ANALOG DEVICES AD9125 Service Manual

Dual, 16-Bit, 1000 MSPS,
TxDAC+ Digital-to-Analog Converter

FEATURES

Flexible CMOS interface allows dual-word, word, or byte load Single-carrier W-CDMA ACLR = 80 dBc at 122.88 MHz IF Analog output: adjustable 8.7 mA to 31.7 mA, R Novel 2×/4×/8× interpolator/complex modulator allows
carrier placement anywhere in the DAC bandwidth Gain and phase adjustment for sideband suppression Multichip synchronization interface High performance, low noise PLL clock multiplier Digital inverse sinc filter Low power: 900 mW at 500 MSPS, full operating conditions 72-lead, exposed paddle LFCSP

APPLICATIONS

Wireless infrastructure W-CDMA, CDMA2000, TD-SCDMA, WiMAX, GSM, LTE Digital high or low IF synthesis Transmit diversity Wideband communications: LMDS/MMDS, point-to-point Cable modem termination systems
= 25 Ω to 50 Ω
L
AD9125

GENERAL DESCRIPTION

The AD9125 is a dual, 16-bit, high dynamic range TxDAC+® digital-to-analog converter (DAC) that provides a sample rate of 1000 MSPS, permitting a multicarrier generation up to the Nyquist frequency. It includes features optimized for direct conversion transmit applications, including complex digital modulation, and gain and offset compensation. The DAC outputs are optimized to interface seamlessly with analog quadrature modulators, such as the ADL537x F-MOD series from Analog Devices, Inc. A 4-wire serial port interface allows programming/readback of many inter­nal parameters. Full-scale output current can be programmed over a range of 8.7 mA to 31.7 mA. The AD9125 comes in a 72-lead LFCSP.

PRODUCT HIGHLIGHTS

1. Ultralow noise and intermodulation distortion (IMD)
enable high quality synthesis of wideband signals from baseband to high intermediate frequencies.
2. A proprietary DAC output switching technique enhances
dynamic performance.
3. The current outputs are easily configured for various
single-ended or differential circuit topologies.
4. The flexible CMOS digital interface allows the standard
32-wire bus to be reduced to a 16-wire bus.

TYPICAL SIGNAL CHAIN

COMPLEX BAS EBAND
DC
2
DIGITAL
BASEBAND
PROCESSOR
NOTES
1. AQM = ANALOG QUADRATURE MODULATOR.
SIN
COS
2
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
COMPL E X I F
2/4
2/4
RF
f
IF
I DAC
ANTIALIASING
FILTER
Q DAC
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.
LO – f
IF
AQM
LO
PA
09016-001
AD9125

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Product Highlights ........................................................................... 1
Typical Signal Chain ......................................................................... 1
Revision History ............................................................................... 2
Functional Block Diagram .............................................................. 3
Specifications ..................................................................................... 4
DC Specifications ......................................................................... 4
Digital Specifications ................................................................... 5
Latency and Power-Up Timing Specifications ......................... 5
AC Specifications .......................................................................... 6
Absolute Maximum Ratings ............................................................ 7
Thermal Resistance ...................................................................... 7
ESD Caution .................................................................................. 7
Pin Configuration and Function Descriptions ............................. 8
Typical Performance Characteristics ........................................... 10
Terminolog y .................................................................................... 16
Theory of Operation ...................................................................... 17
Serial Port Operation ................................................................. 17
Data Format ................................................................................ 17
Serial Port Pin Descriptions ...................................................... 17
Serial Port Options ..................................................................... 18
Device Configuration Register Map ............................................ 19
Device Configuration Register Descriptions .......................... 21
CMOS Input Data Ports ................................................................ 29
Dual-Word Mode ....................................................................... 29
Word Mode ................................................................................. 29
Byte Mode .................................................................................... 29
Interface Timing ......................................................................... 30
FIFO Operation .......................................................................... 30
Digital Datapath .............................................................................. 32
Premodulation ............................................................................ 32
Interpolation Filters ................................................................... 32
NCO Modulation ....................................................................... 35
Datapath Configuration ............................................................ 35
Determining Interpolation Filter Modes ................................ 36
Datapath Configuration Example ............................................ 37
Data Rates vs. Interpolation Modes ......................................... 38
Coarse Modulation Mixing Sequences .................................... 38
Quadrature Phase Correction ................................................... 39
DC Offset Correction ................................................................ 39
Inverse Sinc Filter ....................................................................... 39
DAC Input Clock Configurations ................................................ 40
DAC Input Clock Configurations ............................................ 40
Analog Outputs............................................................................... 42
Transmit DAC Operation .......................................................... 42
Auxiliary DAC Operation ......................................................... 43
Baseband Filter Implementation .............................................. 44
Driving the ADL5375-15 .......................................................... 44
Reducing LO Leakage and Unwanted Sidebands .................. 44
Device Power Dissipation .............................................................. 45
Temperature Sensor ................................................................... 46
Multichip Synchronization ............................................................ 47
Synchronization with Clock Multiplication ............................... 47
Synchronization with Direct Clocking .................................... 49
Data Rate Mode Synchronization ............................................ 49
FIFO Rate Mode Synchronization ........................................... 50
Additional Synchronization Features ...................................... 51
Interrupt Request Operation ........................................................ 52
Interrupt Service Routine .......................................................... 52
Interface Timing Validation .......................................................... 53
SED Operation ............................................................................ 53
SED Example .............................................................................. 53
Example Start-Up Routine ........................................................ 54
Outline Dimensions ....................................................................... 55
Ordering Guide .......................................................................... 55

