Analog Devices AD9254 Service Manual

14-Bit, 150 MSPS, 1.8 V
A

FEATURES

1.8 V analog supply operation
1.8 V to 3.3 V output supply SNR = 71.8 dBc (72.8 dBFS) to 70 MHz input SFDR = 84 dBc to 70 MHz input Low power: 430 mW @ 150 MSPS Differential input with 650 MHz bandwidth On-chip voltage reference and sample-and-hold amplifier DNL = ±0.4 LSB Flexible analog input: 1 V p-p to 2 V p-p range Offset binary, Gray code, or twos complement data format Clock duty cycle stabilizer Data output clock Serial port control
Built-in selectable digital test pattern generation Programmable clock and data alignment

APPLICATIONS

Ultrasound equipment IF sampling in communications receivers
CDMA2000, WCDMA, TD-SCDMA, and WiMax Battery-powered instruments Hand-held scopemeters Low cost digital oscilloscopes
Macro, micro, and pico cell infrastructure

GENERAL DESCRIPTION

The AD9254 is a monolithic, single 1.8 V supply, 14-bit, 150 MSPS analog-to-digital converter (ADC), featuring a high performance sample-and-hold amplifier (SHA) and on-chip voltage reference. The product uses a multistage differential pipeline architecture with output error correction logic to provide 14-bit accuracy at 150 MSPS data rates and guarantees no missing codes over the full operating temperature range.
The wide bandwidth, truly differential SHA allows a variety of user-selectable input ranges and offsets, including single-ended applications. It is suitable for multiplexed systems that switch full-scale voltage levels in successive channels and for sampling single-channel inputs at frequencies well beyond the Nyquist rate. Combined with power and cost savings over previously available ADCs, the AD9254 is suitable for applications in communications, imaging, and medical ultrasound.
A differential clock input controls all internal conversion cycles. A duty cycle stabilizer (DCS) compensates for wide variations in the clock duty cycle while maintaining excellent overall ADC performance.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Analog-to-Digital Converter
AD9254

FUNCTIONAL BLOCK DIAGRAM

MODE
SELECT
DRVDD
A/D
3
VDD
AD9254
VIN+
VIN–
REFT
REFB
VREF
SENSE
SHA
REF
SELECT
MDAC1
A/D
0.5V
AGND
8-STAGE
1 1/2-BIT PIPELINE
4
CORRECTION LOGIC
OUTPUT BUFF ERS
CLOCK
DUTY CYCLE
STABILIZER
CLK+
Figure 1.
8
15
CLK– PDWN DRGND
The digital output data is presented in offset binary, Gray code, or twos complement formats. A data output clock (DCO) is provided to ensure proper latch timing with receiving logic.
The AD9254 is available in a 48-lead LFCSP_VQ and is specified over the industrial temperature range (−40°C to +85°C).

PRODUCT HIGHLIGHTS

1. The AD9254 operates from a single 1.8 V power supply
and features a separate digital output driver supply to accommodate 1.8 V to 3.3 V logic families.
2. The patented SHA input maintains excellent performance
for input frequencies up to 225 MHz.
3. The clock DCS maintains overall ADC performance over a
wide range of clock pulse widths.
4. A standard serial port interface supports various product
features and functions, such as data formatting (offset binary, twos complement, or Gray coding), enabling the clock DCS, power-down, and voltage reference mode.
5. The AD9254 is pin-compatible with the AD9233, allowing
a simple migration from 12 bits to 14 bits.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.
OR
DCO
D13 (MSB)
D0 (LSB)
SCLK/DFS
SDIO/DCS
CSB
06216-001
AD9254
TABLE OF CONTENTS
Features.............................................................................................. 1
Timing ......................................................................................... 20
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Product Highlights ........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
DC Specifications ......................................................................... 3
AC Specifications.......................................................................... 4
Digital Specifications ................................................................... 5
Switching Specifications.............................................................. 6
Timing Diagram........................................................................... 6
Absolute Maximum Ratings............................................................ 7
Thermal Resistance ...................................................................... 7
ESD Caution.................................................................................. 7
Pin Configuration and Function Descriptions............................. 8
Serial Port Interface (SPI).............................................................. 21
Configuration Using the SPI..................................................... 21
Hardware Interface..................................................................... 21
Configuration Without the SPI................................................ 21
Memory Map .................................................................................. 22
Reading the Memory Map Register Table............................... 22
Memory Map Register Table..................................................... 23
Layout Considerations................................................................... 25
Power and Ground Recommendations................................... 25
CML ............................................................................................. 25
RBIAS........................................................................................... 25
Reference Decoupling................................................................ 25
Evaluation Board............................................................................ 26
Power Supplies............................................................................ 26
Input Signals................................................................................ 26
Equivalent Circuits........................................................................... 9
Typical Performance Characteristics ........................................... 10
Theory of Operation ...................................................................... 14
Analog Input Considerations.................................................... 14
Differential Input Configurations............................................ 15
Voltage Reference....................................................................... 16
Clock Input Considerations...................................................... 17
Jitter Considerations .................................................................. 19
Power Dissipation and Standby Mode..................................... 19
Digital Outputs ........................................................................... 20

