Analog Devices AD9212 Service Manual

Octal, 10-Bit, 40/65 MSPS
A
V

FEATURES

Eight ADCs integrated into 1 package 100 mW ADC power per channel at 65 MSPS SNR = 60.8 dB (to Nyquist) Excellent linearity
DNL = ±0.3 LSB (typical)
INL = ±0.4 LSB (typical) Serial LVDS (ANSI-644, default) Low power reduced signal option, IEEE 1596.3 similar Data and frame clock outputs 325 MHz, full power analog bandwidth 2 V p-p input voltage range
1.8 V supply operation Serial port control
Full-chip and individual-channel power-down modes
Flexible bit orientation
Built-in and custom digital test pattern generation
Programmable clock and data alignment
Programmable output resolution
Standby mode

APPLICATIONS

Medical imaging and nondestructive ultrasound Portable ultrasound and digital beam forming systems Quadrature radio receivers Diversity radio receivers Tap e dr ive s Optical networking Test equipment

GENERAL DESCRIPTION

The AD9212 is an octal, 10-bit, 40/65 MSPS analog-to-digital converter (ADC) with an on-chip sample-and-hold circuit that is designed for low cost, low power, small size, and ease of use. The product operates at a conversion rate of up to 65 MSPS and is optimized for outstanding dynamic performance and low power in applications where a small package size is critical.
The ADC requires a single 1.8 V power supply and LVPECL-/ CMOS-/LVDS-compatible sample rate clock for full performance operation. No external reference or driver components are required for many applications.
The ADC automatically multiplies the sample rate clock for the appropriate LVDS serial data rate. A data clock (DCO) for capturing data on the output and a frame clock (FCO) for signaling a new output byte are provided. Individual channel power-down is supported and typically consumes less than 2 mW when all channels are disabled.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Serial LVDS 1.8 V A/D Converter
AD9212

FUNCTIONAL BLOCK DIAGRAM

AGND
PDWN
0.5V
CSB
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
SERI AL P ORT
INTERFA CE
SDIO/
ODM
Figure 1.
SCLK/
DTP
12
SERIAL
LVDS
12
SERIAL
LVDS
12
SERIAL
LVDS
12
SERIAL
LVDS
12
SERIAL
LVDS
12
SERIAL
LVDS
12
SERIAL
LVDS
12
SERIAL
LVDS
DATA RATE
MULTI PLI ER
CLK+
DRGND
CLK–
DD DRVDD
AD9212
VIN+A
VIN–A
VIN+B
VIN–B
VIN+C
VIN–C
VIN+D
VIN–D
VIN+E
VIN–E
VIN+F
VIN–F
VIN+G
VIN–G
VIN+H
VIN–H
VREF
SENSE
REFT
REFB
REF
SELECT
RBIAS
The ADC contains several features designed to maximize flexibility and minimize system cost, such as programmable clock and data alignment and programmable digital test pattern generation. The available digital test patterns include built-in deterministic and pseudorandom patterns, along with custom user­defined test patterns entered via the serial port interface (SPI®).
The AD9212 is available in a Pb-free, 64-lead LFCSP package. It is specified over the industrial temperature range of −40°C to +85°C.

