Offset voltage: 400 μV typical
Low offset voltage drift: 6 μV/°C maximum
(AD8692/AD8694)
Very low input bias currents: 1 pA maximum
Low noise: 8 nV/√Hz
Low distortion: 0.0006%
Wide bandwidth: 10 MHz
Unity-gain stable
Single-supply operation: 2.7 V to 6 V
Qualified for automotive applications
The AD8691, AD8692,and AD8694 are low cost, single, dual,
and quad rail-to-rail output, single-supply amplifiers featuring
low offset and input voltages, low current noise, and wide signal
bandwidth. The combination of low offset, low noise, very low
input bias currents, and high speed make these amplifiers useful
in a wide variety of applications. Filters, integrators, photodiode
amplifiers, and high impedance sensors all benefit from this
combination of performance features. Audio and other ac
applications benefit from the wide bandwidth and low
distortion of these devices.
Applications for these amplifiers include power amplifier (PA)
controls, laser diode control loops, portable and loop-powered
instrumentation, audio amplification for portable devices, and
ASIC input and output amplifiers.
The small SC70 and TSOT package options for the AD8691
allow it to be placed next to sensors, thereby reducing external
noise pickup.
The AD8691, AD8692, and AD8694 are specified over the
extended industrial temperature range of −40°C to +125°C.
The AD8691 single is available in 5-lead SC70 and 5-lead TSOT
packages. The AD8692 dual is available in 8-lead MSOP and
narrow SOIC surface-mount packages. The AD8694 quad is
available in 14-lead TSSOP and narrow 14-lead SOIC packages.
See the Ordering Guide section for automotive grades.
RROOperational Amplifiers
AD8691/AD8692/AD8694
PIN CONFIGURATIONS
UT
1
AD8691
2
V–
TOP VIEW
(Not to Scal e)
3
+IN
Figure 1. 5-Lead TSOT
UT A
+IN A
AD8691
1
2
V–
3
Figure 2. 5-Lead SC70
OUT A
1
AD8692
2
–IN A
+IN A
V–
TOP VIEW
3
(Not to Scale)
4
Figure 3. 8-Lead MSOP
OUT A
1
AD8692
2
–IN A
3
+IN A
V–
TOP VIEW
(Not to Scale)
4
Figure 4. 8-Lead SOIC
OUT A
1
–IN A
2
+IN A
3
AD8694
TOP VIEW
V+
4
(Not to Scal e)
5
+IN B
6
–IN B
OUT B
7
Figure 5. 14-Lead SOIC
1
OUT A
2
–IN A
3
+IN A
V+
+IN B
–IN B
OUT B
AD8694
TOP VIEW
4
(Not to Scale)
5
6
7
Figure 6. 14-Lead TSSOP
14
13
12
11
10
9
8
5
4
5
4
8
7
6
5
8
7
6
5
14
13
12
11
10
9
8
V+
–IN
V+
–IN
V+
OUT B
–IN B
+IN B
V+
OUT B
–IN B
+IN B
OUT D
–IN D
+IN D
V–
+IN C
–IN C
OUT C
OUT D
–IN D
+IN D
V–
+IN C
–IN C
OUT C
04991-030
04991-031
04991-001
04991-002
04991-032
04991-033
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
Changes to Ordering Guide.......................................................... 11
10/04—Revision 0: Initial Version
Rev. E | Page 2 of 16
AD8691/AD8692/AD8694
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = 2.7 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS V
V
Input Bias Current IB 0.2 1 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 260 pA
Input Offset Current IOS 0.1 0.5 pA
−40°C < TA < +85°C 20 pA
−40°C < TA < +125°C 75 pA
Input Voltage Range −0.3 +1.6 V
Common-Mode Rejection Ratio CMRR VCM = −0.3 V to +1.6 V 68 90 dB
VCM = −0.1 V to +1.6 V; −40°C < TA < +125°C 60 85 dB
Large Signal Voltage Gain AVO
AD8691/AD8692 R
AD8694 R
Offset Voltage Drift ∆VOS/∆T