REVISION HISTORY

10/06—Revision 0: Initial Version
Output Signals ............................................................................ 26
Default Operation and Jumper Selection Settings................. 27
Alternative Clock Configurations............................................ 27
Alternative Analog Input Drive Configuration...................... 27
Schematics................................................................................... 29
Evaluation Board Layout........................................................... 34
Bill of Materials........................................................................... 37
Outline Dimensions....................................................................... 40
Ordering Guide .......................................................................... 40
Rev. 0 | Page 2 of 40
AD9254

SPECIFICATIONS

DC SPECIFICATIONS

AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS enabled, unless otherwise noted.
Table 1.
AD9254BCPZ-150
Parameter Temperature
Min Typ Max
RESOLUTION Full 14 Bits ACCURACY
No Missing Codes Full Guaranteed Offset Error Full ±0.3 ±0.8 % FSR Gain Error Full ±0.6 ±4.5 % FSR Differential Nonlinearity (DNL)
1
25°C ±0.4 LSB
Full ±1.0 LSB
Integral Nonlinearity (INL)
1
25°C ±1.5 LSB Full ±5.0 LSB TEMPERATURE DRIFT
Offset Error Full ±15 ppm/°C Gain Error Full ±95 ppm/°C
INTERNAL VOLTAGE REFERENCE
Output Voltage Error (1 V Mode) Full ±5 ±35 mV Load Regulation @ 1.0 mA Full 7 mV
INPUT REFERRED NOISE
VREF = 1.0 V 25°C 1.3 LSB rms
ANALOG INPUT
Input Span, VREF = 1.0 V Full 2 V p-p Input Capacitance
2
Full 8 pF REFERENCE INPUT RESISTANCE Full 6 kΩ POWER SUPPLIES
Supply Voltage
AVDD Full 1.7 1.8 1.9 V DRVDD Full 1.7 2.5 3.6 V
Supply Current
1
IAVDD
Full 240 260 mA
IDRVDD1(DRVDD = 1.8 V) Full 11 mA IDRVDD1 (DRVDD = 3.3 V) Full 23 mA
POWER CONSUMPTION
DC Input Full 430 470 mW Sine Wave Input1 (DRVDD = 1.8 V) Full 450 mW Sine Wave Input1 (DRVDD = 3.3 V) Full 506 mW Standby Power Power-Down Power Full 1.8 mW
1
Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.
2
Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.
3
Standby power is measured with a dc input, the CLK pin inactive (set to AVDD or AGND).
3
Full 40 mW
Unit
Rev. 0 | Page 3 of 40
AD9254