PRODUCT HIGHLIGHTS

1. Small Footprint. Eight ADCs are contained in a small, space-
saving package; low power of 100 mW/channel at 65 MSPS.
2. Ease of Use. A data clock output (DCO) operates up to
300 MHz and supports double data rate operation (DDR).
3. User Flexibility. Serial port interface (SPI) control offers a wide
range of flexible features to meet specific system requirements.
4. Pin-Compatible Family. This includes the AD9222 (12-bit),
and AD9252 (14-bit).
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.
D+A D–A
D+B D–B
D+C D–C
D+D D–D
D+E D–E
D+F D–F
D+G D–G
D+H D–H
FCO+
FCO–
DCO+ DCO–
05968-001
AD9212
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Functional Block Diagram .............................................................. 1
Product Highlights........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
AC Specifications.......................................................................... 4
Digital Specifications ................................................................... 5
Switching Specifications .............................................................. 6
Timing Diagrams.............................................................................. 7
Absolute Maximum Ratings............................................................ 9
Thermal Impedance..................................................................... 9
ESD Caution.................................................................................. 9
Pin Configuration and Function Descriptions........................... 10
Equivalent Circuits......................................................................... 12
Typical Performance Characteristics ........................................... 14
Theory of Operation ...................................................................... 19
Analog Input Considerations ................................................... 19
Clock Input Considerations...................................................... 22
Serial Port Interface (SPI).............................................................. 30
Hardware Interface..................................................................... 30
Memory Map .................................................................................. 32
Reading the Memory Map Table.............................................. 32
Reserved Locations .................................................................... 32
Default Values............................................................................. 32
Logic Levels................................................................................. 32
Evaluation Board ............................................................................ 36
Power Supplies ............................................................................ 36
Input Signals................................................................................ 36
Output Signals ............................................................................ 36
Default Operation and Jumper Selection Settings................. 37
Alternative Analog Input Drive Configuration...................... 38
Outline Dimensions ....................................................................... 55
Ordering Guide .......................................................................... 55

REVISION HISTORY

10/06—Revision 0: Initial Version
Rev. 0 | Page 2 of 56
AD9212

SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.
Table 1.
AD9212-40 AD9212-65 Parameter
RESOLUTION 10 10 Bits ACCURACY
No Missing Codes Full Guaranteed Guaranteed Offset Error Full ±1.5 ±8 ±1.5 ±8 mV Offset Matching Full ±3 ±8 ±3 ±8 mV Gain Error Full ±0.4 ±1.2 ±3.2 ±4.3 % FS Gain Matching Full ±0.3 ±0.7 ±0.4 ±0.9 % FS Differential Nonlinearity (DNL) Full ±0.1 ±0.4 ±0.3 ±0.65 LSB Integral Nonlinearity (INL) Full ±0.15 ±0.5 ±0.4 ±1 LSB
TEMPERATURE DRIFT
Offset Error Full ±2 ±2 ppm/°C Gain Error Full ±17 ±17 ppm/°C Reference Voltage (1 V Mode) Full ±21 ±21 ppm/°C
REFERENCE
Output Voltage Error (VREF = 1 V) Full ±2 ±30 ±2 ±30 mV Load Regulation @ 1.0 mA (VREF = 1 V) Full 3 3 mV Input Resistance Full 6 6 kΩ
ANALOG INPUTS
Differential Input Voltage Range (VREF = 1 V) Full 2 2 V p-p Common-Mode Voltage Full AVDD/2 AVDD/2 V Differential Input Capacitance Full 7 7 pF Analog Bandwidth, Full Power Full 325 325 MHz
POWER SUPPLY
AVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 V DRVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 V IAVDD Full 252 260 390 405 mA IDRVDD Full 49.5 53 54 58 mA Total Power Dissipation (Including Output Drivers) Full 542 560 800 833 mW Power-Down Dissipation Full 3 11 3 11 mW
Standby Dissipation CROSSTALK Full −90 −90 dB CROSSTALK (Overrange Condition)
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
2
Can be controlled via SPI.
3
Overrange condition is specific with 6 dB of the full-scale input range.
1
2
3
Temperature Min Typ Max Min Typ Max Unit
Full 83 95 mW
Full −90 −90 dB
Rev. 0 | Page 3 of 56
AD9212

