Analog Devices AD9238 Service Manual

12-Bit, 20 MSPS/40 MSPS/65 MSPS

FEATURES

Integrated dual 12-bit ADC Single 3 V supply operation (2.7 V to 3.6 V) SNR = 70 dB (to Nyquist, AD9238-65) SFDR = 80.5 dBc (to Nyquist, AD9238-65) Low power: 300 mW/channel at 65 MSPS Differential input with 500 MHz, 3 dB bandwidth Exceptional crosstalk immunity > 85 dB Flexible analog input: 1 V p-p to 2 V p-p range Offset binary or twos complement data format Clock duty cycle stabilizer Output datamux option

APPLICATIONS

Ultrasound equipment Direct conversion or IF sampling receivers
WB-CDMA, CDMA2000, WiMAX Battery-powered instruments Hand-held scopemeters Low cost, digital oscilloscopes

GENERAL DESCRIPTION

The AD9238 is a dual, 3 V, 12-bit, 20 MSPS/40 MSPS/65 MSPS analog-to-digital converter (ADC). It features dual high performance sample-and-hold amplifiers (SHAs) and an integrated voltage reference. The AD9238 uses a multistage differential pipelined architecture with output error correction logic to provide 12-bit accuracy and to guarantee no missing codes over the full operating temperature range at up to 65 MSPS data rates. The wide bandwidth, differential SHA allows for a variety of user-selectable input ranges and offsets, including single-ended applications. It is suitable for various applications, including multiplexed systems that switch full­scale voltage levels in successive channels and for sampling inputs at frequencies well beyond the Nyquist rate.
Dual single-ended clock inputs are used to control all internal conversion cycles. A duty cycle stabilizer is available and can compensate for wide variations in the clock duty cycle, allowing the converter to maintain excellent performance. The digital output data is presented in either straight binary or twos complement format. Out-of-range signals indicate an overflow condition, which can be used with the most significant bit to determine low or high overflow.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Dual A/D Converter
AD9238

FUNCTIONAL BLOCK DIAGRAM

AVDD
AGND
VIN+_A VIN–_A
REFT_A
REFB_A
VREF
SENSE
AGND
REFT_B
REFB_B
VIN+_B VIN–_B
SHA
0.5V
SHA
AD9238
ADC
ADC
DRVDD
Figure 1.
12
OUTPUT
BUFFERS
CLOCK
DUTY CYCLE
STABILIZER
CONTROL
12
OUTPUT
BUFFERS
DRGND
Fabricated on an advanced CMOS process, the AD9238 is available in a Pb-free, space saving, 64-lead LQFP or LFCSP and is specified over the industrial temperature range (−40°C to +85°C).

PRODUCT HIGHLIGHTS

1. Pin-compatible with the AD9248, 14-bit 20MSPS/
40 MSPS/65 MSPS ADC.
2. Speed grade options of 20 MSPS, 40 MSPS, and 65 MSPS
allow flexibility between power, cost, and performance to suit an application.
3. Low power consumption:
AD9238-65: 65 MSPS = 600 mW
AD9238-40: 40 MSPS = 330 mW
AD9238-20: 20 MSPS = 180 mW
4. Typical channel isolation of 85 dB @ f
5. The clock duty cycle stabilizer (AD9238-20/AD9238-40/
AD9238-65) maintains performance over a wide range of clock duty cycles.
6. Multiplexed data output option enables single-port operation
from either Data Port A or Data Port B.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 ©2005 Analog Devices, Inc. All rights reserved.
www.analog.com
MUX/
MODE
MUX/
= 10 MHz.
IN
12
12
OTR_A D11_A TO D0_A
OEB_A
MUX_SELECT CLK_A CLK_B DCS
SHARED_REF PWDN_A PWDN_B DFS
OTR_B D11_B TO D0_B
OEB_B
02640-001
AD9238