AC SPECIFICATIONS

AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS enabled, unless otherwise noted.
Table 2.
Parameter
1
Temperature
SIGNAL-TO-NOISE-RATIO (SNR)
fIN = 2.4 MHz 25°C 72.0 dBc fIN = 70 MHz 25°C 71.8 dBc Full 70.0 dBc fIN = 100 MHz 25°C 71.6 dBc fIN = 170 MHz 25°C 70.8 dBc
SIGNAL-TO-NOISE AND DISTORTION (SINAD)
fIN = 2.4 MHz 25°C 71.7 dBc fIN = 70 MHz 25°C 71.0 dBc Full 69.0 dBc fIN = 100 MHz 25°C 70.6 dBc fIN = 170 MHz 25°C
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 2.4 MHz fIN = 70 MHz fIN = 100 MHz fIN = 170 MHz
25°C 25°C 25°C 25°C
WORST SECOND OR THIRD HARMONIC
fIN = 2.4 MHz fIN = 70 MHz
fIN = 100 MHz fIN = 170 MHz
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
fIN = 2.4 MHz fIN = 70 MHz
fIN = 100 MHz fIN = 170 MHz
25°C 25°C Full 25°C 25°C
25°C 25°C Full 25°C 25°C
WORST OTHER (HARMONIC OR SPUR)
fIN = 2.4 MHz fIN = 70 MHz
fIN = 100 MHz fIN = 170 MHz
TWO-TONE SFDR
fIN = 29 MHz (−7 dBFS ), 32 MHz (−7 dBFS ) fIN = 169 MHz (−7 dBFS ), 172 MHz (−7 dBFS )
ANALOG INPUT BANDWIDTH
1
See Application Note AN-835, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.
25°C 25°C Full 25°C 25°C
25°C 25°C 25°C
AD9254BCPZ-150
Min Typ Max
69.8
11.7
11.7
11.6
11.5
dBc
−90
−84
−74
−83
−80
90 84 74 83 80
−93
−93
−85
−90
−90
90 90 650
Unit
Bits Bits Bits Bits
dBc dBc dBc dBc dBc
dBc dBc dBc dBc dBc
dBc dBc dBc dBc dBc
dBFS dBFS MHz
Rev. 0 | Page 4 of 40
AD9254

DIGITAL SPECIFICATIONS

AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS enabled, unless otherwise noted.
Table 3.
AD9254BCPZ-150
Parameter Temperature
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)
Logic Compliance Internal Common-Mode Bias Differential Input Voltage Full 0.2 6 Input Voltage Range Full AVDD − 0.3 AVDD + 1.6 Input Common-Mode Range Full 1.1 AVDD High Level Input Voltage (VIH) Full 1.2 3.6 V Low Level Input Voltage (VIL) Full High Level Input Current (IIH) Full −10 +10 µA Low Level Input Current (IIL) Full −10 +10 µA Input Resistance Full 8 10 12 Input Capacitance Full 4
LOGIC INPUTS (SCLK/DFS, OEB, PWDN)
High Level Input Voltage (VIH) Full 1.2 3.6 V Low Level Input Voltage (VIL) Full 0 0.8 V High Level Input Current (IIH) Full Low Level Input Current (IIL) Full Input Resistance Full 30 kΩ Input Capacitance Full 2 pF
LOGIC INPUTS (CSB)
High Level Input Voltage (VIH) Full 1.2 3.6 V Low Level Input Voltage (VIL) Full 0 0.8 V High Level Input Current (IIH) Full −10 +10 µA Low Level Input Current (IIL) Full Input Resistance Full 26 kΩ Input Capacitance Full 2 pF
LOGIC INPUTS (SDIO/DCS)
High Level Input Voltage (VIH) Full 1.2 DRVDD + 0.3 V Low Level Input Voltage (VIL) Full 0 0.8 V High Level Input Current (IIH) Full −10 +10 µA Low Level Input Current (IIL) Full Input Resistance Full 26 kΩ Input Capacitance Full 5 pF
DIGITAL OUTPUTS
DRVDD = 3.3 V
High Level Output Voltage (VOH, IOH = 50 µA) Full 3.29 V High Level Output Voltage (VOH, IOH = 0.5 mA) Full 3.25 V Low Level Output Voltage (VOL, IOL = 1.6 mA) Full 0.2 V Low Level Output Voltage (VOL, IOL = 50 µA) Full 0.05 V
DRVDD = 1.8 V
High Level Output Voltage (VOH, IOH = 50 µA) Full 1.79 V High Level Output Voltage (VOH, IOH = 0.5 mA) Full 1.75 V Low Level Output Voltage (VOL, IOL = 1.6 mA) Full 0.2 V Low Level Output Voltage (VOL, IOL = 50 µA) Full 0.05 V
CMOS/LVDS/LVPECL Full 1.2 V
Min Typ Max
0 0.8
−50 −75
−10 +10
+40 +135
+40 +130
Unit
V p-p V V
V
kΩ pF
µA µA
µA
µA
Rev. 0 | Page 5 of 40
AD9254