REVISION HISTORY

6/10—Revision 0: Initial Version
Rev. 0 | Page 2 of 56
AD9125

FUNCTIONAL BLOCK DIAGRAM

D[31:0]
DCI
FRAME
f
/2
DATA
PRE
FIFO HB1 HB2 HB3
DATA
RECEIVER
MODE
PROGRAMMING
REGISTERS
MOD
SERIAL
INPUT/OUTPUT
PORT
SDO
NCO AND MOD
HB1_CLK
INTERNAL CL OCK TIMING AND CONT ROL LOGIC
CS
SDIO
IRQ
SCLK
10
HB2_CLK
HB3_CLK
INTP
FACTOR
PHASE
CORRECTION
POWER-ON
RESET
RESET
MULTICHIP
SYNCHRONIZATION
SYNC
Figure 2. AD9125 Functional Block Diagram
16
I OFFSET
Q OFFSET
16
16
INV
SINC
16
INVSINC_CLK
PLL CONTROL
DACCLK
PLL_LOCK
GAIN 110GAIN 2
10
DAC CLK_SEL
0
1
MULTIPLIER
(2× TO 16×)
DACCLK
CLOCK
1.2G DAC 1
16-BIT
1.2G DAC 1
16-BIT
REF AND
BIAS
AUX
AUX
CLK
RCVR
CLK
RCVR
IOUT1P
IOUT1N
IOUT2P
IOUT2N
REFIO FSADJ
DACCLKP DACCLKN
REFCLKP REFCLKN
09016-002
Rev. 0 | Page 3 of 56
AD9125

SPECIFICATIONS

DC SPECIFICATIONS

T
to T
MIN
Table 1.
Parameter Min Typ Max Unit
RESOLUTION 16 Bits ACCURACY
Differential Nonlinearity (DNL) ±2.1 LSB Integral Nonlinearity (INL) ±3.7 LSB
MAIN DAC OUTPUTS
Offset Error −0.001 0 +0.001 % FSR Gain Error (with Internal Reference) −3.6 ±2 +3.6 % FSR Full-Scale Output Current1 8.66 19.6 31.66 mA Output Compliance Range −1.0 +1.0 V Output Resistance 10 MΩ Gain DAC Monotonicity Guaranteed Settling Time to Within ±0.5 LSB 20 ns
MAIN DAC TEMPERATURE DRIFT
Offset 0.04 ppm/°C Gain 100 ppm/°C Reference Voltage 30 ppm/°C
REFERENCE
Internal Reference Voltage 1.2 V Output Resistance 5
ANALOG SUPPLY VOLTAGES
AVDD33 3.13 3.3 3.47 V CVDD18 1.71 1.8 1.89 V
DIGITAL SUPPLY VOLTAGES
DVDD18 1.71 1.8 1.89 V IOVDD 1.71 1.8/3.3 3.47 V
POWER CONSUMPTION
2× Mode, f 2× Mode, f 8× Mode, f AVDD33 55 58 mA CVDD18 78 85 mA DVDD18 440 490 mA Power-Down Mode 1.5 2.7 mW Power Supply Rejection Ratio, AVDD33 −0.3 +0.3 % FSR/V
OPERATING RANGE −40 +25 +85 °C
1
Based on a 10 kΩ external resistor.
, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, I
MAX
= 491.52 MSPS, IF = 10 MHz, PLL Off 834 mW
DAC
= 491.52 MSPS, IF = 10 MHz, PLL On 913 mW
DAC
= 800 MSPS, IF = 10 MHz, PLL Off 1114 1227 mW
DAC
= 20 mA, maximum sample rate, unless otherwise noted.
OUTFS
Rev. 0 | Page 4 of 56
AD9125

DIGITAL SPECIFICATIONS

T
to T
MIN
otherwise noted.
Table 2.
Parameter Conditions Min Typ Max Unit
CMOS DATA INPUTS
Input VIN Logic High 1.2 V
Input VIN Logic Low 0.6 V
Maximum Bus Speed 250 MHz
SERIAL PORT OUTPUT LOGIC LEVELS
Output V
IOVDD = 2.5 V 1.8 V
IOVDD = 3.3 V 2.0 V
Output V
IOVDD = 2.5 V 0.4 V
IOVDD = 3.3 V 0.4 V
SERIAL PORT INPUT LOGIC LEVELS
Input VIN Logic High IOVDD = 1.8 V 1.2 V
IOVDD = 2.5 V 1.6 V
IOVDD = 3.3 V 2.4 V
Input VIN Logic Low IOVDD = 1.8 V 0.6 V
IOVDD = 2.5 V 0.8 V
IOVDD = 3.3V 0.8 V
DACCLK INPUT (DACCLKP, DACCLKN)
Differential Peak-to-Peak Voltage 100 500 2000 mV
Common-Mode Voltage Self biased input, ac couple 1.25 V
Maximum Clock Rate 1000 MHz
REFCLK INPUT (REFCLKP, REFCLKN)
Differential Peak-to-Peak Voltage 100 500 2000 mV
Common-Mode Voltage 1.25 V
REFCLKx Frequency, PLL Mode 1 GHz ≤ f
REFCLKx Frequency, SYNC Mode See the Multichip Synchronization section for conditions 0 600 MHz
SERIAL PERIPHERAL INTERFACE
Maximum Clock Rate (SCLK) 40 MHz
Minimum Pulse Width High (t
Minimum Pulse Width Low (t
Setup Time, SDI to SCLK (tDS) 1.9 ns
Hold Time, SDI to SCLK (tDH) 0.2 ns
Data Valid, SDO to SCLK (tDV) 2.3 ns
Setup Time, CS to SCLK (t
, AVDD33 = 3.3 V, IOVDD = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, I
MAX
Logic High IOVDD = 1.8 V 1.4 V
OUT
Logic Low IOVDD = 1.8 V 0.4
OUT
≤ 2.1 GHz 15.625 600 MHz
VCO
) 12.5 ns
PWH
) 12.5 ns
PWOL
) 1.4 ns
D
CS
= 20 mA, maximum sample rate, unless
OUTFS