TABLE OF CONTENTS

Specifications..................................................................................... 4
Clock Circuitry ........................................................................... 21
DC Specifications ......................................................................... 4
AC Specifications.......................................................................... 5
Digital Specifications ................................................................... 6
Switching Specifications.............................................................. 6
Absolute Maximum Ratings............................................................ 7
Explanation of Test Levels ........................................................... 7
ESD Caution.................................................................................. 7
Pin Configuration and Function Descriptions............................. 8
Terminology .................................................................................... 10
Typical Performance Characteristics ........................................... 11
Equivalent Circuits......................................................................... 15
Theory of Operation ...................................................................... 16
Analog Input............................................................................... 16
Clock Input and Considerations .............................................. 17
Power Dissipation and Standby Mode..................................... 18
Analog Inputs ............................................................................. 21
Reference Circuitry .................................................................... 21
Digital Control logic .................................................................. 21
Outputs........................................................................................ 21
LQFP Evaluation Board Bill of Materials (BOM) .................. 23
LQFP Evaluation Board Schematics........................................ 24
LQFP PCB Layers....................................................................... 28
Dual ADC LFCSP PCB.................................................................. 34
Power Connector........................................................................ 34
Analog Inputs ............................................................................. 34
Optional Operational Amplifier .............................................. 34
Clock ............................................................................................ 34
Voltage Reference ....................................................................... 34
Data Outputs............................................................................... 34
LFCSP Evaluation Board Bill of Materials (BOM) ................ 35
Digital Outputs ........................................................................... 18
Timing.......................................................................................... 18
Data Format ................................................................................19
Voltage Reference....................................................................... 19
AD9238 LQFP Evaluation Board ................................................. 21

REVISION HISTORY

4/05—Rev. A to Rev. B
Changes to Format and Layout........................................ Universal
Added LFCSP..................................................................... Universal
Changes to Features and Applications...........................................1
Changes to General Description and Product Highlights ..........1
Changes to Figure 1..........................................................................1
Changes to Table 1............................................................................3
Changes to Table 2............................................................................5
Added Digital Specifications...........................................................6
Moved Switching Specifications to.................................................6
LFCSP PCB Schematics............................................................. 36
LFCSP PCB Layers..................................................................... 39
Thermal Considerations............................................................ 44
Outline Dimensions....................................................................... 45
Ordering Guide .......................................................................... 46
Changes to Pin Function Descriptions..........................................8
Changes to Terminology Section .................................................10
Changes to Figure 29......................................................................15
Changes to Clock Input and Considerations Section................17
Changes to Figure 33......................................................................18
Changes to Data Format Section..................................................19
Added AD9238 LQFP Evaluation Board Section ......................21
Added Dual ADC LFCSP PCB Section.......................................34
Added Thermal Considerations Section.....................................44
Updated Outline Dimensions.......................................................45
Changes to Ordering Guide.......................................................... 46
Rev. B | Page 2 of 48
AD9238
9/03—Rev. 0 to Rev. A
Changes to DC Specifications ........................................................2
Changes to Switching Specifications .............................................3
Changes to AC Specifications......................................................... 4
Changes to Figure 1..........................................................................4
Changes to Ordering Guide............................................................ 5
Changes to TPCs 2, 3, and 6 ........................................................... 8
Changes to Clock Input and Considerations Section................ 13
Added Text to Data Format Section ............................................15
Changes to Figure 9........................................................................16
Added Evaluation Board Diagrams Section............................... 17
Update Outline Dimensions ......................................................... 24
2/03—Revision 0: Initial Version
Rev. B | Page 3 of 48
AD9238