AC SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.
Table 2.
AD9212-40 AD9212-65 Parameter
SIGNAL-TO-NOISE RATIO (SNR) fIN = 2.4 MHz Full 61.2 60.8 dB f f f SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD) fIN = 2.4 MHz Full 61.2 60.7 dB f f f EFFECTIVE NUMBER OF BITS (ENOB) fIN = 2.4 MHz Full 9.87 9.81 Bits f f f SPURIOUS-FREE DYNAMIC RANGE (SFDR) fIN = 2.4 MHz Full 87 81 dBc f f f f WORST HARMONIC (Second or Third) fIN = 2.4 MHz Full −87 −81 dBc f f f f WORST OTHER (Excluding Second or Third) fIN = 2.4 MHz Full −90 −86 dBc f f f TWO-TONE INTERMODULATION DISTORTION (IMD)—
AIN1 AND AIN2 = −7.0 dBFS
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
1
Temperature Min Typ Max Min Typ Max Unit
= 19.7 MHz Full 60.2 61.2 60.8 dB
IN
= 35 MHz Full 61.2 58.5 60.8 dB
IN
= 70 MHz Full 61.0 60.7 dB
IN
= 19.7 MHz Full 60.0 61.0 60.6 dB
IN
= 35 MHz Full 61.0 57.0 60.5 dB
IN
= 70 MHz Full 60.8 60.4 dB
IN
= 19.7 MHz Full 9.71 9.87 9.81 Bits
IN
= 35 MHz Full 9.87 9.43 9.81 Bits
IN
= 70 MHz Full 9.84 9.79 Bits
IN
= 19.7 MHz Full 72 85 79 dBc
IN
= 35 MHz Full 79 62 77 dBc
IN
= 35 MHz 25°C 69 77 dBc
IN
= 70 MHz Full 74 72 dBc
IN
= 19.7 MHz Full −85 −72 −79 dBc
IN
= 35 MHz Full −79 −77 −62 dBc
IN
= 35 MHz 25°C −77 −69 dBc
IN
= 70 MHz Full −74 −72 dBc
IN
= 19.7 MHz Full −85 −72 −86 dBc
IN
= 35 MHz Full −85 −85 −70 dBc
IN
= 70 MHz Full −85 −85 dBc
IN
f
= 15 MHz,
IN1
= 16 MHz
f
IN2
= 70 MHz,
f
IN1
= 71 MHz
f
IN2
25°C 80.0 77.0 dBc
25°C 77.0 77.0 dBc
Rev. 0 | Page 4 of 56
AD9212

DIGITAL SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.
Table 3.
AD9212-40 AD9212-65 Parameter
CLOCK INPUTS (CLK+, CLK−)
Logic Compliance CMOS/LVDS/LVPECL CMOS/LVDS/LVPECL
Differential Input Voltage
Input Common-Mode Voltage Full 1.2 1.2 V
Input Resistance (Differential) 25°C 20 20
Input Capacitance 25°C 1.5 1.5 pF LOGIC INPUTS (PDWN, SCLK/DTP)
Logic 1 Voltage Full 1.2 3.6 1.2 3.6 V
Logic 0 Voltage Full 0 0.3 0.3 V
Input Resistance 25°C 30 30
Input Capacitance 25°C 0.5 0.5 pF LOGIC INPUT (CSB)
Logic 1 Voltage Full 1.2 3.6 1.2 3.6 V
Logic 0 Voltage Full 0 0.3 0.3 V
Input Resistance 25°C 70 70
Input Capacitance 25°C 0.5 0.5 pF LOGIC INPUT (SDIO/ODM)
Logic 1 Voltage Full 1.2 DRVDD + 0.3 1.2 DRVDD + 0.3 V
Logic 0 Voltage Full 0 0.3 0 0.3 V
Input Resistance 25°C 30 30
Input Capacitance 25°C 2 2 pF LOGIC OUTPUT (SDIO/ODM)
Logic 1 Voltage (IOH = 50 μA) Full 1.79 1.79 V
Logic 0 Voltage (IOL = 50 μA) Full 0.05 0.05 V DIGITAL OUTPUTS (D+, D−), (ANSI-644)
Logic Compliance LVDS LVDS
Differential Output Voltage (VOD) Full 247 454 247 454 mV
Output Offset Voltage (VOS) Full 1.125 1.375 1.125 1.375 V
Output Coding (Default) Offset binary Offset binary DIGITAL OUTPUTS (D+, D−),
(Low Power, Reduced Signal Option)
Logic Compliance LVDS LVDS
Differential Output Voltage (VOD) Full 150 250 150 250 mV
Output Offset Voltage (VOS) Full 1.10 1.30 1.10 1.30 V
Output Coding (Default) Offset binary Offset binary
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
2
This is specified for LVDS and LVPECL only.
1
2
Temperature Min Typ Max Min Typ Max Unit
Full 250 250 mV p-p
Rev. 0 | Page 5 of 56
AD9212