SWITCHING SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 2.5 V, unless otherwise noted.
Table 4.
Parameter
1
Temperature
Min Typ Max
CLOCK INPUT PARAMETERS
Conversion Rate, DCS Enabled Full 20 150 MSPS Conversion Rate, DCS Disabled Full 10 150 MSPS CLK Period Full 6.7 ns CLK Pulse Width High, DCS Enabled Full 2.0 3.3 4.7 ns CLK Pulse Width High, DCS Disabled Full 3.0 3.3 3.7 ns
DATA OUTPUT PARAMETERS
Data Propagation Delay (tPD) DCO Propagation Delay (t
2
) Full 4.4 ns
DCO
Full 3.1 3.9 4.8 ns
Setup Time (tS) Full 1.9 2.9 ns Hold Time (tH) Full 3.0 3.8 ns Pipeline Delay (Latency) Full 12 Cycles Aperture Delay (tA) Full 0.8 ns Aperture Uncertainty (Jitter, tJ) Full 0.1 ps rms Wake-Up Time
3
Full 350 µs OUT-OF-RANGE RECOVERY TIME Full 3 Cycles SERIAL PORT INTERFACE
SCLK Period (t
4
) Full 40 ns
CLK
SCLK Pulse Width High Time (tHI) Full 16 ns SCLK Pulse Width Low Time (tLO) Full 16 ns SDIO to SCLK Setup Time (tDS) Full 5 ns SDIO to SCLK Hold Time (tDH) Full 2 ns CSB to SCLK Setup Time (tS) Full 5 ns CSB to SCLK Hold Time (tH) Full 2 ns
1
See Application Note AN-835, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.
2
Output propagation delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load.
3
Wake-up time is dependent on the value of the decoupling capacitors, values shown with 0.1 µF capacitor across REFT and REFB.
4
See Figure 50 and the Serial Port Interface (SPI) section.
AD9254BCPZ-150
Unit

TIMING DIAGRAM

CLK+
CLK–
DATA
DCO
N – 13
N+ 2
N+ 1
N
t
A
t
CLK
t
PD
N – 12 N – 11 N – 10 N – 9 N – 8 N – 7 N – 6 N – 5 N – 4
t
S
t
H
N+ 3
t
DCO
N+ 4
N+ 5
N+ 6
t
CLK
N+ 7
Figure 2. Timing Diagram
Rev. 0 | Page 6 of 40
N+ 8
06216-002
AD9254

ABSOLUTE MAXIMUM RATINGS

Table 5.
Parameter Rating
ELECTRICAL
AVDD to AGND −0.3 V to +2.0 V DRVDD to DGND −0.3 V to +3.9 V AGND to DGND −0.3 V to +0.3 V AVDD to DRVDD −3.9 V to +2.0 V D0 through D13 to DGND −0.3 V to DRVDD + 0.3 V DCO to DGND −0.3 V to DRVDD + 0.3 V OR to DGND −0.3 V to DRVDD + 0.3 V CLK+ to AGND −0.3 V to +3.9 V CLK− to AGND −0.3 V to +3.9 V VIN+ to AGND −0.3 V to AVDD + 0.2 V VIN− to AGND −0.3 V to AVDD + 0.2 V VREF to AGND −0.3 V to AVDD + 0.2 V SENSE to AGND −0.3 V to AVDD + 0.2 V REFT to AGND −0.3 V to AVDD + 0.2 V REFB to AGND −0.3 V to AVDD + 0.2 V SDIO/DCS to DGND −0.3 V to DRVDD + 0.3 V PDWN to AGND −0.3 V to +3.9 V CSB to AGND −0.3 V to +3.9 V SCLK/DFS to AGND −0.3 V to +3.9 V OEB to AGND −0.3 V to +3.9 V
ENVIRONMENTAL
Storage Temperature Range –65°C to +125°C Operating Temperature Range –40°C to +85°C Lead Temperature
(Soldering 10 Sec) Junction Temperature 150°C
300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