AD8691 2 12 μV/°C
AD8692/AD8694 1.3 6 μV/°C
INPUT CAPACITANCE
Common-Mode Input Capacitance C
Differential Input Capacitance C
CM
DM
OUTPUT CHARACTERISTICS
Output Voltage High VOH I
−40°C < TA < +125°C 2.6 V
Output Voltage Low VOL I
−40°C < TA < +125°C 60 mV
Short-Circuit Current ISC ±20 mA
Closed-Loop Output Impedance Z
f = 1 MHz, AV = 1 12 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.7 V to 5.5 V 80 95 dB
−40°C < TA < +125°C 75 95 dB
Supply Current/Amplifier ISY V
−40°C < TA < +125°C 1.2 mA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 kΩ 5 V/μs
Settling Time tS To 0.01% 1 μs
Gain Bandwidth Product GBP 10 MHz
Phase Margin Øm 60 Degrees
Total Harmonic Distortion + Noise THD + N G = 1, RL = 600 Ω, f = 1 kHz, VO = 250 mV p-p 0.003 %
NOISE PERFORMANCE
Voltage Noise e
f = 0.1 Hz to 10 Hz 1.6 3.0 μV p-p
n p-p
Voltage Noise Density en f = 1 kHz 8 12 nV/√Hz
e
f = 10 kHz 6.5 nV/√Hz
n
Current Noise Density in f = 1 kHz 0.05 pA/√Hz
= −0.3 V to +1.6 V 0.4 2.0 mV
CM
= −0.1 V to +1.6 V; −40°C < TA < +125°C 3.0 mV
CM
= 2 kΩ, VO = 0.5 V to 2.2 V 90 250 V/mV
L
= 2 kΩ, VO = 0.5 V to 2.2 V 60 V/mV
L
5 pF
2.5 pF
= 1 mA 2.64 2.66 V
L
= 1 mA 25 40 mV
L
= 0 V 0.85 0.95 mA
O
Rev. E | Page 3 of 16
AD8691/AD8692/AD8694
VS = 5.0 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS V
V
Input Bias Current IB 0.2 1 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 260 pA
Input Offset Current IOS 0.1 0.5 pA
−40°C < TA < +85°C 20 pA
−40°C < TA < +125°C 75 pA
Input Voltage Range −0.3 +3.9 V
Common-Mode Rejection Ratio CMRR VCM = −0.3 V to +3.9 V 70 95 dB
V
Large Signal Voltage Gain AVO
AD8691/AD8692 V
AD8694 V
Offset Voltage Drift ∆VOS/∆T
AD8691 2 12 μV/°C
AD8692/AD8694 1.3 6 μV/°C
INPUT CAPACITANCE
Common-Mode Input Capacitance C
Differential Input Capacitance C
CM
DM
OUTPUT CHARACTERISTICS
Output Voltage High VOH I
I
−40°C to +125°C 4.6 V
Output Voltage Low VOL I
AD8691/AD8692 I
AD8694 I
AD8691/AD8692−40°C to +125°C 290 mV
AD8694−40°C to +125°C 370 mV
Short-Circuit Current ISC ±80 mA
Closed-Loop Output Impedance Z
f = 1 MHz, AV = 1 10 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.7 V to 5.5 V 80 95 dB
−40°C < TA < +125°C 75 95 dB
Supply Current/Amplifier ISY V
−40°C < TA < +125°C 1.3 mA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 kΩ 5 V/μs
Settling Time tS To 0.01% 1 μs
Full Power Bandwidth BWP <1% distortion 360 kHz
Gain Bandwidth Product GBP 10 MHz
Phase Margin Øm 65 Degrees
Total Harmonic Distortion + Noise THD + N G = 1, RL = 600 Ω, f = 1 kHz, VO = 1 V p-p 0.0006 %
NOISE PERFORMANCE
Voltage Noise e
f = 0.1 Hz to 10 Hz 1.6 3.0 μV p-p
n p-p
Voltage Noise Density en f = 1 kHz 8 12 nV/√Hz
e
f = 10 kHz 6.5 nV/√Hz
n
Current Noise Density in f = 1 kHz 0.05 pA/√Hz
= −0.3 V to +3.9 V 0.4 2.0 mV
CM
= −0.1 V to +3.9 V; −40°C < TA < +125°C 3.0 mV
CM
= −0.1 V to +3.9 V; −40°C < TA < +125°C 67 95 dB
CM
= 0.5 V to 4.5 V, RL = 2 kΩ, VCM = 0 V 250 2000 V/mV
O
= 0.5 V to 4.5 V, RL = 2 kΩ, VCM = 0 V 150 V/mV
O
5 pF
2.5 pF
= 1 mA 4.96 4.98 V
L
= 10 mA 4.7 4.78 V
L
= 1 mA 20 40 mV
L
= 10 mA 165 210 mV
L
= 10 mA 185 240 mV
L
= 0 V 0.95 1.05 mA
O
Rev. E | Page 4 of 16
AD8691/AD8692/AD8694
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 3.