SPECIFICATIONS

DC SPECIFICATIONS

AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,
to T
T
MIN
Table 1.
Parameter Temp Level Min Typ Max Min Typ Max Min Typ Max Unit RESOLUTION Full VI 12 12 12 Bits ACCURACY
No Missing Codes Guaranteed Full VI 12 12 12 Bits Offset Error Full VI ±0.30 ±1.2 ±0.50 ±1.1 ±0.50 ±1.1 % FSR Gain Error1 Full IV ±0.30 ±2.2 ±0.50 ±2.4 ±0.50 ±2.5 % FSR Differential Nonlinearity (DNL)2 Full V ±0.35 ±0.35 ±0.35 LSB 25°C I ±0.35 ±0.9 ±0.35 ±0.8 ±0.35 ±1.0 LSB Integral Nonlinearity (INL)2 Full V ±0.45 ±0.60 ±0.70 LSB
25°C I ±0.40 ±1.4 ±0.50 ±1.4 ±0.55 ±1.75 LSB TEMPERATURE DRIFT
Offset Error Full V ±4 ±4 ±6 µV/°C Gain Error Full V ±12 ±12 ±12 ppm/°C
INTERNAL VOLTAGE REFERENCE
Output Voltage Error (1 V Mode) Full VI ±5 ±35 ±5 ±35 ±5 ±35 mV Load Regulation @ 1.0 mA Full V 0.8 0.8 0.8 mV Output Voltage Error (0.5 V Mode) Full V ±2.5 ±2.5 ±2.5 mV Load Regulation @ 0.5 mA Full V 0.1 0.1 0.1 mV
INPUT REFERRED NOISE
Input Span = 1 V 25°C V 0.54 0.54 0.54 LSB Input Span = 2.0 V 25°C V 0.27 0.27 0.27 LSB
ANALOG INPUT
Input Span = 1.0 V Full IV 1 1 1 V p-p Input Span = 2.0 V Full IV 2 2 2 V p-p Input Capacitance3 Full V 7 7 7 pF
REFERENCE INPUT RESISTANCE Full V 7 7 7 kΩ POWER SUPPLIES
Supply Voltages
Supply Current
PSRR Full V ±0.01 ±0.01 ±0.01 % FSR
POWER CONSUMPTION
DC Input4 Full V 180 330 600 mW Sine Wave Input2 Full VI 190 212 360 397 640 698 mW Standby Power5 Full V 2.0 2.0 2.0 mW
MATCHING CHARACTERISTICS
Offset Error 25°C V ±0.1 ±0.1 ±0.1 % FSR Gain Error 25°C V ±0.05 ±0.05 ±0.05 % FSR
1
Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.0 V external reference).
2
Measured at maximum clock rate with a low frequency sine wave input and approximately 5 pF loading on each output bit.
3
Input capacitance refers to the effective capacitance between one differential input pin and AVSS. Refer to Figure for the equivalent analog input structure. 28
4
Measured with dc input at maximum clock rate.
5
Standby power is measured with the CLK_A and CLK_B pins inactive (that is, set to AVDD or AGND).
, DCS enabled, unless otherwise noted.
MAX
Test AD9238BST/BCP-20 AD9238BST/BCP-40 AD9238BST/BCP-65
rms
rms
AVDD Full IV 2.7 3.0 3.6 2.7 3.0 3.6 2.7 3.0 3.6 V DRVDD Full IV 2.25 3.0 3.6 2.25 3.0 3.6 2.25 3.0 3.6 V
IAVDD2 Full V 60 110 200 mA IDRVDD2 Full V 4 10 14 mA
Rev. B | Page 4 of 48
AD9238

AC SPECIFICATIONS

AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,
to T
T
MIN
Table 2.
Parameter Temp Level Min Typ Max Min Typ Max Min Typ Max Unit SIGNAL-TO-NOISE RATIO (SNR)
f
INPUT
f
INPUT
25°C IV 69.7 70.4 dB f
INPUT
25°C IV 69.7 70.3 dB f
INPUT
25°C IV 68.7 70.0 dB f
INPUT
SIGNAL-TO-NOISE AND DISTORTION
RATIO (SINAD) f
INPUT
f
INPUT
25°C IV 69.3 70.2 dB f
INPUT
25°C IV 69.4 70.1 dB f
INPUT
25°C IV 68.1 69.1 dB f
INPUT
EFFECTIVE NUMBER OF BITS (ENOB)
f
INPUT
f
INPUT
25°C IV 11.3 11.5 Bits f
INPUT
25°C IV 11.3 11.4 Bits f
INPUT
25°C IV 11.1 11.3 Bits f
INPUT
WORST HARMONIC (SECOND or THIRD)
f
INPUT
f
INPUT
f
INPUT
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
f
INPUT
f
INPUT
25°C I 76.1 86.0 dBc f
INPUT
25°C I 76.7 86.0 dBc f
INPUT
25°C I 72.5 80.5 dBc f
INPUT
CROSSTALK Full V −85.0 −85.0 −85.0 dB
, DCS enabled, unless otherwise noted.
MAX
Test AD9238BST/BCP-20 AD9238BST/BCP-40 AD9238BST/BCP-65
= 2.4 MHz 25°C V 70.4 70.4 70.3 dB = 9.7 MHz Full V 70.2 dB
= 19.6 MHz Full V 70.1 dB
= 32.5 MHz Full V 69.3 dB
= 100 MHz 25°C V 68.7 68.3 67.6 dB
= 2.4 MHz 25°C V 70.2 70.2 70.1 dB = 9.7 MHz Full V 70.1 dB
= 19.6 MHz Full V 69.9 dB
= 32.5 MHz Full V 68.9 dB
= 100 MHz 25°C V 67.9 67.9 66.6 dB
= 2.4 MHz 25°C V 11.5 11.5 11.4 Bits = 9.7 MHz Full V 11.4 Bits
= 19.6 MHz Full V 11.4 Bits
= 32.5 MHz Full V 11.2 Bits
= 100 MHz 25°C V 11.1 11.1 10.9 Bits
= 9.7 MHz Full V −84.0 dBc = 19.6 MHz Full V −85.0 dBc = 35 MHz Full V −80.0 dBc
= 2.4 MHz 25°C V 86.0 86.0 86.0 dBc = 9.7 MHz Full V 84.0 dBc
= 19.6 MHz Full V 85.0 dBc
= 32.5 MHz Full V 80.0 dBc
= 100 MHz 25°C V 75.0 dBc
Rev. B | Page 5 of 48
AD9238