LATENCY AND POWER-UP TIMING SPECIFICATIONS

Table 3.
Parameter Min Typ Max Unit
LATENCY (DACCLK Cycles)
1× Interpolation (with or Without Modulation) 64 Cycles
2× Interpolation (with or Without Modulation) 135 Cycles
4× Interpolation (with or Without Modulation) 292 Cycles
8× Interpolation (with or Without Modulation) 608 Cycles
Inverse Sinc 20 Cycles
Fine Modulation 8 Cycles
Power-Up Time 260 ms
Rev. 0 | Page 5 of 56
AD9125

AC SPECIFICATIONS

T
to T
MIN
Table 4.
Parameter Min Typ Max Unit
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
f
DAC
f
DAC
f
DAC
f
DAC
TWO-TONE INTERMODULATION DISTORTION (IMD)
f
DAC
f
DAC
f
DAC
f
DAC
NOISE SPECTRAL DENSITY (NSD) EIGHT-TONE, 500 kHz TONE SPACING
f
DAC
f
DAC
f
DAC
W-CDMA ADJACENT CHANNEL LEAKAGE RATIO (ACLR), SINGLE CARRIER
f
DAC
f
DAC
f
DAC
W-CDMA SECOND ACLR, SINGLE CARRIER
f
DAC
f
DAC
f
DAC
, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, I
MAX
= 100 MSPS, f = 200 MSPS, f = 400 MSPS, f = 800 MSPS, f
= 200 MSPS, f = 400 MSPS, f = 400 MSPS, f = 800 MSPS, f
= 200 MSPS, f = 400 MSPS, f = 800 MSPS, f
= 491.52 MSPS, f = 491.52 MSPS, f = 983.04 MSPS, f
= 491.52 MSPS, f = 491.52 MSPS, f = 983.04 MSPS, f
= 20 MHz 78 dBc
OUT
= 50 MHz 80 dBc
OUT
= 70 MHz 69 dBc
OUT
= 70 MHz 72 dBc
OUT
= 50 MHz 84 dBc
OUT
= 60 MHz 86 dBc
OUT
= 80 MHz 84 dBc
OUT
= 100 MHz 81 dBc
OUT
= 80 MHz −162 dBm/Hz
OUT
= 80 MHz −163 dBm/Hz
OUT
= 80 MHz −164 dBm/Hz
OUT
= 10 MHz 82 dBc
OUT
= 122.88 MHz 80 dBc
OUT
= 122.88 MHz 81 dBc
OUT
= 10 MHz 88 dBc
OUT
= 122.88 MHz 86 dBc
OUT
= 122.88 MHz 88 dBc
OUT
= 20 mA, maximum sample rate, unless otherwise noted.
OUTFS
Table 5. Interface Speeds
Mode Interpolation f
f
BUS
f
DATA
DAC
Byte Mode 250 62.5 62.5 2× (HB1) 250 62.5 125 2× (HB2) 250 62.5 125 4× 250 62.5 250 8× 250 62.5 500 Word Mode 250 125 125 2× (HB1) 250 125 250 2× (HB2) 250 125 250 4× 250 125 500 8× 250 125 1000 Dual-Word Mode 250 250 250 2× (HB1) 250 250 500 2× (HB2) 250 250 500 4× 250 250 1000 8× 125 125 1000
Rev. 0 | Page 6 of 56
AD9125

ABSOLUTE MAXIMUM RATINGS

Table 6.
With
Parameter
AVDD33
IOVDD
DVDD18, CVDD18
AVS S
EPAD
CVSS
DVSS
FSADJ, REFIO,
IOUT1P/IOUT1N,
IOUT2P/IOUT2N
D[31:0], FRAME, DCI EPAD, DVSS −0.3 V to DVDD18 + 0.3 V DACCLKP/DACCLKN,
REFCLKP/REFCLKN
RESET, IRQ, CS, SCLK,
SDIO, SDO
Junction Temperature 125°C Storage Temperature
Range
Respect To Rating
AVSS, EPAD, CVSS, DVSS
AVSS, EPAD, CVSS, DVSS
AVSS, EPAD, CVSS, DVSS
EPAD, CVSS, DVSS
AVSS, CVSS, DVSS
AVSS, EPAD, DVSS
AVSS, EPAD, CVSS
AVSS −0.3 V to AVDD33 + 0.3 V
DVSS −0.3 V to CVDD18 + 0.3 V
EPAD, DVSS −0.3 V to IOVDD + 0.3 V
−65°C to +150°C
−0.3 V to +3.6 V
−0.3 V to +3.6 V
−0.3 V to +2.1 V
−0.3 V to +0.3 V
−0.3 V to +0.3 V
−0.3 V to +0.3 V
−0.3 V to +0.3 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