Parameter Rating
Supply Voltage 6 V
Input Voltage VSS − 0.3 V to VDD + 0.3 V
Differential Input Voltage ±6 V
Output Short-Circuit Duration
to GND
Storage Temperature Range −65°C to +150°C
Operating Temperature Range −40°C to +125°C
Junction Temperature Range −65°C to +150°C
Lead Temperature
(Soldering, 60 sec)
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Observe derating curves
300°C
THERMAL CHARACTERISTICS
θJA is specified for the worst-case conditions, that is, the device
soldered in the circuit board for surface-mount packages.
Figure 9. Input Offset Voltage vs. Common-Mode Voltage
–50
–40–20020406080100120
04991-003
–101030507090110
–30
TEMPERATURE ( °C)
04991-006
Figure 10. Input Bias Current vs. Temperature
1.0
0.8
0.6
0.4
SUPPLY CURRENT (mA)
0.2
0
01234567
V
04991-004
(V)
S
04991-007
Figure 11. Supply Current vs. Supply Voltage
2.5
VS = ±2.5V AND ±1.35V
2.0
1.5
1.0
SUPPLY CURRENT (mA)
0.5
0
–40–20020406080100120140
04991-005
@ ±2.5V
I
SY
ISY @ ±1.35V
TEMPERATURE ( °C)
04991-008
Figure 12. Supply Current vs. Temperature
Rev. E | Page 6 of 16
AD8691/AD8692/AD8694
10000
VS = 5V
1000
100
100
VS = ±2.5V, ±1.35V
R
= 2kΩ
80
60
40
L
C
L
= 15pF
90
10
AD8694 SINK
1
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
0.1
0.0010.010. 1110100
AD8694 SOURCE
LOAD CURRENT (mA)
AD8691_92 SINK
AD8691_92 SOURCE
Figure 13. Output Voltage to Supply Rail vs. Load Current
35
VS = 5V
30
AD8694 (VDD – VOH)
25
20
15
10
OUTPUT VOL TAGE SWING (mV)
5
0
–40–20020406080100120
AD8694 (VOL)
AD8691_92 (VDD – VOH)
AD8691_92 (V
TEMPERATURE ( °C)
20
OPEN-LOOP GAIN (dB)
0
–20
–40
1k10k100k1M10M
04991-009
FREQUENCY (Hz)
45
0
–45
–90
PHASE (Degrees)
04991-012
Figure 16. Open-Loop Gain and Phase vs. Frequency
120
100
80
)
OL
04991-010
60
CMRR (dB)
40
20
0
1k10k100k1M10M
FREQUENCY (Hz)
VS = 5V AND 2.7V
04991-013
Figure 14. Output Voltage Swing vs. Temperature (I
350
VS = 5V
300
250
AD8694 (VDD – VOH)
200
150
100
OUTPUT VOL TAGE SWING (mV)
50
0
–40–20020406080100120
AD8691_92 (VDD – VOH)
AD8691_92 (V
AD8694 (VOL)
TEMPERATURE ( °C)
Figure 15. Output Voltage Swing vs. Temperature (I
= 1 mA)
L
)
OL
= 10 mA)
L
04991-011
Rev. E | Page 7 of 16
Figure 17. CMRR vs. Frequen cy
120
100
80
60
PSRR (dB)
40
20
0
101001k10k100k1M10M
FREQUENCY (Hz)
VS = 5V AND 2.7V
Figure 18. PSRR v s. Frequency
04991-014
AD8691/AD8692/AD8694
10000
1000
= 100
A
100
V
VS = ±2.5V
VS = 5V
C
= 200pF
L
R
=
L
AV = 1
∞
10
1
0.1
IMPEDANCE (Ω)
0.01
0.001
0.0001
1001k10k100k1M10M
FREQUENCY (Hz)
A
= 10
V
A
= 1
V
Figure 19. Closed-Loop Output Impedance vs. Frequency
40
VS = 5V AND 2.7V
R
=
35
30
25
20
15
OVERSHOOT (%)
10
∞
L
AV = –1
5
VOLTAGE (1V/ DIV)
04991-015
TIME (400n s/DIV)
04991-018
Figure 22. Large Signal Transient Response
VS = ±2.5V
A
= –50
V
0
(V)
OUT
V
–2.5
100
(mV)
IN
V
0
0
1101001k
LOAD CAPACITANCE (p F)
Figure 20. Small Signal Overshoot vs. Load Capacitance
VS = ±2.5V, ±1.35V
R
= 10kΩ
L
C
= 200pF
L
A
= 1
V
VOLTAGE (50mV/DIV)
TIME (200n s/DIV)
Figure 21. Small Signal Transient Response
04991-016
TIME (400n s/DIV)
04991-019
Figure 23. Positive Overload Recovery