The exposed paddle must be soldered to the ground plane for the LFCSP_VQ package. Soldering the exposed paddle to the customer board increases the reliability of the solder joints, maximizing the thermal capability of the package.
Table 6. Thermal Resistance
Package Type θJA θ
48-lead LFCSP_VQ (CP-48-3) 26.4 2.4 °C/W
Unit
JC
Typical θJA and θJC are specified for a 4-layer board in still air. Airflow increases heat dissipation, effectively reducing θ
JA
. In addition, metal in direct contact with the package leads from metal traces and through holes, ground, and power planes, reduces the θ
.
JA

ESD CAUTION

Rev. 0 | Page 7 of 40
AD9254

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

DRVDD
DRGNDD1D0 (LSB)
DCO
OEB
AVDD
AGND
AVDD
CLK–
CLK+
4847464544434241403938
AGND
37
AVDD
35 34 33
32 31 30 29
28 27
26 25
PDWN36
RBIAS CML AVDD
AGND VIN– VIN+ AGND
REFT REFB
VREF SENSE
06216-003
DRGND
DRVDD
D10
D11
D2
1
D3
2
D4
3
D5
4
D6
5
D7
6
7
8
D8
9
D9
10 11
12
PIN 1 INDICATO R
AD9254
TOP VIEW
(Not to Scale)
13141516171819
OR
D12
DRVDD
DRGND
D13 (MSB)
SDIO/DCS
2021222324
CSB
AGND
SCLK/DFS
AVDD
AGND
Figure 3. Pin Configuration
Table 7. Pin Function Description
Pin No. Mnemonic Description
0, 21, 23, 29, 32,
AGND Analog Ground. (Pin 0 is the exposed thermal pad on the bottom of the package.)
37, 41 45, 46, 1 to 6,
D0 (LSB) to D13 (MSB) Data Output Bits.
9 to 14 7, 16, 47 DRGND Digital Output Ground. 8, 17, 48 DRVDD Digital Output Driver Supply (1.8 V to 3.3 V). 15 OR Out-of-Range Indicator. 18 SDIO/DCS
Serial Port Interface (SPI) Data Input/Output (Serial Port Mode); Duty Cycle Stabilizer Select (External Pin Mode). See
Table 10. 19 SCLK/DFS Serial Port Interface Clock (Serial Port Mode); Data Format Select Pin (External Pin Mode). 20 CSB Serial Port Interface Chip Select (Active Low). See Tab le 10. 22, 24, 33, 40, 42 AVDD Analog Power Supply.
25 SENSE Reference Mode Selection. See Table 9. 26 VREF Voltage Reference Input/Output. 27 REFB Differential Reference (−). 28 REFT Differential Reference (+). 30 VIN+ Analog Input Pin (+). 31 VIN– Analog Input Pin (−). 34 CML Common-Mode Level Bias Output. 35 RBIAS
External Bias Resistor Connection. A 10 kΩ resistor must be connected between this pin and
analog ground (AGND). 36 PDWN Power-Down Function Select. 38 CLK+ Clock Input (+). 39 CLK– Clock Input (−). 43 OEB Output Enable (Active Low). 44 DCO Data Clock Output.
Rev. 0 | Page 8 of 40
AD9254
V
C
S
S
V
A
V