DIGITAL SPECIFICATIONS

AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,
to T
T
MIN
Table 3.
Parameter Temp Level Min Typ Max Min Typ Max Min Typ Max Unit LOGIC INPUTS
High Level Input Voltage Full IV 2.0 2.0 2.0 V Low Level Input Voltage Full IV 0.8 0.8 0.8 V High Level Input Current Full IV −10 +10 −10 +10 −10 +10 µA Low Level Input Current Full IV −10 +10 −10 +10 −10 +10 µA Input Capacitance Full IV 2 2 2 pF
LOGIC OUTPUTS1
High Level Output Voltage Full IV
Low Level Output Voltage Full IV 0.05 0.05 0.05 V
1
Output voltage levels measured with capacitive load only on each output.

SWITCHING SPECIFICATIONS

AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,
to T
T
MIN
Table 4.
Parameter Temp Level Min Typ Max Min Typ Max Min Typ Max Unit SWITCHING PERFORMANCE
Maximum Conversion Rate Full VI 20 40 65 MSPS Minimum Conversion Rate Full V 1 1 1 MSPS CLK Period Full V 50.0 25.0 15.4 ns CLK Pulse-Width High1 Full V 15.0 8.8 6.2 ns CLK Pulse-Width Low1 Full V 15.0 8.8 6.2 ns
DATA OUTPUT PARAMETER
Output Delay2 (tPD) Full VI 2 3.5 6 2 3.5 6 2 3.5 6 ns Pipeline Delay (Latency) Full V 7 7 7 Cycles Aperture Delay (tA) Full V 1.0 1.0 1.0 ns Aperture Uncertainty (tJ) Full V 0.5 0.5 0.5 pS rms Wake-Up Time3 Full V 2.5 2.5 2.5 ms
OUT-OF-RANGE RECOVERY TIME Full V 2 2 2 Cycles
1
The AD9238-65 model has a duty cycle stabilizer circuit that, when enabled, corrects for a wide range of duty cycles (see Figure 23).
2
Output delay is measured from clock 50% transition to data 50% transition, with a 5 pF load on each output.
3
Wake-up time is dependent on the value of the decoupling capacitors; typical values shown with 0.1 µF and 10 µF capacitors on REFT and REFB.
, DCS enabled, unless otherwise noted.
MAX
, DCS enabled, unless otherwise noted.
MAX
N
ANALOG
INPUT
N–1
Test AD9238BST/BCP-20 AD9238BST/BCP-40 AD9238BST/BCP-65
DRVDD −
0.05
DRVDD −
0.05
DRVDD −
0.05
V
Test AD9238BST/BCP-20 AD9238BST/BCP-40 AD9238BST/BCP-65
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
CLOCK
DATA
OUT
N–9 N–8
N–7
N–6
N–5
N–4
N–3
N–2
N–1
N
t
PD
MIN 2.0ns,
=
MAX 6.0ns
02640-002
Figure 2. Timing Diagram
Rev. B | Page 6 of 48
AD9238
ABSOLUTE MAXIMUM RATINGS1
Table 5.
Parameter Rating Pin Name With Respect To Min Max Unit
ELECTRICAL
AVDD AGND −0.3 +3.9 V DRVDD DRGND −0.3 +3.9 V AGND DRGND −0.3 +0.3 V AVDD DRVDD −3.9 +3.9 V Digital Outputs CLK, DCS, MUX_SELECT, SHARED_REF DRGND −0.3 DRVDD + 0.3 V OEB, DFS AGND −0.3 AVDD + 0.3 V VINA, VINB AGND −0.3 AVDD + 0.3 V VREF AGND −0.3 AVDD + 0.3 V SENSE AGND −0.3 AVDD + 0.3 V REFB, REFT AGND −0.3 AVDD + 0.3 V PDWN AGND −0.3 AVDD + 0.3 V
ENVIRONMENTAL2
Operating Temperature −45 +85 °C Junction Temperature 150 °C Lead Temperature (10 sec) 300 °C Storage Temperature −65 +150 °C
1
Absolute maximum ratings are limiting values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is
not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.
2
Typical thermal impedances: 64-lead LQFP, θJA = 54°C/W; 64-lead LFCSP, θJA = 26.4°C/W with heat slug soldered to ground plane. These measurements were taken on a
4-layer board in still air, in accordance with EIA/JESD51-7.