VS = ±2.5V
A
= –50
2.5
(V)
OUT
V
0
0
(mV)
IN
V
–100
04991-017
TIME (400n s/DIV)
V
04991-020
Figure 24. Negative Overload Recovery
Rev. E | Page 8 of 16
AD8691/AD8692/AD8694
0.1
VS = ±2.5V
A
= 1
V
V
= 1V p-p
IN
BW = 20kHz
1000
VS = ±2.5V AND ±1.35V
0.01
R
= 600Ω
L
THD + N (%)
0.001
0.0001
201001k10k 20k
R
= 1kΩ
L
FREQUENCY (Hz)
= 100kΩ
R
L
Figure 25. THD + N vs. Frequency
VS = 5V AND 2.7V
VOLTAGE NOISE (1µV/DIV)
100
NOISE (nV/ Hz)
10
1
04991-021
101100100010000
FREQUENCY (Hz)
04991-023
Figure 27. Voltage Noise Density
150
140
130
120
110
100
CHANNEL SEPARATIO N (dB)
90
28mV p-p
+2.5V
V+
V
A
IN
V–
–2.5V
R1
10kΩ
R2
100Ω
V–
B
V
OUT
V+
80
1k10k100k1M10M
TIME (1s/DIV)
Figure 26. 0.1 Hz to 10 Hz Input Voltage Noise
04991-022
FREQUENCY (Hz)
04991-024
Figure 28. AD8692/AD8694 Channel Separation
Rev. E | Page 9 of 16
AD8691/AD8692/AD8694
VS = +2.7 V or ±1.35 V, unless otherwise noted.
1200
VS = 2.7V
V
= –0.3V TO +1.6V
CM
1000
800
60
VS = 2.7V
50
AD8694 (VDD – VOH)
40
AD8691_92 (VDD – VOH)
600
400
NUMBER OF AMPLIFIERS
200
0
–2.0–1.5–1.0–0.500.51.01.52.0
VOS (mV)
Figure 29. Input Offset Voltage Distribution
2000
VS = 2.7V
1600
T
= 25°C
A
1200
800
400
0
–400
–800
INPUT OFFSET VOLTAGE (µV)
–1200
–1600
–2000
–0.300.30.60.91.21.5 1.6
COMMON-MO DE VOLTAG E (V)
Figure 30. Input Offset Voltage vs. Common-Mode Voltage
30
20
OUTPUT VOL TAGE SWING (mV)
10
0
–40–20020406080100120
04991-025
AD8694 (VOL)
TEMPERATURE (°C)
AD8691_92 (V
Figure 32. Output Voltage Swing vs. Temperature (I
VOLTAG E (500mV/DIV)
04991-026
TIME (400n s/DIV)
OL
= 1 mA)
L
VS = 2.7V
C
= 200pF
L
R
=
∞
L
AV = 1
)
04991-028
04991-029
Figure 33. Large Signal Transient Response
10k
VS = 2.7V
1k
100
10
AD8694 SINK
1
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
0.1
0.0010.010.1110
AD8694 SOURCE
LOAD CURRENT (mA)
AD8691_92 SOURCE
Figure 31. Output Voltage to Supply Rail vs. Load Current
AD8691_92 SINK
04991-027
Rev. E | Page 10 of 16
AD8691/AD8692/AD8694
OUTLINE DIMENSIONS
3.20
3.00
2.80
8
5
3.20
3.00
2.80
PIN 1
IDENTIFIER
0.95
0.85
0.75
0.15
0.05
COPLANARITY
1
0.65 BSC
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 34. 8-Lead Mini Small Outline Package [MSOP]
5.00 (0.1968)
4.80 (0.1890)
5.15
4.90
4.65
4
15° MAX
6°
0°
0.23
0.09
0.40
0.25
1.10 MAX
(RM-8)
Dimensions shown in millimeters
0.80
0.55
0.40
10-07-2009-B
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-AA
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8°
0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 35. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
Rev. E | Page 11 of 16
AD8691/AD8692/AD8694
1.35
1.25
1.15
1.00
0.90
0.70
0.10 MAX
COPLANARITY
0.10
2.20
2.00
1.80
2.40
45
2.10
1.80
312
0.65 BSC
1.10
0.80
0.30
0.15
COMPLIANT TO JEDEC STANDARDS MO-203-AA
SEATING
PLANE
0.40
0.10
0.22
0.08
0.46
0.36
0.26
072809-A
Figure 36. 5-Lead Thin Shrink Small Outline Package [SC70]
(KS-5)
Dimensions shown in millimeters
2.90 BSC
54
1.60 BSC
123
2.80 BSC
0.95 BSC
*
0.90 MAX
0.70 MIN
0.10 MAX
*
COMPLIANT TO JEDEC S TANDARDS MO-193-AB WITH
THE EXCEPTI ON OF PACKAGE HEIGHT AND THI CKNESS.