The exposed paddle (EPAD) must be soldered to the ground plane for the 72-lead LFCSP. The EPAD performs as an electrical and thermal connection to the board.
Typical θ
, θJB, and θJC values are specified for a 4-layer board in
JA
still air. Airflow increases heat dissipation, effectively reducing θ
and θJB.
JA
Table 7. Thermal Resistance
Package θJA θJB θJC Unit Conditions
72-Lead LFCSP 20.7 10.9 1.1 °C/W EPAD soldered

ESD CAUTION

Rev. 0 | Page 7 of 56
AD9125

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

CVDD18
CVDD18
REFCLKP
REFCLKN
AVDD33
IOUT1P
IOUT1N
AVDD33
AVSS
FSADJ
REFIO
AVSS
AVDD33
IOUT2N
IOUT2P
AVDD33
AVSS
NC
7271706968676665646362616059585756
55
CVDD18 DACCLKP DACCLKN
DVDD18
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD MUST BE CONNECTED TO AVSS.
CVSS
FRAME
NC IRQ D31 D30
NC
IOVDD
D29 D28 D27 D26
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17D25 18D24
PIN 1 INDICATOR
(Not to S cale)
192021222324252627282930313233
D23
D22
D21
D20
D19
D18
D17
AD9125
TOP VIEW
NC
DCI
D16
DVSS
DVDD18
D15
D14
D13
34
D12
35D11
36D10
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37
RESET CS SCLK SDIO SDO DVDD18 D0 D1 D2 D3 DVSS DVDD18 D4 D5 D6 D7 D8 D9
09016-003
Figure 3. Pin Configuration
Table 8. Pin Function Descriptions
Pin No. Mnemonic Description
1 CVDD18 1.8 V Clock Supply. Supplies clock receivers, clock distribution, and PLL circuitry. 2 DACCLKP DAC Clock Input, Positive. 3 DACCLKN DAC Clock Input, Negative. 4 CVSS Clock Supply Common. 5 FRAME Frame Input. 6 NC No Connect 7
IRQ
(INT)
Interrupt Request. Open Drain, Active Low Output. Connect external pull-up to IOVDD. 8 D31 Data Bit 31. 9 D30 Data Bit 30. 10 NC No Connect. 11 IOVDD
Supply for Serial Port Pin, RESET
Pin, and IRQ Pin. 1.8 V to 3.3 V can be applied to this pin. 12 DVDD18 1.8 V Digital Supply. Supplies power to digital core and digital data ports. 13 D29 Data Bit 29. 14 D28 Data Bit 28. 15 D27 Data Bit 27. 16 D26 Data Bit 26. 17 D25 Data Bit 25. 18 D24 Data Bit 24. 19 D23 Data Bit 23. 20 D22 Data Bit 22. 21 D21 Data Bit 21. 22 D20 Data Bit 20. 23 D19 Data Bit 19. 24 D18 Data Bit 18. 25 D17 Data Bit 17. 26 D16 Data Bit 16. 27 DCI Data Clock Input.
Rev. 0 | Page 8 of 56
AD9125
Pin No. Mnemonic Description
28 NC No Connect. 29 DVDD18 1.8 V Digital Supply. 30 DVSS Digital Common. 31 D15 Data Bit 15. 32 D14 Data Bit 14. 33 D13 Data Bit 13. 34 D12 Data Bit 12. 35 D11 Data Bit 11. 36 D10 Data Bit 10. 37 D9 Data Bit 9. 38 D8 Data Bit 8. 39 D7 Data Bit 7. 40 D6 Data Bit 6. 41 D5 Data Bit 5. 42 D4 Data Bit 4. 43 DVDD18 1.8 V Digital Supply. 44 DVSS Digital Supply Common. 45 D3 Data Bit 3. 46 D2 Data Bit 2. 47 D1 Data Bit 1. 48 D0 Data Bit 0. 49 DVDD18 1.8 V Digital Supply. 50 SDO Serial Port Data Output (CMOS levels with respect to IOVDD). 51 SDIO Serial Port Data Input/Output (CMOS levels with respect to IOVDD). 52 SCLK Serial Port Clock Input (CMOS levels with respect to IOVDD). 53
54 55 NC No Connect.
56 AVSS Analog Supply Common. 57 AVDD33 3.3 V Analog Supply. 58 IOUT2P Q DAC Positive Current Output. 59 IOUT2N Q DAC Negative Current Output. 60 AVDD33 3.3 V Analog Supply. 61 AVSS Analog Supply Common. 62 REFIO Voltage Reference. Nominally 1.2 V output. Should be decoupled to analog common. 63 FSADJ Full-Scale Current Output Adjust. Place a 10 kΩ resistor on the analog common. 64 AVSS Analog Common. 65 AVDD33 3.3 V Analog Supply. 66 IOUT1N I DAC Negative Current Output. 67 IOUT1P I DAC Positive Current Output. 68 AVDD33 3.3 V Analog Supply. 69 REFCLKN PLL Reference Clock Input, Negative. This pin has a secondary function as the SYNC input. 70 REFCLKP PLL Reference Clock Input, Positive. This pin has a secondary function as the SYNC input. 71 CVDD18 1.8 V Clock Supply. Supplies clock receivers, clock distribution, and PLL circuitry. 72 CVDD18 1.8 V Clock Supply. Supplies clock receivers, clock distribution, and PLL circuitry. EPAD
CS RESET
Serial Port Chip Select. Active Low (CMOS levels with respect to IOVDD). Reset. Active Low (CMOS levels with respect to IOVDD).
Exposed pad must be connected to AVSS. This provides an electrical, thermal, and mechanical connection to the PCB.
Rev. 0 | Page 9 of 56
AD9125