EXPLANATION OF TEST LEVELS

I 100% production tested. II 100% production tested at 25°C and sample tested at specified temperatures. III Sample tested only. IV Parameter is guaranteed by design and characterization testing. V Parameter is a typical value only. VI
100% production tested at 25°C; guaranteed by design and characterization testing for industrial temperature range; 100% production tested at temperature extremes for military devices.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. B | Page 7 of 48
AD9238

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

CLK_A
AGND VIN+_A VIN–_A
AGND
AVDD
REFT_A
REFB_A
VREF
SENSE
REFB_B
REFT_B
AVDD
AGND VIN–_B
VIN+_B
AGND
AVDD
SHARED_REF
64 63 62 61 60 55 54 53 52 51 50 4959 58 57 56
1
PIN 1
2
IDENTIFIER
3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
MUX_SELECT
OTR_A
OEB_A
PDWN_A
AD9238
64-LEAD LQFP
TOP VIEW
(Not to Scale)
D9_A
D8_A
D11_A (MSB)
D10_A
DRVDD
DRGND
D7_A
D6_A
D5_A
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
D4_A D3_A
D2_A D1_A D0_A (LSB) DNC DNC DRVDD DRGND OTR_B D11_B (MSB) D10_B D9_B
D8_B D7_B D6_B
DFS
DCS
AVDD
CLK_B
PDWN_B
OEB_B
DNC = DO NOT CONNECT
Figure 3. 64-Lead LQFP and LFCSP Pin Configuration
DNC
DNC
D1_B
D2_B
D0_B (LSB)
DRVDD
DRGND
D3_B
D4_B
D5_B
02640-003
Rev. B | Page 8 of 48
AD9238
Table 6. Pin Function Descriptions (64-Lead LQFP and 64-Lead LFCSP)
Pin No. Mnemonic Description
1, 4, 13, 16 AGND Analog Ground. 2 VIN+_A Analog Input Pin (+) for Channel A. 3 VIN–_A Analog Input Pin (−) for Channel A. 5, 12, 17, 64 AVDD Analog Power Supply. 6 REFT_A Differential Reference (+) for Channel A. 7 REFB_A Differential Reference (−) for Channel A. 8 VREF Voltage Reference Input/Output. 9 SENSE Reference Mode Selection. 10 REFB_B Differential Reference (−) for Channel B. 11 REFT_B Differential Reference (+) for Channel B. 14 VIN−_B Analog Input Pin (−) for Channel B. 15 VIN+_B Analog Input Pin (+) for Channel B. 18 CLK_B Clock Input Pin for Channel B. 19 DCS Enable Duty Cycle Stabilizer (DCS) Mode (Tie High to Enable). 20 DFS Data Output Format Select Bit (Low for Offset Binary, High for Twos Complement). 21 PDWN_B Power-Down Function Selection for Channel B:
Logic 0 enables Channel B.
Logic 1 powers down Channel B. (Outputs static, not High-Z.)
22 OEB_B Output Enable Bit for Channel B:
Logic 0 enables Data Bus B.
Logic 1 sets outputs to High-Z. 23, 24, 42, 43 DNC Do Not Connect Pins. Should be left floating. 25 to 27,
30 to 38 28, 40, 53 DRGND Digital Output Ground. 29, 41, 52 DRVDD
39 OTR_B Out-of-Range Indicator for Channel B. 44 to 51,
54 to 57 58 OTR_A Out-of-Range Indicator for Channel A. 59 OEB_A Output Enable Bit for Channel A:
60 PDWN_A Power-Down Function Selection for Channel A:
61 MUX_SELECT Data Multiplexed Mode.
62 SHARED_REF Shared Reference Control Bit (Low for Independent Reference Mode, High for Shared Reference Mode). 63 CLK_A Clock Input Pin for Channel A.
D0_B (LSB) to D11_B (MSB)
D0_A (LSB) to D11_A (MSB)
Channel B Data Output Bits.
Digital Output Driver Supply. Must be decoupled to DRGND with a minimum 0.1 µF capacitor. Recommended decoupling is 0.1 µF capacitor in parallel with 10 µF.
Channel A Data Output Bits.
Logic 0 enables Data Bus A.
Logic 1 sets outputs to High-Z.
Logic 0 enables Channel A.
Logic 1 powers down Channel A. (Outputs static, not High-Z.)
(See Data Format section for how to enable; high setting disables output data multiplexed mode).
Rev. B | Page 9 of 48
AD9238