SWITCHING SPECIFICATIONS

AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.
Table 4.
AD9212-40 AD9212-65
Parameter
CLOCK
OUTPUT PARAMETERS
APERTURE
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
2
Can be adjusted via the SPI interface.
3
Measurements were made using a part soldered to FR4 material.
4
t
SAMPLE
1
2
Temp
Min Typ Max Min Typ Max Unit
Maximum Clock Rate Full 40 65 MSPS Minimum Clock Rate Full 10 10 MSPS Clock Pulse Width High (tEH) Full 12.5 7.7 ns Clock Pulse Width Low (tEL) Full 12.5 7.7 ns
2, 3
Propagation Delay (tPD) Full 1.5 2.3 3.1 1.5 2.3 3.1 ns Rise Time (tR) (20% to 80%) Full 300 300 ps Fall Time (tF) (20% to 80%) Full 300 300 ps FCO Propagation Delay (t DCO Propagation Delay (t
DCO to Data Delay (t
DCO to FCO Delay (t Data to Data Skew
− t
(t
DATA-MAX
DATA-MIN
) Full 1.5 2.3 3.1 1.5 2.3 3.1 ns
FCO
)4Full t
CPD
DATA
FRAME
)4
)4
Full (t
Full (t
/20) − 300 (t
SAMPLE
/20) − 300 (t
SAMPLE
FCO
(t
+
SAMPLE
SAMPLE
SAMPLE
t
/20) /20) (t
/20) (t
/20) + 300 (t
SAMPLE
/20) + 300 (t
SAMPLE
/20) − 300 (t
SAMPLE
/20) − 300 (t
SAMPLE
FCO
(t
SAMPLE
SAMPLE
SAMPLE
+
/20) /20) (t
/20) (t
ns
/20) + 300 ps
SAMPLE
/20) + 300 ps
SAMPLE
Full ±50 ±200 ±50 ±200 ps
) Wake-Up Time (Standby) 25°C 600 600 ns Wake-Up Time (Power-Down) 25°C 375 375 μs Pipeline Latency Full 8 8 CLK
cycles
Aperture Delay (tA) 25°C 750 750 ps Aperture Uncertainty (Jitter) 25°C <1 <1 ps rms Out-of-Range Recovery Time 25°C 1 1 CLK
cycles
/20 is based on the number of bits divided by 2 because the delays are based on half duty cycles.
Rev. 0 | Page 6 of 56
AD9212

TIMING DIAGRAMS

N–1
AIN
CLK–
CLK+
DCO–
DCO+
FCO–
FCO+
D–
D+
t
A
N
t
t
FCO
PD
t
EH
t
CPD
t
FRAME
MSB
D8
N – 8
N – 8D7N – 8
D6
N – 8
t
D5
N – 8
EL
t
DATA
D4
N – 8
D3
N – 8
D2
N – 8
D1
N – 8
D0
N – 8
MSB N – 7
D8
N – 7D7N – 7
D6
N – 7
D5
N – 7
05968-003
Figure 2. 10-Bit Data Serial Stream (Default)
AIN
CLK–
CLK+
DCO–
DCO+
FCO–
FCO+
N-1
t
A
N
t
EH
t
CPD
t
FCO
t
D–
D+
PD
t
FRAME
MSB
D10
N – 8
N – 8D9(N – 8)D8N – 8D7N – 8D6N – 8D5N – 8D4N – 8D3N – 8D2N – 8D1N – 8D0N – 8
t
EL
t
DATA
D10
MSB
N – 7
N – 7
05968-002
Figure 3.12-Bit Data Serial Stream
Rev. 0 | Page 7 of 56
AD9212
N–1
AIN
t
A
N
CLK–
CLK+
DCO–
DCO+
FCO–
FCO+
t
EH
t
CPD
t
FCO
t
PD
D–
D+
t
FRAME
LSB
N – 8D0N – 8D1N – 8D2N – 8D3N – 8D4N – 8D5N – 8D6N – 8D7N – 8D8N – 8
t
EL
t
DATA
LSB
N – 7D0N – 7
D1
N – 7
D2
N – 7
05968-004
Figure 4. 10-Bit Data Serial Stream, LSB First
Rev. 0 | Page 8 of 56
AD9212