EQUIVALENT CIRCUITS

LK+
IN
06216-004
Figure 4. Equivalent Analog Input Circuit
AVDD
1.2V
10k 10k
Figure 5. Equivalent Clock Input Circuit
DRVDD
DIO/DCS
1k
CLK–
CLK/DFS
OEB
PDWN
30k
1k
06216-008
Figure 8. Equivalent SCLK/DFS, OEB, PDWN Input Circuit
AVDD
26k
CSB
06216-005
1k
06216-009
Figure 9. Equivalent CSB Input Circuit
SENSE
1k
06216-010
06216-011
Figure 6. Equivalent SDIO/DCS Input Circuit
DRVDD
DRGND
Figure 7. Equivalent Digital Output Circuit
06216-006
06216-007
Figure 10. Equivalent Sense Circuit
DD
REF
6k
Figure 11. Equivalent VREF Circuit
Rev. 0 | Page 9 of 40
AD9254

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD = 1.8 V; DRVDD = 2.5 V; maximum sample rate, DCS enabled, 1 V internal reference; 2 V p-p differential input; AIN = −1.0 dBFS; 64k sample; T
–20
–40
= 25°C, unless otherwise noted.
A
0
150MSPS
2.3MHz @ –1dBFS SNR = 72.0dBc (73. 0dBFS) ENOB = 11.7 BITS SFDR = 90.0dBc
0
150MSPS
100.3MHz @ –1dBF S SNR = 71.6dBc (72.6dBFS)
–20
ENOB = 11.6 BI TS SFDR = 83dBc
–40
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
Figure 12. AD9254 Single-Tone FFT with f
0
–20
–40
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
Figure 13. AD9254 Single-Tone FFT with f
FREQUENCY (MHz )
150MSPS
30.3MHz @ –1dBFS SNR = 71.9dBc (72. 9dBFS) ENOB = 11.7 BITS SFDR = 88d Bc
FREQUENCY (MHz )
= 2.3 MHz
IN
= 30.3 MHz
IN
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
06216-012
Figure 15. AD9254 Single-Tone FFT with f
0
–20
–40
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
06216-013
Figure 16. AD9254 Single-Tone FFT with f
FREQUENCY (MHz )
150MSPS
140.3MHz @ –1dBF S SNR = 71.5dBc (72. 5dBFS) ENOB = 11.5 BI TS SFDR = 81dBc
FREQUENCY (MHz )
= 100.3 MHz
IN
= 140.3 MHz
IN
06216-015
06216-016
0
150MSPS
70.3MHz @ –1dBF S SNR = 71.8dBc (72.8dBFS)
–20
ENOB = 11.7 BI TS SFDR = 84dBc
–40
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
Figure 14. AD9254 Single-Tone FFT with f
FREQUENCY (MHz )
= 70.3 MHz
IN
06216-014
Rev. 0 | Page 10 of 40
0
–20
–40
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
FREQUENCY (MHz )
Figure 17. AD9254 Single-Tone FFT with f
150MSPS
170.3MHz @ –1dBF S SNR = 70.8dBc (71. 8dBFS) ENOB = 11.5 BI TS SFDR = 80dBc
= 170.3 MHz
IN
06216-017
AD9254
0
150MSPS
250.3MHz @ –1dBF S SNR = 69.3dBc (70. 3dBFS)
–20
ENOB = 11.3 BITS SFDR = 79dBc
–40
120
100
80
SFDR (dBFS)
SNR (dBFS)
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
Figure 18. AD9254 Single-Tone FFT with f
0
–20
–40
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
Figure 19. AD9254 Two-Tone FFT with f
90
85
80
FREQUENCY (MHz )
IN
150MSPS
f
= 29.1MHz @ –7d BFS
IN1