1.90
BSC
0.50
0.30
*
1.00 MAX
SEATING
PLANE
0.20
0.08
8°
4°
0°
0.60
0.45
0.30
100708-A
Figure 37. 5-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-5)
Dimensions shown in millimeters
Rev. E | Page 12 of 16
AD8691/AD8692/AD8694
4.50
4.40
4.30
PIN 1
1.05
1.00
0.80
0.15
0.05
COPLANARITY
0.10
5.10
5.00
4.90
14
1
0.65 BSC
0.30
0.19
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
8
6.40
BSC
7
1.20
0.20
MAX
0.09
SEATING
PLANE
8°
0°
0.75
0.60
0.45
061908-A
Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
8.75 (0.3445)
8.55 (0.3366)
4.00 (0.1575)
3.80 (0.1496)
14
1
8
7
6.20 (0.2441)
5.80 (0.2283)
0.25 (0.0098)
0.10 (0.0039)
COPLANARIT Y
0.10
CONTROLL ING DIMENSIONS ARE IN MILLIMETERS; INCH DI MENSIONS
(IN PARENTHESES) ARE ROUNDED-O FF MIL LIMETE R EQUIVALENTS FOR
REFERENCE ON LY AND ARE NOT APPROPRI ATE FOR USE IN DESIGN.
1.27 (0.0500)
BSC
0.51 (0.0201)
0.31 (0.0122)
COMPLIANT TO JEDEC STANDARDS MS-012-AB
1.75 (0.0689)
1.35 (0.0531)
SEATING
PLANE
8°
0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0197)
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
45°
060606-A
Figure 39. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-14)
Dimensions shown in millimeters and (inches)
Rev. E | Page 13 of 16
AD8691/AD8692/AD8694
ORDERING GUIDE
1, 2
Model
AD8691AUJZ-R2 −40°C to +125°C 5-Lead TSOT UJ-5 ACA
AD8691AUJZ-REEL −40°C to +125°C 5-Lead TSOT UJ-5 ACA
AD8691AUJZ-REEL7 −40°C to +125°C 5-Lead TSOT UJ-5 ACA
AD8691AKSZ-R2 −40°C to +125°C 5-Lead SC70 KS-5 ACA
AD8691AKSZ-REEL −40°C to +125°C 5-Lead SC70 KS-5 ACA
AD8691AKSZ-REEL7 −40°C to +125°C 5-Lead SC70 KS-5 ACA
AD8691WAUJZ-R7 −40°C to +125°C 5-Lead TSOT UJ-5 ACA
AD8691WAUJZ-RL −40°C to +125°C 5-Lead TSOT UJ-5 ACA
AD8692ARMZ-R7 −40°C to +125°C 8-Lead MSOP RM-8 APA
AD8692ARMZ-REEL −40°C to +125°C 8-Lead MSOP RM-8 APA
AD8692ARZ −40°C to +125°C 8-Lead SOIC_N R-8
AD8692ARZ-REEL −40°C to +125°C 8-Lead SOIC_N R-8
AD8692ARZ-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8
AD8692WARMZ-REEL −40°C to +125°C 8-Lead MSOP RM-8 APA
AD8694ARUZ −40°C to +125°C 14-Lead TSSOP RU-14
AD8694ARUZ-REEL −40°C to +125°C 14-Lead TSSOP RU-14
AD8694WARUZ −40°C to +125°C 14-Lead TSSOP RU-14
AD8694WARUZ-REEL −40°C to +125°C 14-Lead TSSOP RU-14
AD8694ARZ −40°C to +125°C 14-Lead SOIC_N R-14
AD8694ARZ-REEL −40°C to +125°C 14-Lead SOIC_N R-14
AD8694ARZ-REEL7 −40°C to +125°C 14-Lead SOIC_N R-14
1
Z = RoHS Compliant Part.
2
W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The AD8691W/AD8692W/AD8694W models are available with controlled manufacturing to support the quality and reliability
requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial
models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products
shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product
ordering information and to obtain the specific Automotive Reliability reports for these models.
Temperature Range Package Description Package Option Branding