ABSOLUTE MAXIMUM RATINGS

Table 5.
With
Parameter
ELECTRICAL
AVDD AGND −0.3 V to +2.0 V DRVDD DRGND −0.3 V to +2.0 V AGND DRGND −0.3 V to +0.3 V AVDD DRVDD −2.0 V to +2.0 V Digital Outputs
(D+, D−, DCO+,
DCO−, FCO+, FCO−) CLK+, CLK− AGND −0.3 V to +3.9 V VIN+, VIN− AGND −0.3 V to +2.0 V SDIO/ODM AGND −0.3 V to +2.0 V PDWN, SCLK/DTP, CSB AGND −0.3 V to +3.9 V REFT, REFB, RBIAS AGND −0.3 V to +2.0 V VREF, SENSE AGND −0.3 V to +2.0 V
ENVIRONMENTAL
Operating Temperature
Range (Ambient) Maximum Junction
Temperature Lead Temperature
(Soldering, 10 sec) Storage Temperature
Range (Ambient)
Respect To
DRGND −0.3 V to +2.0 V
−40°C to +85°C
150°C
300°C
−65°C to +150°C
Rating
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL IMPEDANCE

Table 6.
Air Flow Velocity (m/s)
0.0 17.7°C/W
1.0 15.5°C/W 8.7°C/W 0.6°C/W
2.5 13.9°C/W
1
θ
for a 4-layer PCB with solid ground plane (simulated). Exposed pad
JA
soldered to PCB.
1
θ
JA
θ
JB
θ
JC