TYPICAL PERFORMANCE CHARACTERISTICS

0
f
= 125MSPS, S E COND HARMONIC
DATA
f
–10
–20
–30
–40
–50
–60
HARMONICS (dBc)
–70
–80
–90
–100
0 50 100 150 200 250 300
Figure 4. Harmonics vs. f
= 125MSPS, THIRD HARMONIC
DATA
f
= 250MSPS, S E COND HARMONIC
DATA
f
= 250MSPS, THIRD HARMONIC
DATA
f
(MHz)
OUT
over f
OUT
Digital Scale = 0 dBFS, f
, 2× Interpolation,
DATA
= 20 mA
SC
09016-101
–50
–55
–60
–65
–70
–75
HARMONICS (dBc)
–80
–85
–90
Figure 7. Second Harmonic vs. f
0dBFS –6dBFS –12dBFS –18dBFS
0 50 100150200250300
f
(MHz)
OUT
over Digital Scale, 2× Interpolation,
OUT
= 250 MSPS, fSC = 20 mA
f
DATA
09016-104
0
f
= 125MSPS, S E COND HARMONIC
DATA
f
–10
–20
–30
–40
–50
–60
HARMONICS (d Bc)
–70
–80
–90
–100
0 100 200 300 400 500 600
Figure 5. Harmonics vs. f
0
–10
–20
–30
–40
–50
–60
HARMONICS (dBc)
–70
–80
–90
–100
0 100 200 300 400 500 600
Figure 6. Harmonics vs. f
= 125MSPS, THIRD HARMONIC
DATA
f
= 250MSPS, S E COND HARMONIC
DATA
f
= 250MSPS, THIRD HARMONIC
DATA
f
(MHz)
OUT
over f
OUT
Digital Scale = 0 dBFS, f
f
= 125MSPS, S E COND HARMONIC
DATA
f
= 125MSPS, THIRD HARMONIC
DATA
f
(MHz)
OUT
over f
OUT
Digital Scale = 0 dBFS, f
, 4× Interpolation,
DATA
= 20 mA
SC
, 8× Interpolation,
DATA
= 20 mA
SC
–50
–55
–60
–65
–70
–75
–80
HARMONICS (d Bc)
–85
–90
–95
–100
09016-102
Figure 8. Third Harmonic vs. f
–50
–55
–60
–65
–70
–75
–80
HARMONICS (dBc)
–85
–90
–95
09016-103
0dBFS –6dBFS –12dBFS –18dBFS
0 50 100150200250300
f
(MHz)
OUT
over Digital Scale, 2× Interpolation,
OUT
= 250 MSPS, fSC = 20 mA
f
DATA
10mA, SECOND HARMONI C 20mA, SECOND HARMONI C 30mA, SECOND HARMONI C 10mA, THIRD HARMONIC 20mA, THIRD HARMONIC 30mA, THIRD HARMONIC
0 50 100150200250300
f
(MHz)
OUT
Figure 9. Harmonics vs. f
= 250 MSPS, Digital Scale = 0 dBFS
f
DATA
over fSC, 2× Interpolation,
OUT
09016-105
09016-106
Rev. 0 | Page 10 of 56
AD9125
–50
–55
–60
–65
–70
–75
–80
–85
HIGHEST DIGITAL S P UR ( dBc)
–90
–95
Figure 10. Highest Digital Spur vs. f
f
= 125MSPS
DATA
f
= 250MSPS
DATA
0 50 100 150 200 250 300
f
(MHz)
OUT
Digital Scale = 0 dBFS, f
OUT
over f
, 2× Interpolation,
DATA
= 20 mA
SC
2× INTERPO LATION, SINGLE-TONE SPECTRUM,
f
= 250MSPS,
DATA
f
= 101MHz
OUT
START 1.0 MHz #RES BW 10kHz
09016-107
VBW 10kHz STOP 500.0M Hz
SWEEP 6.017s (601 PTS)
09016-110
Figure 13. 2× Interpolation, Single-Tone Spectrum
–50
–55
–60
–65
–70
–75
–80
HIGHEST DIGITAL S P UR ( dBc)
–85
–90
Figure 11. Highest Digital Spur vs. f
–50
–55
–60
–65
–70
–75
–80
–85
HIGHEST DIGITAL S P UR ( dBc)
–90
–95
Figure 12. Highest Digital Spur vs. f
f
= 125MSPS
DATA
f
= 250MSPS
DATA
0 100 200 300 400 500 600
f
(MHz)
OUT
040035030025020015010050
Digital Scale = 0 dBFS, f
f
= 125MSPS
DATA
Digital Scale = 0 dBFS, f
f
OUT
OUT
(MHz)
OUT
over f
over f
, 4× Interpolation,
DATA
= 20 mA
SC
, 8× Interpolation,
DATA
= 20 mA
SC
4× INTERPO LATION, SINGLE-TONE SPECTRUM,
f
= 125MSPS,
DATA
f
= 101MHz
OUT
START 1.0 MHz #RES BW 10kHz
09016-108
VBW 10kHz STOP 500.0M Hz
SWEEP 6.017s (601 PTS)
09016-111
Figure 14. 4× Interpolation, Single-Tone Spectrum
8× INTERPO LATION, SINGLE-TONE SPECTRUM,
f
= 125MSPS,
DATA
f
= 131MHz
OUT
START 1.0 MHz #RES BW 10kHz
09016-109
VBW 10kHz STOP 1.0G Hz
SWEEP 12.05s (601 PTS)
09016-112
Figure 15. 8× Interpolation, Single-Tone Spectrum
Rev. 0 | Page 11 of 56
AD9125
–50
–55
–60
f
DATA
f
DATA
= 125MSPS = 250MSPS
–50
–55
–60
0dBFS –6dBFS –12dBFS –18dBFS
–65
–70
IMD (dBc)
–75
–80
–85
–90
0 50 100 150 200 250 300
f
(MHz)
OUT
–50
–55
–60
–65
–70
IMD (dBc)
–75
–80
–85
Figure 16. IMD vs. f
Digital Scale = 0 dBFS, f
f
= 125MSPS
DATA
f
= 250MSPS
DATA
OUT
over f
, 2× Interpolation,
DATA
= 20 mA
SC
–65
–70
IMD (dBc)
–75
–80
–85
–90
0 50 100 150 200 250 300
f
(MHz)
09016-113
Figure 19. IMD vs. f
f
DATA
–50
–55
–60
–65
–70
IMD (dBc)
–75
–80
–85
20mA 30mA 10mA
OUT
over Digital Scale, 2× Interpolation,
OUT
= 250 MSPS, fSC = 20 mA
09016-116
–90
0 100 200 300 400 500 600
f
(MHz)
OUT
Figure 17. IMD vs. f
Digital Scale = 0 dBFS, f
–50
–55
–60
–65
–70
IMD (dBc)
–75
–80
–85
–90
f
= 125MSPS
DATA
0 100 200 300 400 500 600
Figure 18. IMD vs. f
Digital Scale = 0 dBFS, f
OUT
OUT
over f
f
OUT
over f
, 4× Interpolation,
DATA
= 20 mA
SC
(MHz)
, 8× Interpolation,
DATA
= 20 mA
SC
–90
0 50 100 150 200 250 300