f
= 32.1MHz @ –7d BFS
IN2
SFDR = 83.2dBc (90.2dBFS ) WoIMD3 = –83.9dBc (–90. 9dBFS)
FREQUENCY (MHz )
= 29.1 MHz, f
IN1
SFDR –40°C
= 250.3 MHz
SFDR +25°C
= 32.1 MHz
IN2
60
40
SFDR (dBc)
SNR/SFDR (dBc an d dBFS )
20
SNR (dBc)
0
–90 0–20 –10–30–40–50–60–70–80
06216-018
INPUT AMPLI TUDE (dBFS)
85dBc REFERENCE LINE
06216-021
Figure 21. AD9254 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)
= 2.4 MHz
with f
IN
0
–20
–40
WORST I MD3 (dBc)
–60
–80
–100
SFDR/WORST IMD3 (d Bc and dBFS)
–120
–90 –78 –66 –54 –42 –30 –18 –6
06216-019
SFDR (–dBc)
SFDR (–dBFS)
WORST I MD3 (dBFS)
INPUT AMPLITUDE (dBFS)
06216-022
Figure 22. AD9254 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)
= 29.1 MHz, f
with f
IN1
90
85
80
= 32.1 MHz
IN2
SFDR +25°C
SFDR –40°C
SNR/SFDR (dBc)
75
70
65
60
0435030025020015010050
INPUT FREQUENCY (MHz)
SNR –40°C
SNR +25°C
Figure 20. AD9254 Single-Tone SNR/SFDR vs. Input Frequency (f
Temperature with 2 V p-p Full Scale
75
SFDR +85°C
SNR +85°C
00
06216-020
) and
IN
SNR/SFDR (dBc)
70
65
60
Figure 23. AD9254 Single-Tone SNR/SFDR vs. Input Frequency (f
Rev. 0 | Page 11 of 40
SNR +25°C
0435030025020015010050
INPUT FREQ UENCY (MHz)
Temperature with 1 V p-p Full Scale
SFDR +85°C
SNR –40°C
SNR +85°C
00
06216-023
) and
IN
AD9254
0
–20
–40
–60
–80
AMPLI TUDE (d BFS)
–100
–120
0 18.75 37.50 56.25 75.00
FREQUENCY (MHz )
Figure 24. AD9254 Two-Tone FFT with f
95
90
85
80
150MSPS
f
= 169.1MHz @ –7dBF S
IN1
f
= 172.1MHz @ –7dBF S
IN2
SFDR = 83dBc (90d BFS) WoIMD3 = –83d Bc (90dBFS)
= 169.1 MHz, f
IN1
SFDR
= 172.1 MHz
IN2
2.0
1.5
1.0
0.5
0
–0.5
INL ERROR (LSB)
–1.0
–1.5
–2.0
0 163841433612288102408192614440962048
06216-024
Figure 27. AD9254 INL with f
12000
10000
8000
6000
OUTPUT CODE
= 10.3 MHz
IN
32768 SAMPLES
1.25 LSB rms
06216-031
SNR/SFDR (dBc)
75
70
65
10 1501401301201101009080706050403020
CLOCK FREQUE NCY (MSPS)
Figure 25. AD9254 Single-Tone SNR/SFDR vs. Clock Frequency (f
0
–20
–40
WORST I MD3 (dBc)
–60
–80
–100
SFDR/WORST IMD3 (d Bc and dBFS)
–120
–90 –78 –66 –54 –42 –30 –18 –6
SFDR (–dBc)
SFDR (–dBFS)
INPUT AMPLITUDE (dBFS)
= 2.4 MHz
with f
IN
WORST I MD3 (dBFS)
SNR
CLK
Figure 26. AD9254 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)
with f
= 169.1 MHz, f
IN1
= 172.11 MHz
IN2
NUMBER OF HIT S
4000
2000
0
N – 5 N – 4 N – 3 N – 2 N – 1 N N + 1 N + 2 N + 3 N + 4 N + 5
06216-025
)
ERROR (%FS)
06216-027
Figure 28. AD9254 Grounded Input Histogram
0
–0.5
–1.0
–1.5
–2.0
–2.5
40–200 20406080
CODE
OFFSET ERROR
GAIN ERROR
TEMPERATURE (° C)
06216-032
06216-033
Figure 29. AD9254 Gain and Offset vs. Temperature
Rev. 0 | Page 12 of 40
Loading...
+ 28 hidden pages