ESD CAUTION

Rev. 0 | Page 9 of 56
AD9212

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

VIN+F
VIN–F
AVD D
VIN–E
VIN+E
AVD D
REFT
REFB
VREF
SENSE
RBIAS
VIN+D
VIN–D
AVD D
VIN–C
VIN+C
49
48
AVD D
47
VIN+B
46
VIN–B
45
AVD D
44
VIN–A
43
VIN+A
42
AVD D
41
PDWN
40
CSB
39
SDIO/ODM
38
SCLK/DTP
37
AVD D
36
DRGND
35
DRVDD
34
D+A
33
D–A
AVD D VIN+G VIN–G
AVD D VIN–H VIN+H
AVD D
AVD D
CLK–
CLK+
AVD D
AVD D
DRGND
DRVDD
D–H D+H
646362616059585756555453525150
PIN 1 INDICATOR
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
EXPOSED PADDLE, PIN 0 (BOTTO M OF PACKAGE)
AD9212
TOP VIEW
(Not to Scale)
171819202122232425262728293031
D–F
D+F
D–E
D–G
D+E
D+G
D–D
FCO–
FCO+
DCO–
DCO+
32
D–C
D–B
D+D
D+C
D+B
Figure 5. 64-Lead LFCSP Top View
Table 7. Pin Function Descriptions
Pin No. Mnemonic Description
0 AGND Analog Ground (Exposed Paddle) 1, 4, 7, 8, 11,
AVDD 1.8 V Analog Supply 12, 37, 42, 45, 48, 51, 59, 62
13, 36 DRGND Digital Output Driver Ground 14, 35 DRVDD 1.8 V Digital Output Driver Supply 2 VIN+G ADC G Analog Input—True 3 VIN−G ADC G Analog Input—Complement 5 VIN−H ADC H Analog Input—Complement 6 VIN+H ADC H Analog Input—True 9 CLK− Input Clock—Complement 10 CLK+ Input Clock—True 15 D−H ADC H Digital Output—Complement 16 D+H ADC H True Digital Output—True 17 D−G ADC G Digital Output—Complement 18 D+G ADC G True Digital Output—True 19 D−F ADC F Digital Output—Complement 20 D+F ADC F True Digital Output—True 21 D−E ADC E Digital Output—Complement 22 D+E ADC E True Digital Output—True 23 DCO− Data Clock Digital Output—Complement 24 DCO+ Data Clock Digital Output—True 25 FCO− Frame Clock Digital Output—Complement 26 FCO+ Frame Clock Digital Output—True 27 D−D ADC D Digital Output—Complement 28 D+D ADC D True Digital Output—True 29 D−C ADC C Digital Output—Complement 30 D+C ADC C True Digital Output—True 31 D−B ADC B Digital Output—Complement 32 D+B ADC B True Digital Output—True
05968-005
Rev. 0 | Page 10 of 56
AD9212
Pin No. Mnemonic Description
33 D−A ADC A Digital Output—Complement 34 D+A ADC A True Digital Output—True 38 SCLK/DTP Serial Clock/Digital Test Pattern 39 SDIO/ODM Serial Data Input-Output/Output Driver Mode 40 CSB Chip Select Bar 41 PDWN Power Down 43 VIN+A ADC A Analog Input—True 44 VIN−A ADC A Analog Input—Complement 46 VIN−B ADC B Analog Input—Complement 47 VIN+B ADC B Analog Input—True 49 VIN+C ADC C Analog Input—True 50 VIN−C ADC C Analog Input—Complement 52 VIN−D ADC D Analog Input—Complement 53 VIN+D ADC D Analog Input—True 54 RBIAS External Resistor to Set the Internal ADC Core Bias Current 55 SENSE Reference Mode Selection 56 VREF Voltage Reference Input/Output 57 REFB Differential Reference (Negative) 58 REFT Differential Reference (Positive) 60 VIN+E ADC E Analog Input—True 61 VIN−E ADC E Analog Input—Complement 63 VIN−F ADC F Analog Input—Complement 64 VIN+F ADC F Analog Input—True
Rev. 0 | Page 11 of 56
AD9212
S

EQUIVALENT CIRCUITS

DRVDD
VIN
Figure 6. Equivalent Analog Input Circuit
CLK
CLK
10
10k
1.25V
10k
10
V
D– D+
V
05968-006
DRGND
V
V
5968-009
Figure 9. Equivalent Digital Output Circuit
SCLK/DTP OR PDWN
1k
30k
Figure 7. Equivalent Clock Input Circuit
DIO/ODM
350
30k
Figure 8. Equivalent SDIO/ODM Input Circuit
05968-007
05968-010
Figure 10. Equivalent SCLK/DTP or PDWN Input Circuit
RBIAS
05968-008
100
05968-011
Figure 11. Equivalent RBIAS Circuit
Rev. 0 | Page 12 of 56
AD9212
A
V
DD
70k
CSB
Figure 12. Equivalent CSB Input Circuit
1k
VREF
6k
05968-012
5968-014
Figure 14. Equivalent VREF Circuit
SENSE
1k
05968-013
Figure 13. Equivalent SENSE Circuit
Rev. 0 | Page 13 of 56
AD9212

