t
Specifications subject to change without notice.
C
DAV
DI
DS
CH
CL
H
RES–DAV
CLK–DAV
OD
OE
ABSOLUTE MAXIMUM RATINGS*
With Respect
Parameter to Min Max Units
AVDD AVSS –0.3 +6.5 V DVDD DVSS –0.3 +6.5 V AVSS DVSS –0.3 +0.3 V AVDD DVDD –6.5 +6.5 V DRVDD DRVSS –0.3 +6.5 V DRVSS AVSS –0.3 +0.3 V REFCOM AVSS –0.3 +0.3 V CLK, MODE, READ,
Model Range Description Option*
AD9260AS –40°C to +85°C 44-Lead MQFP S-44 AD9260EB Evaluation Board
*S = Metric Quad Flatpack.
THERMAL CHARACTERISTICS
Thermal Resistance 44-Lead MQFP
θ
= 53.2°C/W
JA
= 19°C/W
θ
JC
50 ns min tC × Mode ns min 40% t t
–tH–t
DAV
DAV
DI
ns max ns min
22.5 ns min
22.5 ns min
3.5 ns min 10 ns typ 15 ns typ 8 ns typ 45 ns typ
ORDERING GUIDE
Temperature Package Package
CS, RESET DVSS 0.3 DVDD + 0.3 V
Digital Outputs DRVSS –0.3 DRVDD
+ 0.3 V
VINA, VINB,
CML, BIAS AVSS –0.3 AVDD VREF AVSS –0.3 AVDD SENSE AVSS –0.3 AVDD
+ 0.3 V + 0.3 V
+ 0.3 V CAPB, CAPT AVSS –0.3 AVDD + 0.3 V Junction Temperature +150 °C Storage Temperature –65 +150 °C Lead Temperature
(10 sec) +300 °C
*Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9260 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
–9–REV. B
AD9260
DEFINITIONS OF SPECIFICATION
INTEGRAL NONLINEARITY (INL)
INL refers to the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs 1/2 LSB before the first code transition. Positive full scale is defined as a level 1 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.
DIFFERENTIAL NONLINEARITY (DNL, NO MISSING CODES)
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 14-bit resolution indicates that all 16384 codes, respectively, must be present over all operating ranges.
NOTE: Conventional INL and DNL measurements dont really apply to Σ∆ converters: the DNL looks continually better if longer data records are taken. For the AD9260, INL and DNL numbers are given as representative.
ZERO ERROR
The major carry transition should occur for an analog value 1/2 LSB below VINA = VINB. Zero error is defined as the deviation of the actual transition from that point.
GAIN ERROR
The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.
TEMPERATURE DRIFT
The temperature drift for zero error and gain error specifies the maximum change from the initial (+25°C) value to the value at
or T
T
MIN
POWER SUPPLY REJECTION
MAX
.
The specification shows the maximum change in full scale from the value with the supply at the minimum limit to the value with the supply at its maximum limit.
APERTURE JITTER
Aperture jitter is the variation in aperture delay for successive samples and is manifested as noise on the input to the A/D.
SIGNAL-TO-NOISE AND DISTORTION (S/N+D, SINAD) RATIO
S/N+D is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels.
EFFECTIVE NUMBER OF BITS (ENOB)
For a sine wave, SINAD can be expressed in terms of the num­ber of bits. Using the following formula,
N = (SINAD – 1.76)/6.02
it is possible to get a measure of performance expressed as N, the effective number of bits.
Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD.
TOTAL HARMONIC DISTORTION (THD)
THD is the ratio of the rms sum of the first six harmonic com­ponents to the rms value of the measured input signal and is expressed as a percentage or in decibels.
SIGNAL-TO-NOISE RATIO (SNR)
SNR is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels.
SPURIOUS FREE DYNAMIC RANGE (SFDR)
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.
TWO-TONE SFDR
The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product. May be reported in dBc (i.e., degrades as signal level is lowered), or in dBFS (always related back to converter full scale).
–10–
REV. B
PIN CONFIGURATION
AD9260
VINB
42
BIT11
NC
VINA
CML
40 39 3841
AD9260
TOP VIEW
(Not to Scale)
BIT8
BIT9
BIT10
AVSS
BIT7
CAPT
BIT6
CAPB
BIT5
BIAS
BIT4
MODE
33
32
31
30
29
28
27
26
25
24
23
BIT3
REFCOM
VREF
SENSE
RESET
AVSS
AVDD
CS
DAV
OTR
BIT1 (MSB)
BIT2
DVSS
AVSS
DVDD
AVDD
DRVSS
DRVDD
CLK
READ
(LSB) BIT16
BIT15
BIT14
NC
AVDD
4344 36 35 3437
1
PIN 1 IDENTIFIER
2
3
4
5
6
7
8
9
10
11
12 13 14 15 16 17 18 19 20 21 2 2
BIT12
BIT13
NC = NO CONNECT
PIN FUNCTION DESCRIPTIONS
Pin No. Name Description
1 DVSS Digital Ground. 2, 29, 38 AVSS Analog Ground. 3 DVDD +3 V to +5 V Digital Supply. 4, 28, 44 AVDD +5 V Analog Supply. 5 DRVSS Digital Output Driver Ground. 6 DRVDD +3 V to +5 V Digital Output Driver Supply. 7 CLK Clock Input. 8 READ Part of DSP Interface—Pull Low to Disable Output Bits. 9 BIT16 Least Significant Data Bit (LSB). 10–23 BIT15–BIT2 Data Output Bit. 24 BIT1 Most Significant Data Bit (MSB). 25 OTR Out of Range—Set When Converter or Filter Overflows. 26 DAV Data Available. 27 CS Chip Select (CS): Active LOW. 30 RESET RESET: Active LOW. 31 SENSE Reference Amplifier SENSE: Selects REF Level. 32 VREF Input Span Select Reference I/O. 33 REFCOM Reference Common. 34 MODE Mode Select—Selects Decimation Mode. 35 BIAS Power Bias. 36 CAPB Noise Reduction Pin—Decouples Reference Level. 37 CAPT Noise Reduction Pin—Decouples Reference Level. 39 CML Common-Mode Level (AVDD/2.5). 40, 43 NC No Connect (Ground for Shielding Purposes). 41 VINA Analog Input Pin (+). 42 VINB Analog Input Pin (–).
–11–REV. B
Loading...
+ 25 hidden pages