f
(MHz)
09016-114
Figure 20. IMD vs. f
OUT
OUT
over fSC, 2× Interpolation, f
= 250 MSPS,
DATA
09016-117
Digital Scale = 0 dBFS
–40
–45
–50
–55
–60
–65
IMD (dBc)
–70
–75
–80
–85
–90
0 50 100 150 200 250 300
09016-115
PLL ON
PLL OFF
Figure 21. IMD vs. f
f
(MHz)
OUT
, PLL On vs. PLL Off
OUT
09016-118
Rev. 0 | Page 12 of 56
AD9125
–154
–156
–158
–160
–162
NSD (dBm/Hz)
–164
–166
–168
0600500400300200100
Figure 22. One-Tone NSD vs. f
Scale = 0 dBFS, f
2×,
f
DATA
4×,
f
DATA
8×,
f
DATA
f
(MHz)
OUT
over Interpolation Rate and f
OUT
= 20 mA, PLL Off
SC
= 250MSPS = 125MSPS = 125MSPS
DATA
09016-119
, Digital
–160
–161
–162
–163
NSD (dBm/Hz)
–164
–165
–166
Figure 25. Eight-Tone NSD vs. f
2×,
f
= 250MSPS
DATA
4×,
f
= 125MSPS
DATA
8×,
f
= 125MSPS
DATA
0 50 100 150 200 250 300 350 400 500450
f
(MHz)
OUT
over Interpolation Rate and f
OUT
Digital Scale = 0 dBFS, f
= 20 mA, PLL Off
SC
DATA
09016-122
,
–154
–156
–158
–160
–162
NSD (dBm/Hz)
–164
–166
–168
0dBFS –6dBFS –12dBFS –18dBFS
025020015010050
Figure 23. One-Tone NSD vs. f
4× Interpolation, f
–158
–159
–160
–161
–162
–163
NSD (dBm/Hz)
–164
–165
–166
–167
8×,
0600500400300200100
f
DATA
= 125MSPS
Figure 24. One-Tone NSD vs. f
Digital Scale = 0 dBFS, f
f
(MHz)
OUT
over Digital Scale, f
OUT
= 20 mA, PLL Off
SC
f
(MHz)
OUT
over Interpolation Rate and f
OUT
= 20 mA, PLL On
SC
DATA
= 200 MSPS,
,
DATA
–161.5
–162.0
–162.5
–163.0
–163.5
–164.0
–164.5
NSD (dBm/Hz)
–165.0
–165.5
–166.0
–166.5
09016-120
Figure 26. Eight-Tone NSD vs. f
–160
–161
–162
–163
–164
NSD (dBm/Hz)
–165
–166
–167
09016-121
Figure 27. Eight-Tone NSD vs. f
0dBFS –6dBFS –12dBFS –18dBFS
0 50 100 150 200 250
f
(MHz)
OUT
over Digital Scale, f
OUT
4× Interpolation, f
8×,
f
= 125MSPS
DATA
0 100 200 300 500400 600
Digital Scale = 0 dBFS, f
= 20 mA, PLL Off
SC
f
(MHz)
OUT
over Interpolation Rate and f
OUT
= 20 mA, PLL On
SC
= 200 MSPS,
DATA
DATA
09016-123
09016-124
,
Rev. 0 | Page 13 of 56
AD9125
ACLR (dBc)
–77
–78
–79
–80
–81
–82
–83
0dBFS –3dBFS –6dBFS
ACLR (dBc)
–50
–55
–60
–65
–70
–75
–80
–85
2×, PLL OFF 4×, PLL OFF 2×, PLL ON 4×, PLL ON
–84
0 50 100 150 200 250
f
(MHz)
OUT
Figure 28. One-Carrier W-CDMA ACLR vs. f
over Digital Cutback,
OUT
Adjacent Channel, PLL Off
–78
–80
–82
–84
ACLR (dBc)
–86
–88
–90
0dBFS –3dBFS –6dBFS
0 50 100 150 200 250
f
(MHz)
OUT
Figure 29. One-Carrier W-CDMA ACLR vs. f
OUT
Alternate Channel, PLL Off
–70
–75
0dBFS –3dBFS –6dBFS
over f
DAC
–90
0 100 200 300 400 500
f
(MHz)
09016-125
Figure 31. One-Carrier W-CDMA ACLR vs. f
OUT
over Interpolation Rate,
OUT
09016-128
Adjacent Channel, PLL On vs. PLL Off
–70
–72
–74
–76
–78
–80
–82
ACLR (dBc)
–84
–86
–88
–90
09016-126
,
Figure 32. One-Carrier W-CDMA ACLR vs. f
2×, PLL OFF 4×, PLL OFF 2×, PLL ON 4×, PLL ON
0 100 200 300 400 500
f
(MHz)
OUT
over Interpolation Rate,
OUT
09016-129
Alternate Channel, PLL On vs. PLL Off
–70
–75
2×, PLL OFF 4×, PLL OFF 2×, PLL ON 4×, PLL ON
–80
–85
ACLR (dBc)
–90
–95
0 50 100 150 200 250
f
(MHz)
OUT
Figure 30. One-Carrier W-CDMA ACLR vs. f
OUT
Second Alternate Channel, PLL Off
over f
DAC
09016-127
,
Rev. 0 | Page 14 of 56
–80
ACLR (dBc)
–85
–90
–95
0 100 200 300 400 500
f
(MHz)
OUT
Figure 33. One-Carrier W-CDMA ACLR vs. f
over Interpolation Rate,
OUT
Second Alternate Channel, PLL On vs. PLL Off
09016-130
AD9125
START 133.06M Hz #RES BW 30kHz
RMS RESULTS FREQ LOWER UPPER
CARRIER POWER 5.00MHz 3.840MHz –75.96 –85.96 –77.13 –87.13 –10.00dBm/ 10.00MHz 3.840MHz –85.33 –95.33 –85.24 –95.25
3.840MHz 15.00MHz 2.888MHz –95.81 –95.81 –85.43 –95.43
OFFSET REF BW dBc dBm dBc dBm
VBW 30kHz STOP 166.94MHz
SWEEP 143.6ms (601 PTS)
Figure 34. Four-Carrier W-CDMA ACLR Performance, IF ≈150 MHz
START 125.88MHz #RES BW 30kHz
TOTAL CARRIER POWER: –11.19dBm/15.3600MHz RRC FILTER: OFF FILTER ALPHA 0.22 REF CARRIER POWER: –16.89dBm/3.84000MHz
09016-131
1 –16.92dBm 5.000MHz 3.840MHz –65.88 –82.76 –67.52 –84.40 2 –16.89dBm 10.00MHz 3.840MHz –68.17 –85.05 –69.91 –86.79 3 –17.43dBm 15.00MHz 3.840MHz –70.42 –87.31 –71.40 –88.28 4 –17.64dBm
OFFSET FREQ INTEG BW dBc dBm dBc dBm
VBW 30kHz S TOP 174.42M Hz
SWEEP 206.9ms (601 PTS)
LOWER UPPER
09016-132
Figure 35. One-Carrier W-CDMA ACLR Performance, IF ≈150 MHz
Rev. 0 | Page 15 of 56
AD9125