TYPICAL PERFORMANCE CHARACTERISTICS

0
AIN = –0.5dBFS SNR = 60.41dB ENOB = 9.7 SFDR = 76.11dBc
–20
–20
0
AIN = –0.5dBFS SNR = 60.08dB ENOB = 9.61 SFDR = 71.68dBc
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 5 10 15 20 25 30
Figure 15. Single-Tone 32k FFT with f
0
AIN = –0.5dBF S SNR = 61.17dB ENOB = 9.85 SFDR = 81.27dBc
–20
–40
–60
–80
AMPLI TUDE (d BFS)
–100
FREQUENCY (MHz)
IN
= 2.3 MHz, AD9212-40
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
0 5 10 15 20 25 30
05968-037
Figure 18. Single-Tone 32k FFT with f
0
–20
–40
–60
–80
AMPLI TUDE (d BFS)
–100
FREQUENCY (MHz)
IN
= 35 MHz, AD9212-65
AIN = –0.5dBFS SNR = 60.25dB ENOB = 9.66 SFDR = 72.45dBc
05968-040
–120
0
2 6 10 14 184 8 12 16 20
Figure 16. Single-Tone 32k FFT with f
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 5 10 15 20 25 30
Figure 17. Single-Tone 32k FFT with f
FREQUENCY (MHz)
= 19.7 MHz, AD9212-40
IN
FREQUENCY (MHz)
IN
AIN = –0.5dBF S SNR = 60.48dB ENOB = 9.72 SFDR = 76.84d Bc
= 2.3 MHz, AD9212-65
05968-038
05968-039
Rev. 0 | Page 14 of 56
–120
0 5 10 15 20 25 30
Figure 19. Single-Tone 32k FFT with f
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 5 10 15 20 25 30
Figure 20. Single-Tone 32k FFT with f
FREQUENCY (MHz)
IN
FREQUENCY (MHz)
= 120 MHz, AD9212-65
IN
= 70 MHz, AD9212-65
AIN = –0.5dBFS SNR = 60.08dB ENOB = 9.61 SFDR = 71.68dBc
05968-041
05968-042
AD9212
90
85
80
75
70
65
SNR/SF DR (dB)
60
55
50
10 40
Figure 21. SNR/SFDR vs. f
90
85
80
75
70
65
SNR/SFDR (dB)
60
55
50
10 40
Figure 22. SNR/SFDR vs. f
SFDR
SNR
ENCODE (MSPS)
, fIN = 10.3 MHz, AD9212-40
SAMPLE
SFDR
SNR
ENCODE (MSPS)
, fIN = 19.7 MHz, AD9212-40
SAMPLE
3530252015
05968-043
3530252015
05968-044
90
85
80
75
70
65
SNR/SFDR (dB)
60
55
50
10
Figure 24. SNR/SFDR vs. f
100
90
80
70
60
50
40
SNR/SFDR (dB)
30
20
10
0
–60 –50 –40 –30 –20 –10 0
Figure 25. SNR/SFDR vs. Analog Input Level, f
SFDR
SNR
ENCODE (MSPS)
, fIN = 35 MHz, AD9212-65
SAMPLE
SFDR
70dB REFERENCE
SNR
ANALOG INP UT LEVEL (dBFS)
= 10.3 MHz, AD9212-40
IN
6050403020
5968-046
05968-047
90
85
80
75
70
65
SNR/SFDR (dB)
60
55
50
10
Figure 23. SNR/SFDR vs. f
SFDR
SNR
ENCODE (MSPS)
, fIN = 10.3 MHz, AD9212-65
SAMPLE
100
90
80
70
60
50
40
SNR/SFDR (dB)
30
20
10
0
6050403020
05968-045
–60 –50 –40 –30 –20 –10 0
Figure 26. SNR/SFDR vs. Analog Input Level, f
SFDR
70dB REF ERENCE
SNR
ANALOG INPUT LEVEL (dBFS)
= 35 MHz, AD9212-40
IN