TERMINOLOGY

Aperture Delay
SHA performance measured from the rising edge of the clock input to when the input signal is held for conversion.
Aperture Jitter
The variation in aperture delay for successive samples, which is manifested as noise on the input to the ADC.
Integral Nonlinearity (INL)
Deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is defined as a level 1½ LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.
frequency, including harmonics but excluding dc. The value for SINAD is expressed in dB.
Effective Number of Bits (ENOB)
Using the following formula
ENOB = (SINAD − 1.76)/6.02
ENOB for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD.
Signal-to-Noise Ratio (SNR)
The ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in dB.
Differential Nonlinearity (DNL, No Missing Codes)
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 12-bit resolution indicates that all 4,096 codes must be present over all operating ranges.
Offset Error
The major carry transition should occur for an analog value ½ LSB below VIN+ = VIN−. Offset error is defined as the deviation of the actual transition from that point.
Gain Error
The first code transition should occur at an analog value ½ LSB above negative full scale. The last transition should occur at an analog value 1½ LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.
Temp er at u re D ri ft
The temperature drift for zero error and gain error specifies the maximum change from the initial (25°C) value to the value at
or T
T
MIN
MAX
.
Power Supply Rejection The specification shows the maximum change in full scale from the value with the supply at the minimum limit to the value with the supply at its maximum limit.
Total Harmonic Distortion (THD) The ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal, expressed as a percentage or in decibels relative to the peak carrier signal (dBc).
Signal-to-Noise and Distortion (SINAD) Ratio
The ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist
Spurious-Free Dynamic Range (SFDR) The difference in dB between the rms amplitude of the input signal and the peak spurious signal, which may or may not be a harmonic.
Nyquist Sampling When the frequency components of the analog input are below the Nyquist frequency (f
/2), this is often referred to as
CLOCK
Nyquist sampling.
IF Sampling Due to the effects of aliasing, an ADC is not limited to Nyquist sampling. Higher sampled frequencies are aliased down into the first Nyquist zone (DC − f
/2) on the output of the ADC.
CLOCK
The bandwidth of the sampled signal should not overlap Nyquist zones and alias onto itself. Nyquist sampling performance is limited by the bandwidth of the input SHA and clock jitter (jitter adds more noise at higher input frequencies).
Two -Tone SFDR
The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product.
Out-of-Range Recovery Time
The time it takes for the ADC to reacquire the analog input after a transient from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale.
Crosstalk
Coupling onto one channel being driven by a (−0.5 dBFS) signal when the adjacent interfering channel is driven by a full-scale signal. Measurement includes all spurs resulting from both direct coupling and mixing components.
Rev. B | Page 10 of 48
AD9238