TERMINOLOGY

Integral Nonlinearity (INL)
INL is defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale.
Differential Nonlinearity (DNL)
DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code.
Offset Error
The deviation of the output current from the ideal of zero is called offset error. For IOUT1P, 0 mA output is expected when the inputs are all 0s. For IOUT1N, 0 mA output is expected when all inputs are set to 1.
Gain Error
The difference between the actual and ideal output span. The actual span is determined by the difference between the outputs when all inputs are set to 1 vs. when all inputs are set to 0.
Output Compliance Range
The range of allowable voltage at the output of a current output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance.
Temp er at u re D ri ft
Temperature drift is specified as the maximum change from the ambient (25°C) value to the value at either T
MIN
or T
MAX
. For offset and gain drift, the drift is reported in ppm of full­scale range (FSR) per degree Celsius. For reference drift, the drift is reported in ppm per degree Celsius.
Power Supply Rejection (PSR)
The maximum change in the full-scale output as the supplies are varied from minimum to maximum specified voltages.
Settling Time
The time required for the output to reach and remain within a specified error band around its final value, measured from the start of the output transition.
Spurious-Free Dynamic Range (SFDR)
The difference in decibels between the peak amplitude of the output signal and the peak spurious signal within the dc to the Nyquist frequency of the DAC. Typically, energy in this band is rejected by the interpolation filters. This specification, therefore, defines how well the interpolation filters work and the effect of other parasitic coupling paths to the DAC output.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the measured output signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels.
Interpolation Filter
If the digital inputs to the DAC are sampled at a multiple rate of f
(interpolation rate), a digital filter can be constructed that
DATA
has a sharp transition band near f appear around f
(output data rate) can be greatly suppressed.
DAC
/2. Images that typically
DATA
Adjacent Channel Leakage Ratio (ACLR)
The ratio in decibels relative to the carrier (dBc) between the measured power within a channel and that of its adjacent channel.
Complex Image Rejection
In a traditional two-part upconversion, two images are created around the second IF frequency. These images have the effect of wasting transmitter power and system bandwidth. By placing the real part of a second complex modulator in series with the first complex modulator, either the upper or lower frequency image near the second IF can be rejected.
DATA
DCI
LATCH
INPUT
f
INTERFACE
DATA
FORMAT
32
WRITE
POINTER
16
2
FIFO
16
2
READ
POINTER
f
/
f
DATA
HB1
Figure 36. Defining Data Rates
Rev. 0 | Page 16 of 56
f
SIN NCO COS
CLOCK GENERATOR
AND DISTRIBUTOR
/
f
NCO
HB2
16
22
22
f
HB3
I DAC
16
Q DAC
DACCLK
f
DAC
09016-136
AD9125