05968-048
Rev. 0 | Page 15 of 56
AD9212
100
90
80
70
60
50
40
SNR/SFDR (dB)
30
20
10
0
–60 –50 –40 –30 –20 –10 0
Figure 27. SNR/SFDR vs. Analog Input Level, f
SFDR
70dB REFERENCE
SNR
ANALOG INPUT LEVEL (dBFS)
= 10.3 MHz, AD9212-65
IN
05968-049
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
0
24681012 14 16 18 20
FREQUENCY (MHz )
Figure 30. Two-Tone 32k FFT with f
AD9212-40
AIN1 AND AIN2 = –7dBFS SFDR = 76.7d B IMD2 = 83.38d Bc IMD3 = 77.21d Bc
= 70 MHz and f
IN1
= 71 MHz,
IN2
05968-052
100
90
80
70
60
50
40
SNR/SFDR (dB)
30
20
10
0
–60 –50 –40 –30 –20 –10 0
Figure 28. SNR/SFDR vs. Analog Input Level, f
0
AIN1 AND AIN2 = –7dBFS SFDR = 84.8dB IMD2 = 83.66dBc IMD3 = 84.6dBc
–20
–40
SFDR
70dB REFERENCE
SNR
ANALOG INPUT LEVEL (dBFS)
= 35 MHz, AD9212-65
IN
0
–20
–40
–60
–80
AMPLITUDE (dBFS)
–100
–120
05968-050
0 5 10 15 20 25 30
FREQUENCY (MHz)
Figure 31. Two-Tone 32k FFT with f
= 16 MHz, AD9212-65
f
IN2
0
–20
–40
AIN1 AND AIN2 = –7dBFS SFDR = 77.4dB IMD2 = 77.92dBc IMD3 = 76.9dBc
= 15 MHz and
IN1
AIN1 AND AIN2 = –7dBFS SFDR = 72.5dB IMD2 = 77.14dBc IMD3 = 72.55dBc
5968-053
–60
–80
AMPLITUDE (dBFS)
–100
–120
0
24681012 14 16 18 20
FREQUENCY (MHz )
Figure 29. Two-Tone 32k FFT with f
AD9212-40
= 15 MHz and f
IN1
= 16 MHz,
IN2
5968-051
Rev. 0 | Page 16 of 56
–60
–80
AMPLITUDE (dBFS)
–100
–120
0 5 10 15 20 25 30
Figure 32. Two-Tone 32k FFT with f
FREQUENCY (MHz )
= 71 MHz, AD9212- 65
f
IN2
= 70 MHz and
IN1
5968-054
AD9212
80
75
SFDR
70
65
SNR/SFDR (dB)
60
55
50
1 10 100 1 000
Figure 33. SNR/SFDR vs. f
SNR
ANALOG INPUT FREQUENCY ( MHz)
, AD9212-65
IN
05968-055
0.5
0.4
0.3
0.2
0.1
0
INL (LSB)
–0.1
–0.2
–0.3
–0.4
–0.5
0
Figure 36. INL, f
CODE
= 2.3 MHz, AD9212-65
IN
1000200 400 600 800
05968-058
90
85
80
75
70
65
SINAD/SFDR (d B)
60
55
50
–40 –20 0 20 40 60 80
TEMPERATURE (°C)
Figure 34. SINAD/SFDR vs. Temperature, f
90
85
80
75
70
65
SINAD/SFDR (d B)
60
55
50
–40 –20 0 20 40 60 80
SFDR
SINAD
TEMPERATURE (°C)
SFDR
SINAD
= 10.3 MHz, AD9212-40
IN
Figure 35. SINAD/SFDR vs. Temperature, fIN = 10.3 MHz, AD9212-65
0.5
0.4
0.3
0.2
0.1
0
DNL (LSB)
–0.1
–0.2
–0.3
–0.4
–0.5
05968-056
05968-057
0
CODE
Figure 37. DNL, f
30
–35
–40
–45
–50
CMRR (dB)
–55
–60
–65
–70
0 5 10 15 20 25 30 35 40
= 2.3 MHz, AD9212-65
IN
FREQUENCY (MHz)
1000200 400 600 800
05968-060
05968-061
Figure 38. CMRR vs. Frequency, AD9212-65
Rev. 0 | Page 17 of 56
Loading...
+ 39 hidden pages