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD, DRVDD = 3.0 V, T = 25°C, AIN differential drive, full scale = 2 V, unless otherwise noted.
0
–20
–40
MAGNITUDE (dBFS)
–60
–80
–100
–120
CROSSTALK
10 15 20 25 30
50
FREQUENCY (MHz)
SECOND HARMONIC
Figure 4. Single-Tone FFT of Channel A Digitizing f
While Channel B Is Digitizing f
0
–20
–40
dB
–60
–80
–100
–120
SECOND HARMONIC
10
CROSSTALK
15 20 25 3050
FREQUENCY (MHz)
Figure 5. Single-Tone FFT of Channel A Digitizing f
While Channel B Is Digitizing f
0
–20
–40
dB
CROSSTALK
–60
–80
–100
–120
SECOND HARMONIC
15 20 25 3050
10
FREQUENCY (MHz)
Figure 6. Single-Tone FFT of Channel A Digitizing f
While Channel B is Digitizing f
IN
THIRD HARMONIC
= 10 MHz
IN
= 76 MHz
IN
= 126 MHz
= 12.5 MHz
IN
= 70 MHz
IN
= 120 MHz
IN
02640-004
02640-005
02640-006
100
95
90
85
80
75
70
SFDR/SNR (dBc)
65
60 55 50
40
45 50 55 60 65
ADC SAMPLE RATE (MSPS)
SNR
SFDR
Figure 7. AD9238-65 Single-Tone SNR/SFDR vs. FS with f
100
95
90
85
80
75
70
SFDR/SNR (dBc)
65
60 55 50
ADC SAMPLE RATE (MSPS)
SFDR
SNR
SNR
SNR
35302520
Figure 8. AD9238-40 Single-Tone SNR/SFDR vs. FS with f
100
95
90
85
80
75
70
SFDR/SNR (dBc)
65
60 55 50
0
5101520
ADC SAMPLE RATE (MSPS)
SFDR
SNR
Figure 9. AD9238-20 Single-Tone SNR/SFDR vs. FS with f
= 32.5 MHz
IN
40
= 20 MHz
IN
= 10 MHz
IN
02640-007
02640-008
02640-009
Rev. B | Page 11 of 48
AD9238
100
95
90
80
70
SFDR/SNR (dBc)
60
50
40
–30 –25 –20 –15 –10 –5
–35
INPUT AMPLITUDE (dBFS)
SFDR
SNR
SNR
SNR
Figure 10. AD9238-65 Single-Tone SNR/SFDR vs. AIN with f
100
90
80
70
SFDR/SNR (dBc)
60
SNR
SFDR
SNR
SNR
0
= 32.5 MHz
IN
02640-010
90
85
80
SFDR/SNR (dBc)
75
70
65
20 40 60 80 100 120
0
Figure 13. AD9238-65 Single-Tone SNR/SFDR vs. f
SNR
SFDR
SNR
INPUT FREQUENCY (MHz)
02640-013
140
IN
95
90
85
80
SFDR/SNR (dBc)
75
SNR
SFDR
50
40
–30 –25 –20 –15 –10 –5
–35
INPUT AMPLITUDE (dBFS)
Figure 11. AD9238-40 Single-Tone SNR/SFDR vs. AIN with f
100
90
SNR
SFDR
80
70
SNR
SFDR/SNR (dBc)
60
50
40
–30 –25 –20 –15 –10 –5
–35
INPUT AMPLITUDE (dBFS)
SNR
Figure 12. AD9238-20 Single-Tone SNR/SFDR vs. AIN with f
0
= 20 MHz
IN
0
= 10 MHz
IN
02640-011
02640-012
SNR
70
65
20 40 60 80 100 120
0
Figure 14. AD9238-40 Single-Tone SNR/SFDR vs. f
SNR
INPUT FREQUENCY (MHz)
02640-014
140
IN
95
90
SFDR
85
80
SFDR/SNR (dBc)
75
70
65
20 40 60 80 100 120
0
Figure 15. AD9238-20 Single-Tone SNR/SFDR vs. f
SNR
SNR
SNR
INPUT FREQUENCY (MHz)
02640-015
140