THEORY OF OPERATION

The AD9125 combines many features that make it a very attractive DAC for wired and wireless communications systems. The dual digital signal path and dual DAC structure allow an easy interface to common quadrature modulators when designing single sideband transmitters. The speed and performance of the AD9125 allows wider bandwidths and more carriers to be synthesized than in previously available DACs. In addition, these devices include an innovative low power, 32-bit, complex NCO that greatly increases the ease of frequency placement.
The AD9125 offers features that allow simplified synchronization with incoming data and between multiple devices. Auxiliary DACs are also provided on chip for output dc offset compensation (for local oscillator [LO] compensation in single sideband [SSB] transmitters) and for gain matching (for image rejection optimization in SSB transmitters).

SERIAL PORT OPERATION

The serial port is a flexible, synchronous serial communication port, allowing easy interface to many industry-standard micro­controllers and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI® and Intel® SSR protocols. The interface allows read/write access to all registers that configure the AD9125. Single- or multiple-byte transfers are supported, as well as MSB­first or LSB-first transfer formats. The serial interface ports can be configured as a single-pin I/O (SDIO) or two unidirectional pins for input/output (SDIO/SDO).
50
SDO
51
SDIO
SCLK
Figure 37. Serial Port Interface Pins
There are two phases of a communication cycle with the AD9125. Phase 1 is the instruction cycle (the writing of an instruction byte into the device), which is coincident with the first eight SCLK rising edges. The instruction byte provides the serial port controller with information regarding the data transfer cycle, which is Phase 2 of the communication cycle. The Phase 1 instruction byte defines whether the upcoming data transfer is a read or write and the starting register address for the first byte of the data transfer. The first eight SCLK rising edges of each communication cycle are used to write the instruction byte into the device.
A logic high on the
CS
pin followed by a logic low resets the serial port timing to the initial state of the instruction cycle. From this state, the next eight rising SCLK edges represent the instruction bits of the current I/O operation.
CS
SPI
PORT
52
53
09016-010
The remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual data transfer between the device and the system controller. Phase 2 of the communication cycle is a transfer of one or more data bytes. Registers change immediately upon writing to the last bit of each transfer byte, except for the frequency tuning word and NCO phase offsets, which only change when the frequency update bit (Register 0x36, Bit 0) is set.

DATA FORMAT

The instruction byte contains the information shown in Tab l e 9 .
Table 9. Serial Port Instruction Byte
I7 (MSB) I6 I5 I4 I3 I2 I1 I0 (LSB)
R/W
A6 A5 A4 A3 A2 A1 A0
R/W, Bit 7 of the instruction byte, determines whether a read or write data transfer occurs after the instruction byte write. Logic 1 indicates a read operation, and Logic 0 indicates a write operation.
A6 to A0, Bit 6 to Bit 0 of the instruction byte, determine the register that is accessed during the data transfer portion of the communication cycle. For multibyte transfers, A6 is the starting byte address. The remaining register addresses are generated by the device based on the LSB_FIRST bit (Register 0x00, Bit 6).

SERIAL PORT PIN DESCRIPTIONS

Serial Clock (SCLK)
The serial clock pin synchronizes data to and from the device and runs the internal state machines. The maximum frequency of SCLK is 40 MHz. All data input is registered on the rising edge of SCLK. All data is driven out on the falling edge of SCLK.
Chip Select (
An active low input starts and gates a communication cycle. It allows more than one device to be used on the same serial communication lines. The SDO and SDIO pins go to a high impedance state when this input is high. During the communication cycle, the
Serial Data I/O (SDIO)
Data is always written into the device on this pin. However, this pin can be used as a bidirectional data line. The configuration of this pin is controlled by Register 0x00, Bit 7. The default is
Logic 0, configuring the SDIO pin as unidirectional.
Serial Data Out (SDO)
Data is read from this pin for protocols that use separate lines for transmitting and receiving data. In the case where the device operates in a single bidirectional I/O mode, this pin does not output data and is set to a high impedance state.
CS
)
CS
pin should stay low.
Rev. 0 | Page 17 of 56
Loading...
+ 39 hidden pages