IN
Rev. B | Page 12 of 48
AD9238
0
–20
–40
100
SNR
95
90
85
SFDR
–60
–80
MAGNITUDE (dBFS)
–100
–120
10
Figure 16. Dual-Tone FFT with f
0
–20
–40
–60
–80
MAGNITUDE (dBFS)
–100
–120
10 15 20 25 3050
Figure 17. Dual-Tone FFT with f
0
15 20 25 3050
FREQUENCY (MHz)
1 = 45 MHz and fIN2 = 46 MHz
IN
FREQUENCY (MHz)
1 = 70 MHz and fIN2 = 71 MHz
IN
02640-016
02640-017
80
75
SFDR/SNR (dBFS)
70
65
60
–24
SNR
SNR
–21 –18 –15 –12 –9 –6
INPUT AMPLITUDE (dBFS)
Figure 19. Dual-Tone SNR/SFDR vs. AIN with f
100
SNR
95
90
85
80
75
SFDR/SNR (dBFS)
70
65
60
–24
SFDR
SNR
SNR
–21 –18 –15 –12 –9 –6
INPUT AMPLITUDE (dBFS)
Figure 20. Dual-Tone SNR/SFDR vs. AIN with f
100
1 = 45 MHz and fIN2 = 46 MHz
IN
1 = 70 MHz and fIN2 = 71 MHz
IN
02640-019
02640-020
–20
–40
–60
–80
MAGNITUDE (dBFS)
–100
–120
10 15 20 25 3050
Figure 18. Dual-Tone FFT with f
FREQUENCY (MHz)
1 = 200 MHz and fIN2 = 201 MHz
IN
02640-018
Rev. B | Page 13 of 48
95
90
85
80
75
SFDR/SNR (dBFS)
70
65
60
–24
SNR
SFDR
SNR
–21 –18 –15 –12 –9 –6
INPUT AMPLITUDE (dBFS)
02640-021
Figure 21. Dual-Tone SNR/SFDR vs.
AIN with f
1 = 200 MHz and fIN2 = 201 MHz
IN
AD9238
74
12.0
600
–65
72
SINAD (dBc)
SINAD –20
70
SINAD –40
68
0
20 40 60
CLOCK FREQUENCY
Figure 22. SINAD vs. FS with Nyquist Input
95
90
85
80
75
70
65
SINAD/SFDR (dBc)
60
55
50
30
DCS OFF (SFDR)
35
40 45 50 55 60 65
DCS ON (SFDR)
DUTY CYCLE (%)
Figure 23. SINAD/SFDR vs. Clock Duty Cycle
84
82
80
78
76
74
72
SINAD/SFDR (dB)
70
68
66
–50
SFDR
SINAD
0 50 100
TEMPERATURE (°C)
Figure 24. SINAD/SFDR vs. Temperature with f
DCS ON (SINAD)
DCS OFF (SINAD)
IN
SINAD –65
= 32.5 MHz
11.5
11.0
02640-022
02640-023
02640-024
500
400
300
AVDD POWER (mW)
200
100
0102030405060
–40
–20
SAMPLE RATE (MSPS)
02640-025
Figure 25. Analog Power Consumption vs. FS
1.0
0.8
0.6
0.4
0.2
0
INL (LSB)
–0.2 –0.4
–0.6 –0.8 –1.0
150010005000 2000 2500 3000 3500 4000
CODE
02640-026
Figure 26. AD9238-65 Typical INL
1.0
0.8
0.6
0.4
0.2
0
DNL (LSB)
–0.2 –0.4
–0.6 –0.8 –1.0
150010005000 2000 2500 3000 3500 4000
CODE
02640-027
Figure 27. AD9238-65 Typical DNL
Rev. B | Page 14 of 48
AD9238
V
V

EQUIVALENT CIRCUITS

AVDD
Figure 30. Equivalent Digital Input Circuit
IN+_A, VIN–_A, IN+_B, VIN–_B
AVDD
Figure 28. Equivalent Analog Input Circuit
02640-062
CLK_A, CLK_B
DCS, DFS,
MUX_SELECT,
SHARED_REF
02640-064
DRVDD
02640-063
Figure 29. Equivalent Digital Output Circuit
Rev. B | Page 15 of 48
Loading...
+ 33 hidden pages